mirror_zfs/module/zfs/zfs_vfsops.c
Brian Behlendorf 149e873ab1 Fix minor compiler warnings
These compiler warnings were introduced when code which was
previously #ifdef'ed out by HAVE_ZPL was re-added for use
by the posix layer.  All of the following changes should be
obviously correct and will cause no semantic changes.
2011-01-06 15:04:28 -08:00

2290 lines
56 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/pathname.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/cmn_err.h>
#include "fs/fs_subr.h"
#include <sys/zfs_znode.h>
#include <sys/zfs_dir.h>
#include <sys/zil.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_deleg.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/varargs.h>
#include <sys/policy.h>
#include <sys/atomic.h>
#include <sys/mkdev.h>
#include <sys/modctl.h>
#include <sys/refstr.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_fuid.h>
#include <sys/bootconf.h>
#include <sys/sunddi.h>
#include <sys/dnlc.h>
#include <sys/dmu_objset.h>
#include <sys/spa_boot.h>
#include <sys/sa.h>
#include "zfs_comutil.h"
#ifdef HAVE_ZPL
int zfsfstype;
vfsops_t *zfs_vfsops = NULL;
static major_t zfs_major;
static minor_t zfs_minor;
static kmutex_t zfs_dev_mtx;
extern int sys_shutdown;
static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
static void zfs_freevfs(vfs_t *vfsp);
static const fs_operation_def_t zfs_vfsops_template[] = {
VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
VFSNAME_ROOT, { .vfs_root = zfs_root },
VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
VFSNAME_SYNC, { .vfs_sync = zfs_sync },
VFSNAME_VGET, { .vfs_vget = zfs_vget },
VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
NULL, NULL
};
static const fs_operation_def_t zfs_vfsops_eio_template[] = {
VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
NULL, NULL
};
/*
* We need to keep a count of active fs's.
* This is necessary to prevent our module
* from being unloaded after a umount -f
*/
static uint32_t zfs_active_fs_count = 0;
static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
/*
* MO_DEFAULT is not used since the default value is determined
* by the equivalent property.
*/
static mntopt_t mntopts[] = {
{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
};
static mntopts_t zfs_mntopts = {
sizeof (mntopts) / sizeof (mntopt_t),
mntopts
};
/*ARGSUSED*/
int
zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
{
/*
* Data integrity is job one. We don't want a compromised kernel
* writing to the storage pool, so we never sync during panic.
*/
if (panicstr)
return (0);
/*
* SYNC_ATTR is used by fsflush() to force old filesystems like UFS
* to sync metadata, which they would otherwise cache indefinitely.
* Semantically, the only requirement is that the sync be initiated.
* The DMU syncs out txgs frequently, so there's nothing to do.
*/
if (flag & SYNC_ATTR)
return (0);
if (vfsp != NULL) {
/*
* Sync a specific filesystem.
*/
zfsvfs_t *zfsvfs = vfsp->vfs_data;
dsl_pool_t *dp;
ZFS_ENTER(zfsvfs);
dp = dmu_objset_pool(zfsvfs->z_os);
/*
* If the system is shutting down, then skip any
* filesystems which may exist on a suspended pool.
*/
if (sys_shutdown && spa_suspended(dp->dp_spa)) {
ZFS_EXIT(zfsvfs);
return (0);
}
if (zfsvfs->z_log != NULL)
zil_commit(zfsvfs->z_log, 0);
ZFS_EXIT(zfsvfs);
} else {
/*
* Sync all ZFS filesystems. This is what happens when you
* run sync(1M). Unlike other filesystems, ZFS honors the
* request by waiting for all pools to commit all dirty data.
*/
spa_sync_allpools();
}
return (0);
}
static int
zfs_create_unique_device(dev_t *dev)
{
major_t new_major;
do {
ASSERT3U(zfs_minor, <=, MAXMIN32);
minor_t start = zfs_minor;
do {
mutex_enter(&zfs_dev_mtx);
if (zfs_minor >= MAXMIN32) {
/*
* If we're still using the real major
* keep out of /dev/zfs and /dev/zvol minor
* number space. If we're using a getudev()'ed
* major number, we can use all of its minors.
*/
if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
zfs_minor = ZFS_MIN_MINOR;
else
zfs_minor = 0;
} else {
zfs_minor++;
}
*dev = makedevice(zfs_major, zfs_minor);
mutex_exit(&zfs_dev_mtx);
} while (vfs_devismounted(*dev) && zfs_minor != start);
if (zfs_minor == start) {
/*
* We are using all ~262,000 minor numbers for the
* current major number. Create a new major number.
*/
if ((new_major = getudev()) == (major_t)-1) {
cmn_err(CE_WARN,
"zfs_mount: Can't get unique major "
"device number.");
return (-1);
}
mutex_enter(&zfs_dev_mtx);
zfs_major = new_major;
zfs_minor = 0;
mutex_exit(&zfs_dev_mtx);
} else {
break;
}
/* CONSTANTCONDITION */
} while (1);
return (0);
}
static void
atime_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == TRUE) {
zfsvfs->z_atime = TRUE;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
} else {
zfsvfs->z_atime = FALSE;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
}
}
static void
xattr_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == TRUE) {
/* XXX locking on vfs_flag? */
zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
} else {
/* XXX locking on vfs_flag? */
zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
}
}
static void
blksz_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval < SPA_MINBLOCKSIZE ||
newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
newval = SPA_MAXBLOCKSIZE;
zfsvfs->z_max_blksz = newval;
zfsvfs->z_vfs->vfs_bsize = newval;
}
static void
readonly_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval) {
/* XXX locking on vfs_flag? */
zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
} else {
/* XXX locking on vfs_flag? */
zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
}
}
static void
devices_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == FALSE) {
zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
} else {
zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
}
}
static void
setuid_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == FALSE) {
zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
} else {
zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
}
}
static void
exec_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == FALSE) {
zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
} else {
zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
}
}
/*
* The nbmand mount option can be changed at mount time.
