mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-21 07:26:35 +03:00
913ae45218
va_seq was actually a thin veil over va_gen, so z_gen is a more appropriate value than z_seq to populate the field with. Drop the unnecessary compat obfuscation and provide the correct file generation number. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Signed-off-by: Ryan Moeller <freqlabs@freebsd.org> Closes #12851
1371 lines
33 KiB
C
1371 lines
33 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
|
|
* Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* ZFS control directory (a.k.a. ".zfs")
|
|
*
|
|
* This directory provides a common location for all ZFS meta-objects.
|
|
* Currently, this is only the 'snapshot' directory, but this may expand in the
|
|
* future. The elements are built using the GFS primitives, as the hierarchy
|
|
* does not actually exist on disk.
|
|
*
|
|
* For 'snapshot', we don't want to have all snapshots always mounted, because
|
|
* this would take up a huge amount of space in /etc/mnttab. We have three
|
|
* types of objects:
|
|
*
|
|
* ctldir ------> snapshotdir -------> snapshot
|
|
* |
|
|
* |
|
|
* V
|
|
* mounted fs
|
|
*
|
|
* The 'snapshot' node contains just enough information to lookup '..' and act
|
|
* as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
|
|
* perform an automount of the underlying filesystem and return the
|
|
* corresponding vnode.
|
|
*
|
|
* All mounts are handled automatically by the kernel, but unmounts are
|
|
* (currently) handled from user land. The main reason is that there is no
|
|
* reliable way to auto-unmount the filesystem when it's "no longer in use".
|
|
* When the user unmounts a filesystem, we call zfsctl_unmount(), which
|
|
* unmounts any snapshots within the snapshot directory.
|
|
*
|
|
* The '.zfs', '.zfs/snapshot', and all directories created under
|
|
* '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
|
|
* share the same vfs_t as the head filesystem (what '.zfs' lives under).
|
|
*
|
|
* File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
|
|
* (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
|
|
* However, vnodes within these mounted on file systems have their v_vfsp
|
|
* fields set to the head filesystem to make NFS happy (see
|
|
* zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
|
|
* so that it cannot be freed until all snapshots have been unmounted.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zfs_ctldir.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zfs_vfsops.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_destroy.h>
|
|
#include <sys/dsl_deleg.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/sysproto.h>
|
|
|
|
#include "zfs_namecheck.h"
|
|
|
|
#include <sys/kernel.h>
|
|
#include <sys/ccompat.h>
|
|
|
|
/* Common access mode for all virtual directories under the ctldir */
|
|
const uint16_t zfsctl_ctldir_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
|
|
S_IROTH | S_IXOTH;
|
|
|
|
/*
|
|
* "Synthetic" filesystem implementation.
|
|
*/
|
|
|
|
/*
|
|
* Assert that A implies B.
|
|
*/
|
|
#define KASSERT_IMPLY(A, B, msg) KASSERT(!(A) || (B), (msg));
|
|
|
|
static MALLOC_DEFINE(M_SFSNODES, "sfs_nodes", "synthetic-fs nodes");
|
|
|
|
typedef struct sfs_node {
|
|
char sn_name[ZFS_MAX_DATASET_NAME_LEN];
|
|
uint64_t sn_parent_id;
|
|
uint64_t sn_id;
|
|
} sfs_node_t;
|
|
|
|
/*
|
|
* Check the parent's ID as well as the node's to account for a chance
|
|
* that IDs originating from different domains (snapshot IDs, artificial
|
|
* IDs, znode IDs) may clash.
|
|
*/
|
|
static int
|
|
sfs_compare_ids(struct vnode *vp, void *arg)
|
|
{
|
|
sfs_node_t *n1 = vp->v_data;
|
|
sfs_node_t *n2 = arg;
|
|
bool equal;
|
|
|
|
equal = n1->sn_id == n2->sn_id &&
|
|
n1->sn_parent_id == n2->sn_parent_id;
|
|
|
|
/* Zero means equality. */
|
|
return (!equal);
|
|
}
|
|
|
|
static int
|
|
sfs_vnode_get(const struct mount *mp, int flags, uint64_t parent_id,
|
|
uint64_t id, struct vnode **vpp)
|
|
{
|
|
sfs_node_t search;
|
|
int err;
|
|
|
|
search.sn_id = id;
|
|
search.sn_parent_id = parent_id;
|
|
err = vfs_hash_get(mp, (uint32_t)id, flags, curthread, vpp,
|
|
sfs_compare_ids, &search);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
sfs_vnode_insert(struct vnode *vp, int flags, uint64_t parent_id,
|
|
uint64_t id, struct vnode **vpp)
|
|
{
|
|
int err;
|
|
|
|
KASSERT(vp->v_data != NULL, ("sfs_vnode_insert with NULL v_data"));
|
|
err = vfs_hash_insert(vp, (uint32_t)id, flags, curthread, vpp,
|
|
sfs_compare_ids, vp->v_data);
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
sfs_vnode_remove(struct vnode *vp)
|
|
{
|
|
vfs_hash_remove(vp);
|
|
}
|
|
|
|
typedef void sfs_vnode_setup_fn(vnode_t *vp, void *arg);
|
|
|
|
static int
|
|
sfs_vgetx(struct mount *mp, int flags, uint64_t parent_id, uint64_t id,
|
|
const char *tag, struct vop_vector *vops,
|
|
sfs_vnode_setup_fn setup, void *arg,
|
|
struct vnode **vpp)
|
|
{
|
|
struct vnode *vp;
|
|
int error;
|
|
|
|
error = sfs_vnode_get(mp, flags, parent_id, id, vpp);
|
|
if (error != 0 || *vpp != NULL) {
|
|
KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
|
|
"sfs vnode with no data");
|
|
return (error);
|
|
}
|
|
|
|
/* Allocate a new vnode/inode. */
|
|
error = getnewvnode(tag, mp, vops, &vp);
|
|
if (error != 0) {
|
|
*vpp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Exclusively lock the vnode vnode while it's being constructed.
|
|
*/
|
|
lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
|
|
error = insmntque(vp, mp);
|
|
if (error != 0) {
|
|
*vpp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
setup(vp, arg);
|
|
|
|
error = sfs_vnode_insert(vp, flags, parent_id, id, vpp);
|
|
if (error != 0 || *vpp != NULL) {
|
|
KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
|
|
"sfs vnode with no data");
|
|
return (error);
|
|
}
|
|
|
|
*vpp = vp;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sfs_print_node(sfs_node_t *node)
|
|
{
|
|
printf("\tname = %s\n", node->sn_name);
|
|
printf("\tparent_id = %ju\n", (uintmax_t)node->sn_