* We can't allow it to be toggled on live file systems or incorrect
* behavior may be seen from cifs clients
*
* This property isn't registered via dsl_prop_register(), but this callback
* will be called when a file system is first mounted
*/
static void
nbmand_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
if (newval == FALSE) {
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
} else {
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
}
}
static void
snapdir_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
zfsvfs->z_show_ctldir = newval;
}
static void
vscan_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
zfsvfs->z_vscan = newval;
}
static void
acl_inherit_changed_cb(void *arg, uint64_t newval)
{
zfsvfs_t *zfsvfs = arg;
zfsvfs->z_acl_inherit = newval;
}
static int
zfs_register_callbacks(vfs_t *vfsp)
{
struct dsl_dataset *ds = NULL;
objset_t *os = NULL;
zfsvfs_t *zfsvfs = NULL;
uint64_t nbmand;
int readonly, do_readonly = B_FALSE;
int setuid, do_setuid = B_FALSE;
int exec, do_exec = B_FALSE;
int devices, do_devices = B_FALSE;
int xattr, do_xattr = B_FALSE;
int atime, do_atime = B_FALSE;
int error = 0;
ASSERT(vfsp);
zfsvfs = vfsp->vfs_data;
ASSERT(zfsvfs);
os = zfsvfs->z_os;
/*
* The act of registering our callbacks will destroy any mount
* options we may have. In order to enable temporary overrides
* of mount options, we stash away the current values and
* restore them after we register the callbacks.
*/
if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
!spa_writeable(dmu_objset_spa(os))) {
readonly = B_TRUE;
do_readonly = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
readonly = B_FALSE;
do_readonly = B_TRUE;
}
if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
devices = B_FALSE;
setuid = B_FALSE;
do_devices = B_TRUE;
do_setuid = B_TRUE;
} else {
if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
devices = B_FALSE;
do_devices = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
devices = B_TRUE;
do_devices = B_TRUE;
}
if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
setuid = B_FALSE;
do_setuid = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
setuid = B_TRUE;
do_setuid = B_TRUE;
}
}
if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
exec = B_FALSE;
do_exec = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
exec = B_TRUE;
do_exec = B_TRUE;
}
if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
xattr = B_FALSE;
do_xattr = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
xattr = B_TRUE;
do_xattr = B_TRUE;
}
if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
atime = B_FALSE;
do_atime = B_TRUE;
} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
atime = B_TRUE;
do_atime = B_TRUE;
}
/*
* nbmand is a special property. It can only be changed at
* mount time.
*
* This is weird, but it is documented to only be changeable
* at mount time.
*/
if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
nbmand = B_FALSE;
} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
nbmand = B_TRUE;
} else {
char osname[MAXNAMELEN];
dmu_objset_name(os, osname);
if ((error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
NULL))) {
return (error);
}
}
/*
* Register property callbacks.
*
* It would probably be fine to just check for i/o error from
* the first prop_register(), but I guess I like to go
* overboard...
*/
ds = dmu_objset_ds(os);
error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"xattr", xattr_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"recordsize", blksz_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"readonly", readonly_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"devices", devices_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"setuid", setuid_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"exec", exec_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"snapdir", snapdir_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"aclinherit", acl_inherit_changed_cb, zfsvfs);
error = error ? error : dsl_prop_register(ds,
"vscan", vscan_changed_cb, zfsvfs);
if (error)
goto unregister;
/*
* Invoke our callbacks to restore temporary mount options.
*/
if (do_readonly)
readonly_changed_cb(zfsvfs, readonly);
if (do_setuid)
setuid_changed_cb(zfsvfs, setuid);
if (do_exec)
exec_changed_cb(zfsvfs, exec);
if (do_devices)
devices_changed_cb(zfsvfs, devices);
if (do_xattr)
xattr_changed_cb(zfsvfs, xattr);
if (do_atime)
atime_changed_cb(zfsvfs, atime);
nbmand_changed_cb(zfsvfs, nbmand);
return (0);
unregister:
/*
* We may attempt to unregister some callbacks that are not
* registered, but this is OK; it will simply return ENOMSG,
* which we will ignore.
*/
(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
zfsvfs);
(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
return (error);
}
#endif /* HAVE_ZPL */
static int
zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
uint64_t *userp, uint64_t *groupp)
{
znode_phys_t *znp = data;
int error = 0;
/*
* Is it a valid type of object to track?
*/
if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
return (ENOENT);
/*
* If we have a NULL data pointer
* then assume the id's aren't changing and
* return EEXIST to the dmu to let it know to
* use the same ids
*/
if (data == NULL)
return (EEXIST);
if (bonustype == DMU_OT_ZNODE) {
*userp = znp->zp_uid;
*groupp = znp->zp_gid;
} else {
int hdrsize;
ASSERT(bonustype == DMU_OT_SA);
hdrsize = sa_hdrsize(data);
if (hdrsize != 0) {
*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
SA_UID_OFFSET));
*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
SA_GID_OFFSET));
} else {
/*
* This should only happen for newly created
* files that haven't had the znode data filled
* in yet.
*/
*userp = 0;
*groupp = 0;
}
}
return (error);
}
#ifdef HAVE_ZPL
static void
fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
char *domainbuf, int buflen, uid_t *ridp)
{
uint64_t fuid;
const char *domain;
fuid = strtonum(fuidstr, NULL);
domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
if (domain)
(void) strlcpy(domainbuf, domain, buflen);
else
domainbuf[0] = '\0';
*ridp = FUID_RID(fuid);
}
static uint64_t
zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
{
switch (type) {
case ZFS_PROP_USERUSED:
return (DMU_USERUSED_OBJECT);
case ZFS_PROP_GROUPUSED:
return (DMU_GROUPUSED_OBJECT);
case ZFS_PROP_USERQUOTA:
return (zfsvfs->z_userquota_obj);
case ZFS_PROP_GROUPQUOTA:
return (zfsvfs->z_groupquota_obj);
default:
return (ENOTSUP);
}
return (0);
}
int
zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
{
int error;
zap_cursor_t zc;
zap_attribute_t za;
zfs_useracct_t *buf = vbuf;
uint64_t obj;
if (!dmu_objset_userspace_present(zfsvfs->z_os))
return (ENOTSUP);
obj = zfs_userquota_prop_to_obj(zfsvfs, type);
if (obj == 0) {
*bufsizep = 0;
return (0);
}
for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
*bufsizep)
break;
fuidstr_to_sid(zfsvfs, za.za_name,
buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
buf->zu_space = za.za_first_integer;
buf++;
}
if (error == ENOENT)
error = 0;
ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
*cookiep = zap_cursor_serialize(&zc);
zap_cursor_fini(&zc);
return (error);
}
/*
* buf must be big enough (eg, 32 bytes)
*/
static int
id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
char *buf, boolean_t addok)
{
uint64_t fuid;
int domainid = 0;
if (domain && domain[0]) {
domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
if (domainid == -1)
return (ENOENT);
}
fuid = FUID_ENCODE(domainid, rid);
(void) sprintf(buf, "%llx", (longlong_t)fuid);
return (0);
}
int
zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
const char *domain, uint64_t rid, uint64_t *valp)
{
char buf[32];
int err;
uint64_t obj;
*valp = 0;
if (!dmu_objset_userspace_present(zfsvfs->z_os))
return (ENOTSUP);
obj = zfs_userquota_prop_to_obj(zfsvfs, type);
if (obj == 0)
return (0);
err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
if (err)
return (err);
err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
if (err == ENOENT)
err = 0;
return (err);
}
int
zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
const char *domain, uint64_t rid, uint64_t quota)
{
char buf[32];
int err;
dmu_tx_t *tx;
uint64_t *objp;
boolean_t fuid_dirtied;
if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
return (EINVAL);
if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
return (ENOTSUP);
objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
&zfsvfs->z_groupquota_obj;
err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
if (err)
return (err);
fuid_dirtied = zfsvfs->z_fuid_dirty;
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
if (*objp == 0) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
zfs_userquota_prop_prefixes[type]);
}
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err) {
dmu_tx_abort(tx);
return (err);
}
mutex_enter(&zfsvfs->z_lock);
if (*objp == 0) {
*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
DMU_OT_NONE, 0, tx);
VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
}
mutex_exit(&zfsvfs->z_lock);
if (quota == 0) {
err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
if (err == ENOENT)
err = 0;
} else {
err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
}
ASSERT(err == 0);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
dmu_tx_commit(tx);
return (err);
}
boolean_t
zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
{
char buf[32];
uint64_t used, quota, usedobj, quotaobj;
int err;
usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
if (quotaobj == 0 || zfsvfs->z_replay)
return (B_FALSE);
(void) sprintf(buf, "%llx", (longlong_t)fuid);
err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
if (err != 0)
return (B_FALSE);
err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
if (err != 0)
return (B_FALSE);
return (used >= quota);
}
boolean_t
zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
{
uint64_t fuid;
uint64_t quotaobj;
quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
fuid = isgroup ? zp->z_gid : zp->z_uid;
if (quotaobj == 0 || zfsvfs->z_replay)
return (B_FALSE);
return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
}
int
zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
{
objset_t *os;
zfsvfs_t *zfsvfs;
uint64_t zval;
int i, error;
uint64_t sa_obj;
zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
/*
* We claim to always be readonly so we can open snapshots;
* other ZPL code will prevent us from writing to snapshots.
*/
error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
if (error) {
kmem_free(zfsvfs, sizeof (zfsvfs_t));
return (error);
}
/*
* Initialize the zfs-specific filesystem structure.
* Should probably make this a kmem cache, shuffle fields,
* and just bzero up to z_hold_mtx[].
*/
zfsvfs->z_vfs = NULL;
zfsvfs->z_parent = zfsvfs;
zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
zfsvfs->z_os = os;
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
if (error) {
goto out;
} else if (zfsvfs->z_version >
zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
(void) printk("Can't mount a version %lld file system "
"on a version %lld pool\n. Pool must be upgraded to mount "
"this file system.", (u_longlong_t)zfsvfs->z_version,
(u_longlong_t)spa_version(dmu_objset_spa(os)));
error = ENOTSUP;
goto out;
}
if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
goto out;
zfsvfs->z_norm = (int)zval;
if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
goto out;
zfsvfs->z_utf8 = (zval != 0);
if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
goto out;
zfsvfs->z_case = (uint_t)zval;
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
zfsvfs->z_case == ZFS_CASE_MIXED)
zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
if (zfsvfs->z_use_sa) {
/* should either have both of these objects or none */
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
&sa_obj);
if (error)
return (error);
} else {
/*
* Pre SA versions file systems should never touch
* either the attribute registration or layout objects.
*/
sa_obj = 0;
}
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
&zfsvfs->z_attr_table);
if (error)
goto out;
if (zfsvfs->z_version >= ZPL_VERSION_SA)
sa_register_update_callback(os, zfs_sa_upgrade);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
&zfsvfs->z_root);
if (error)
goto out;
ASSERT(zfsvfs->z_root != 0);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
&zfsvfs->z_unlinkedobj);
if (error)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
8, 1, &zfsvfs->z_userquota_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
8, 1, &zfsvfs->z_groupquota_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
&zfsvfs->z_fuid_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
&zfsvfs->z_shares_dir);
if (error && error != ENOENT)
goto out;
mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
rrw_init(&zfsvfs->z_teardown_lock);
rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
*zfvp = zfsvfs;
return (0);
out:
dmu_objset_disown(os, zfsvfs);
*zfvp = NULL;
kmem_free(zfsvfs, sizeof (zfsvfs_t));
return (error);
}
static int
zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
{
int error;
error = zfs_register_callbacks(zfsvfs->z_vfs);
if (error)
return (error);
/*
* Set the objset user_ptr to track its zfsvfs.
*/
mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
/*
* If we are not mounting (ie: online recv), then we don't
* have to worry about replaying the log as we blocked all
* operations out since we closed the ZIL.
*/
if (mounting) {
boolean_t readonly;
/*
* During replay we remove the read only flag to
* allow replays to succeed.
*/
readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
if (readonly != 0)
zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
else
zfs_unlinked_drain(zfsvfs);
/*
* Parse and replay the intent log.
*
* Because of ziltest, this must be done after
* zfs_unlinked_drain(). (Further note: ziltest
* doesn't use readonly mounts, where
* zfs_unlinked_drain() isn't called.) This is because
* ziltest causes spa_sync() to think it's committed,
* but actually it is not, so the intent log contains
* many txg's worth of changes.
*
* In particular, if object N is in the unlinked set in
* the last txg to actually sync, then it could be
* actually freed in a later txg and then reallocated
* in a yet later txg. This would write a "create
* object N" record to the intent log. Normally, this
* would be fine because the spa_sync() would have
* written out the fact that object N is free, before
* we could write the "create object N" intent log
* record.
*
* But when we are in ziltest mode, we advance the "open
* txg" without actually spa_sync()-ing the changes to
* disk. So we would see that object N is still
* allocated and in the unlinked set, and there is an
* intent log record saying to allocate it.
*/
if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
if (zil_replay_disable) {
zil_destroy(zfsvfs->z_log, B_FALSE);
} else {
zfsvfs->z_replay = B_TRUE;
zil_replay(zfsvfs->z_os, zfsvfs,
zfs_replay_vector);
zfsvfs->z_replay = B_FALSE;
}
}
zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
}
return (0);
}
void
zfsvfs_free(zfsvfs_t *zfsvfs)
{
int i;
extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
/*
* This is a barrier to prevent the filesystem from going away in
* zfs_znode_move() until we can safely ensure that the filesystem is
* not unmounted. We consider the filesystem valid before the barrier
* and invalid after the barrier.
*/
rw_enter(&zfsvfs_lock, RW_READER);
rw_exit(&zfsvfs_lock);
zfs_fuid_destroy(zfsvfs);
mutex_destroy(&zfsvfs->z_znodes_lock);
mutex_destroy(&zfsvfs->z_lock);
list_destroy(&zfsvfs->z_all_znodes);
rrw_destroy(&zfsvfs->z_teardown_lock);
rw_destroy(&zfsvfs->z_teardown_inactive_lock);
rw_destroy(&zfsvfs->z_fuid_lock);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_destroy(&zfsvfs->z_hold_mtx[i]);
kmem_free(zfsvfs, sizeof (zfsvfs_t));
}
static void
zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
{
zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
}
zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
}
static int
zfs_domount(vfs_t *vfsp, char *osname)
{
dev_t mount_dev;
uint64_t recordsize, fsid_guid;
int error = 0;
zfsvfs_t *zfsvfs;
ASSERT(vfsp);
ASSERT(osname);
error = zfsvfs_create(osname, &zfsvfs);
if (error)
return (error);
zfsvfs->z_vfs = vfsp;
/* Initialize the generic filesystem structure. */
vfsp->vfs_bcount = 0;
vfsp->vfs_data = NULL;
if (zfs_create_unique_device(&mount_dev) == -1) {
error = ENODEV;
goto out;
}
ASSERT(vfs_devismounted(mount_dev) == 0);
if ((error = dsl_prop_get_integer(osname, "recordsize",
&recordsize, NULL)))
goto out;
vfsp->vfs_dev = mount_dev;
vfsp->vfs_fstype = zfsfstype;
vfsp->vfs_bsize = recordsize;
vfsp->vfs_flag |= VFS_NOTRUNC;
vfsp->vfs_data = zfsvfs;
/*
* The fsid is 64 bits, composed of an 8-bit fs type, which
* separates our fsid from any other filesystem types, and a
* 56-bit objset unique ID. The objset unique ID is unique to
* all objsets open on this system, provided by unique_create().
* The 8-bit fs type must be put in the low bits of fsid[1]
* because that's where other Solaris filesystems put it.
*/
fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
vfsp->vfs_fsid.val[0] = fsid_guid;
vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
zfsfstype & 0xFF;
/*
* Set features for file system.
*/
zfs_set_fuid_feature(zfsvfs);
if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
}
vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
uint64_t pval;
atime_changed_cb(zfsvfs, B_FALSE);
readonly_changed_cb(zfsvfs, B_TRUE);
if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
goto out;
xattr_changed_cb(zfsvfs, pval);
zfsvfs->z_issnap = B_TRUE;
zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
} else {
error = zfsvfs_setup(zfsvfs, B_TRUE);
}
if (!zfsvfs->z_issnap)
zfsctl_create(zfsvfs);
out:
if (error) {
dmu_objset_disown(zfsvfs->z_os, zfsvfs);
zfsvfs_free(zfsvfs);
} else {
atomic_add_32(&zfs_active_fs_count, 1);
}
return (error);
}
void
zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
{
objset_t *os = zfsvfs->z_os;
struct dsl_dataset *ds;
/*
* Unregister properties.
*/
if (!dmu_objset_is_snapshot(os)) {
ds = dmu_objset_ds(os);
VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "aclinherit",
acl_inherit_changed_cb, zfsvfs) == 0);
VERIFY(dsl_prop_unregister(ds, "vscan",
vscan_changed_cb, zfsvfs) == 0);
}
}
/*
* Convert a decimal digit string to a uint64_t integer.
*/
static int
str_to_uint64(char *str, uint64_t *objnum)
{
uint64_t num = 0;
while (*str) {
if (*str < '0' || *str > '9')
return (EINVAL);
num = num*10 + *str++ - '0';
}
*objnum = num;
return (0);
}
/*
* The boot path passed from the boot loader is in the form of
* "rootpool-name/root-filesystem-object-number'. Convert this
* string to a dataset name: "rootpool-name/root-filesystem-name".
*/
static int
zfs_parse_bootfs(char *bpath, char *outpath)
{
char *slashp;
uint64_t objnum;
int error;
if (*bpath == 0 || *bpath == '/')
return (EINVAL);
(void) strcpy(outpath, bpath);
slashp = strchr(bpath, '/');
/* if no '/', just return the pool name */
if (slashp == NULL) {
return (0);
}
/* if not a number, just return the root dataset name */
if (str_to_uint64(slashp+1, &objnum)) {
return (0);
}
*slashp = '\0';
error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
*slashp = '/';
return (error);
}
/*
* zfs_check_global_label:
* Check that the hex label string is appropriate for the dataset
* being mounted into the global_zone proper.
*
* Return an error if the hex label string is not default or
* admin_low/admin_high. For admin_low labels, the corresponding
* dataset must be readonly.
*/
int
zfs_check_global_label(const char *dsname, const char *hexsl)
{
if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
return (0);
if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
return (0);
if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
/* must be readonly */
uint64_t rdonly;
if (dsl_prop_get_integer(dsname,
zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
return (EACCES);
return (rdonly ? 0 : EACCES);
}
return (EACCES);
}
/*
* zfs_mount_label_policy:
* Determine whether the mount is allowed according to MAC check.
* by comparing (where appropriate) label of the dataset against
* the label of the zone being mounted into. If the dataset has
* no label, create one.
*
* Returns:
* 0 : access allowed
* >0 : error code, such as EACCES
*/
static int
zfs_mount_label_policy(vfs_t *vfsp, char *osname)
{
int error, retv;
zone_t *mntzone = NULL;
ts_label_t *mnt_tsl;
bslabel_t *mnt_sl;
bslabel_t ds_sl;
char ds_hexsl[MAXNAMELEN];
retv = EACCES; /* assume the worst */
/*
* Start by getting the dataset label if it exists.
*/
error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1, sizeof (ds_hexsl), &ds_hexsl, NULL);
if (error)
return (EACCES);
/*
* If labeling is NOT enabled, then disallow the mount of datasets
* which have a non-default label already. No other label checks
* are needed.
*/
if (!is_system_labeled()) {
if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
return (0);
return (EACCES);
}
/*
* Get the label of the mountpoint. If mounting into the global
* zone (i.e. mountpoint is not within an active zone and the
* zoned property is off), the label must be default or
* admin_low/admin_high only; no other checks are needed.
*/
mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
if (mntzone->zone_id == GLOBAL_ZONEID) {
uint64_t zoned;
zone_rele(mntzone);
if (dsl_prop_get_integer(osname,
zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
return (EACCES);
if (!zoned)
return (zfs_check_global_label(osname, ds_hexsl));
else
/*
* This is the case of a zone dataset being mounted
* initially, before the zone has been fully created;
* allow this mount into global zone.
*/
return (0);
}
mnt_tsl = mntzone->zone_slabel;
ASSERT(mnt_tsl != NULL);
label_hold(mnt_tsl);
mnt_sl = label2bslabel(mnt_tsl);
if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
/*
* The dataset doesn't have a real label, so fabricate one.
*/
char *str = NULL;
if (l_to_str_internal(mnt_sl, &str) == 0 &&
dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
retv = 0;
if (str != NULL)
kmem_free(str, strlen(str) + 1);
} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
/*
* Now compare labels to complete the MAC check. If the
* labels are equal then allow access. If the mountpoint
* label dominates the dataset label, allow readonly access.
* Otherwise, access is denied.
*/
if (blequal(mnt_sl, &ds_sl))
retv = 0;
else if (bldominates(mnt_sl, &ds_sl)) {
vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
retv = 0;
}
}
label_rele(mnt_tsl);
zone_rele(mntzone);
return (retv);
}
static int
zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
{
int error = 0;
static int zfsrootdone = 0;
zfsvfs_t *zfsvfs = NULL;
znode_t *zp = NULL;
vnode_t *vp = NULL;
char *zfs_bootfs;
char *zfs_devid;
ASSERT(vfsp);
/*
* The filesystem that we mount as root is defined in the
* boot property "zfs-bootfs" with a format of
* "poolname/root-dataset-objnum".
*/
if (why == ROOT_INIT) {
if (zfsrootdone++)
return (EBUSY);
/*
* the process of doing a spa_load will require the
* clock to be set before we could (for example) do
* something better by looking at the timestamp on
* an uberblock, so just set it to -1.
*/
clkset(-1);
if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
"bootfs name");
return (EINVAL);
}
zfs_devid = spa_get_bootprop("diskdevid");
error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
if (zfs_devid)
spa_free_bootprop(zfs_devid);
if (error) {
spa_free_bootprop(zfs_bootfs);
cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
error);
return (error);
}
if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
spa_free_bootprop(zfs_bootfs);
cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
error);
return (error);
}
spa_free_bootprop(zfs_bootfs);
if (error = vfs_lock(vfsp))
return (error);
if (error = zfs_domount(vfsp, rootfs.bo_name)) {
cmn_err(CE_NOTE, "zfs_domount: error %d", error);
goto out;
}
zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
ASSERT(zfsvfs);
if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
cmn_err(CE_NOTE, "zfs_zget: error %d", error);
goto out;
}
vp = ZTOV(zp);
mutex_enter(&vp->v_lock);
vp->v_flag |= VROOT;
mutex_exit(&vp->v_lock);
rootvp = vp;
/*
* Leave rootvp held. The root file system is never unmounted.
*/
vfs_add((struct vnode *)0, vfsp,
(vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
out:
vfs_unlock(vfsp);
return (error);
} else if (why == ROOT_REMOUNT) {
readonly_changed_cb(vfsp->vfs_data, B_FALSE);
vfsp->vfs_flag |= VFS_REMOUNT;
/* refresh mount options */
zfs_unregister_callbacks(vfsp->vfs_data);
return (zfs_register_callbacks(vfsp));
} else if (why == ROOT_UNMOUNT) {
zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
(void) zfs_sync(vfsp, 0, 0);
return (0);
}
/*
* if "why" is equal to anything else other than ROOT_INIT,
* ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
*/
return (ENOTSUP);
}
/*ARGSUSED*/
static int
zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
{
char *osname;
pathname_t spn;
int error = 0;
uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
UIO_SYSSPACE : UIO_USERSPACE;
int canwrite;
if (mvp->v_type != VDIR)
return (ENOTDIR);
mutex_enter(&mvp->v_lock);
if ((uap->flags & MS_REMOUNT) == 0 &&
(uap->flags & MS_OVERLAY) == 0 &&
(mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
mutex_exit(&mvp->v_lock);
return (EBUSY);
}
mutex_exit(&mvp->v_lock);
/*
* ZFS does not support passing unparsed data in via MS_DATA.
* Users should use the MS_OPTIONSTR interface; this means
* that all option parsing is already done and the options struct
* can be interrogated.
*/
if ((uap->flags & MS_DATA) && uap->datalen > 0)
return (EINVAL);
/*
* Get the objset name (the "special" mount argument).
*/
if ((error = pn_get(uap->spec, fromspace, &spn)))
return (error);
osname = spn.pn_path;
/*
* Check for mount privilege?
*
* If we don't have privilege then see if
* we have local permission to allow it
*/
error = secpolicy_fs_mount(cr, mvp, vfsp);
if (error) {
if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
vattr_t vattr;
/*
* Make sure user is the owner of the mount point
* or has sufficient privileges.
*/
vattr.va_mask = AT_UID;
if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
goto out;
}
if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
goto out;
}
secpolicy_fs_mount_clearopts(cr, vfsp);
} else {
goto out;
}
}
/*
* Refuse to mount a filesystem if we are in a local zone and the
* dataset is not visible.
*/
if (!INGLOBALZONE(curproc) &&
(!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
error = EPERM;
goto out;
}
error = zfs_mount_label_policy(vfsp, osname);
if (error)
goto out;
/*
* When doing a remount, we simply refresh our temporary properties
* according to those options set in the current VFS options.
*/
if (uap->flags & MS_REMOUNT) {
/* refresh mount options */
zfs_unregister_callbacks(vfsp->vfs_data);
error = zfs_register_callbacks(vfsp);
goto out;
}
error = zfs_domount(vfsp, osname);
/*
* Add an extra VFS_HOLD on our parent vfs so that it can't
* disappear due to a forced unmount.
*/
if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
VFS_HOLD(mvp->v_vfsp);
out:
pn_free(&spn);
return (error);
}
static int
zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
dev32_t d32;
uint64_t refdbytes, availbytes, usedobjs, availobjs;
ZFS_ENTER(zfsvfs);
dmu_objset_space(zfsvfs->z_os,
&refdbytes, &availbytes, &usedobjs, &availobjs);
/*
* The underlying storage pool actually uses multiple block sizes.
* We report the fragsize as the smallest block size we support,
* and we report our blocksize as the filesystem's maximum blocksize.
*/
statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
statp->f_bsize = zfsvfs->z_max_blksz;
/*
* The following report "total" blocks of various kinds in the
* file system, but reported in terms of f_frsize - the
* "fragment" size.
*/
statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
statp->f_bavail = statp->f_bfree; /* no root reservation */
/*
* statvfs() should really be called statufs(), because it assumes
* static metadata. ZFS doesn't preallocate files, so the best
* we can do is report the max that could possibly fit in f_files,
* and that minus the number actually used in f_ffree.
* For f_ffree, report the smaller of the number of object available
* and the number of blocks (each object will take at least a block).
*/
statp->f_ffree = MIN(availobjs, statp->f_bfree);
statp->f_favail = statp->f_ffree; /* no "root reservation" */
statp->f_files = statp->f_ffree + usedobjs;
(void) cmpldev(&d32, vfsp->vfs_dev);
statp->f_fsid = d32;
/*
* We're a zfs filesystem.
*/
(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
statp->f_flag = vf_to_stf(vfsp->vfs_flag);
statp->f_namemax = ZFS_MAXNAMELEN;
/*
* We have all of 32 characters to stuff a string here.
* Is there anything useful we could/should provide?
*/
bzero(statp->f_fstr, sizeof (statp->f_fstr));
ZFS_EXIT(zfsvfs);
return (0);
}
static int
zfs_root(vfs_t *vfsp, vnode_t **vpp)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
znode_t *rootzp;
int error;
ZFS_ENTER(zfsvfs);
error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
if (error == 0)
*vpp = ZTOV(rootzp);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Teardown the zfsvfs::z_os.
*
* Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
* and 'z_teardown_inactive_lock' held.
*/
static int
zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
{
znode_t *zp;
rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
if (!unmounting) {
/*
* We purge the parent filesystem's vfsp as the parent
* filesystem and all of its snapshots have their vnode's
* v_vfsp set to the parent's filesystem's vfsp. Note,
* 'z_parent' is self referential for non-snapshots.
*/
(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
}
/*
* Close the zil. NB: Can't close the zil while zfs_inactive
* threads are blocked as zil_close can call zfs_inactive.
*/
if (zfsvfs->z_log) {
zil_close(zfsvfs->z_log);
zfsvfs->z_log = NULL;
}
rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
/*
* If we are not unmounting (ie: online recv) and someone already
* unmounted this file system while we were doing the switcheroo,
* or a reopen of z_os failed then just bail out now.
*/
if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
rw_exit(&zfsvfs->z_teardown_inactive_lock);
rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
return (EIO);
}
/*
* At this point there are no vops active, and any new vops will
* fail with EIO since we have z_teardown_lock for writer (only
* relavent for forced unmount).
*
* Release all holds on dbufs.
*/
mutex_enter(&zfsvfs->z_znodes_lock);
for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
zp = list_next(&zfsvfs->z_all_znodes, zp))
if (zp->z_sa_hdl) {
ASSERT(ZTOV(zp)->v_count > 0);
zfs_znode_dmu_fini(zp);
}
mutex_exit(&zfsvfs->z_znodes_lock);
/*
* If we are unmounting, set the unmounted flag and let new vops
* unblock. zfs_inactive will have the unmounted behavior, and all
* other vops will fail with EIO.
*/
if (unmounting) {
zfsvfs->z_unmounted = B_TRUE;
rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
rw_exit(&zfsvfs->z_teardown_inactive_lock);
}
/*
* z_os will be NULL if there was an error in attempting to reopen
* zfsvfs, so just return as the properties had already been
* unregistered and cached data had been evicted before.
*/
if (zfsvfs->z_os == NULL)
return (0);
/*
* Unregister properties.
*/
zfs_unregister_callbacks(zfsvfs);
/*
* Evict cached data
*/
if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
return (0);
}
/*ARGSUSED*/
static int
zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
objset_t *os;
int ret;
ret = secpolicy_fs_unmount(cr, vfsp);
if (ret) {
if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
ZFS_DELEG_PERM_MOUNT, cr))
return (ret);
}
/*
* We purge the parent filesystem's vfsp as the parent filesystem
* and all of its snapshots have their vnode's v_vfsp set to the
* parent's filesystem's vfsp. Note, 'z_parent' is self
* referential for non-snapshots.
*/
(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
/*
* Unmount any snapshots mounted under .zfs before unmounting the
* dataset itself.
*/
if (zfsvfs->z_ctldir != NULL &&
(ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
return (ret);
}
if (!(fflag & MS_FORCE)) {
/*
* Check the number of active vnodes in the file system.
* Our count is maintained in the vfs structure, but the
* number is off by 1 to indicate a hold on the vfs
* structure itself.
*
* The '.zfs' directory maintains a reference of its
* own, and any active references underneath are
* reflected in the vnode count.
*/
if (zfsvfs->z_ctldir == NULL) {
if (vfsp->vfs_count > 1)
return (EBUSY);
} else {
if (vfsp->vfs_count > 2 ||
zfsvfs->z_ctldir->v_count > 1)
return (EBUSY);
}
}
vfsp->vfs_flag |= VFS_UNMOUNTED;
VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
os = zfsvfs->z_os;
/*
* z_os will be NULL if there was an error in
* attempting to reopen zfsvfs.
*/
if (os != NULL) {
/*
* Unset the objset user_ptr.
*/
mutex_enter(&os->os_user_ptr_lock);
dmu_objset_set_user(os, NULL);
mutex_exit(&os->os_user_ptr_lock);
/*
* Finally release the objset
*/
dmu_objset_disown(os, zfsvfs);
}
/*
* We can now safely destroy the '.zfs' directory node.
*/
if (zfsvfs->z_ctldir != NULL)
zfsctl_destroy(zfsvfs);
return (0);
}
static int
zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
znode_t *zp;
uint64_t object = 0;
uint64_t fid_gen = 0;
uint64_t gen_mask;
uint64_t zp_gen;
int i, err;
*vpp = NULL;
ZFS_ENTER(zfsvfs);
if (fidp->fid_len == LONG_FID_LEN) {
zfid_long_t *zlfid = (zfid_long_t *)fidp;
uint64_t objsetid = 0;
uint64_t setgen = 0;
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
ZFS_EXIT(zfsvfs);
err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
if (err)
return (EINVAL);
ZFS_ENTER(zfsvfs);
}
if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
zfid_short_t *zfid = (zfid_short_t *)fidp;
for (i = 0; i < sizeof (zfid->zf_object); i++)
object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
for (i = 0; i < sizeof (zfid->zf_gen); i++)
fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
} else {
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
/* A zero fid_gen means we are in the .zfs control directories */
if (fid_gen == 0 &&
(object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
*vpp = zfsvfs->z_ctldir;
ASSERT(*vpp != NULL);
if (object == ZFSCTL_INO_SNAPDIR) {
VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
0, NULL, NULL, NULL, NULL, NULL) == 0);
} else {
VN_HOLD(*vpp);
}
ZFS_EXIT(zfsvfs);
return (0);
}
gen_mask = -1ULL >> (64 - 8 * i);
dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
if ((err = zfs_zget(zfsvfs, object, &zp))) {
ZFS_EXIT(zfsvfs);
return (err);
}
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
sizeof (uint64_t));
zp_gen = zp_gen & gen_mask;
if (zp_gen == 0)
zp_gen = 1;
if (zp->z_unlinked || zp_gen != fid_gen) {
dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
VN_RELE(ZTOV(zp));
ZFS_EXIT(zfsvfs);
return (EINVAL);
}
*vpp = ZTOV(zp);
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Block out VOPs and close zfsvfs_t::z_os
*
* Note, if successful, then we return with the 'z_teardown_lock' and
* 'z_teardown_inactive_lock' write held.
*/
int
zfs_suspend_fs(zfsvfs_t *zfsvfs)
{
int error;
if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
return (error);
dmu_objset_disown(zfsvfs->z_os, zfsvfs);
return (0);
}
/*
* Reopen zfsvfs_t::z_os and release VOPs.
*/
int
zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
{
int err, err2;
ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
&zfsvfs->z_os);
if (err) {
zfsvfs->z_os = NULL;
} else {
znode_t *zp;
uint64_t sa_obj = 0;
err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj);
if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
goto bail;
if ((err = sa_setup(zfsvfs->z_os, sa_obj,
zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
goto bail;
VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
/*
* Attempt to re-establish all the active znodes with
* their dbufs. If a zfs_rezget() fails, then we'll let
* any potential callers discover that via ZFS_ENTER_VERIFY_VP
* when they try to use their znode.
*/
mutex_enter(&zfsvfs->z_znodes_lock);
for (zp = list_head(&zfsvfs->z_all_znodes); zp;
zp = list_next(&zfsvfs->z_all_znodes, zp)) {
(void) zfs_rezget(zp);
}
mutex_exit(&zfsvfs->z_znodes_lock);
}
bail:
/* release the VOPs */
rw_exit(&zfsvfs->z_teardown_inactive_lock);
rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
if (err) {
/*
* Since we couldn't reopen zfsvfs::z_os, force
* unmount this file system.
*/
if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
}
return (err);
}
static void
zfs_freevfs(vfs_t *vfsp)
{
zfsvfs_t *zfsvfs = vfsp->vfs_data;
/*
* If this is a snapshot, we have an extra VFS_HOLD on our parent
* from zfs_mount(). Release it here. If we came through
* zfs_mountroot() instead, we didn't grab an extra hold, so
* skip the VFS_RELE for rootvfs.
*/
if (zfsvfs->z_issnap && (vfsp != rootvfs))
VFS_RELE(zfsvfs->z_parent->z_vfs);
zfsvfs_free(zfsvfs);
atomic_add_32(&zfs_active_fs_count, -1);
}
/*
* VFS_INIT() initialization. Note that there is no VFS_FINI(),
* so we can't safely do any non-idempotent initialization here.
* Leave that to zfs_init() and zfs_fini(), which are called
* from the module's _init() and _fini() entry points.
*/
/*ARGSUSED*/
static int
zfs_vfsinit(int fstype, char *name)
{
int error;
zfsfstype = fstype;
/*
* Setup vfsops and vnodeops tables.
*/
error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
if (error != 0) {
cmn_err(CE_WARN, "zfs: bad vfs ops template");
}
error = zfs_create_op_tables();
if (error) {
zfs_remove_op_tables();
cmn_err(CE_WARN, "zfs: bad vnode ops template");
(void) vfs_freevfsops_by_type(zfsfstype);
return (error);
}
mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
/*
* Unique major number for all zfs mounts.
* If we run out of 32-bit minors, we'll getudev() another major.
*/
zfs_major = ddi_name_to_major(ZFS_DRIVER);
zfs_minor = ZFS_MIN_MINOR;
return (0);
}
#endif /* HAVE_ZPL */
void
zfs_init(void)
{
#ifdef HAVE_ZPL
/*
* Initialize .zfs directory structures
*/
zfsctl_init();
/*
* Initialize znode cache, vnode ops, etc...
*/
zfs_znode_init();
#endif /* HAVE_ZPL */
dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
}
void
zfs_fini(void)
{
#ifdef HAVE_ZPL
zfsctl_fini();
zfs_znode_fini();
#endif /* HAVE_ZPL */
}
#ifdef HAVE_ZPL
int
zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
{
int error;
objset_t *os = zfsvfs->z_os;
dmu_tx_t *tx;
if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
return (EINVAL);
if (newvers < zfsvfs->z_version)
return (EINVAL);
if (zfs_spa_version_map(newvers) >
spa_version(dmu_objset_spa(zfsvfs->z_os)))
return (ENOTSUP);
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
ZFS_SA_ATTRS);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
}
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
return (error);
}
error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
8, 1, &newvers, tx);
if (error) {
dmu_tx_commit(tx);
return (error);
}
if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
uint64_t sa_obj;
ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
SPA_VERSION_SA);
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
DMU_OT_NONE, 0, tx);
error = zap_add(os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
ASSERT3U(error, ==, 0);
VERIFY(0 == sa_set_sa_object(os, sa_obj));
sa_register_update_callback(os, zfs_sa_upgrade);
}
spa_history_log_internal(LOG_DS_UPGRADE,
dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
zfsvfs->z_version, newvers, dmu_objset_id(os));
dmu_tx_commit(tx);
zfsvfs->z_version = newvers;
if (zfsvfs->z_version >= ZPL_VERSION_FUID)
zfs_set_fuid_feature(zfsvfs);
return (0);
}
#endif /* HAVE_ZPL */
/*
* Read a property stored within the master node.
*/
int
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
{
const char *pname;
int error = ENOENT;
/*
* Look up the file system's value for the property. For the
* version property, we look up a slightly different string.
*/
if (prop == ZFS_PROP_VERSION)
pname = ZPL_VERSION_STR;
else
pname = zfs_prop_to_name(prop);
if (os != NULL)
error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
if (error == ENOENT) {
/* No value set, use the default value */
switch (prop) {
case ZFS_PROP_VERSION:
*value = ZPL_VERSION;
break;
case ZFS_PROP_NORMALIZE:
case ZFS_PROP_UTF8ONLY:
*value = 0;
break;
case ZFS_PROP_CASE:
*value = ZFS_CASE_SENSITIVE;
break;
default:
return (error);
}
error = 0;
}
return (error);
}
#ifdef HAVE_ZPL
static vfsdef_t vfw = {
VFSDEF_VERSION,
MNTTYPE_ZFS,
zfs_vfsinit,
VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
VSW_XID|VSW_ZMOUNT,
&zfs_mntopts
};
struct modlfs zfs_modlfs = {
&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
};
#endif /* HAVE_ZPL */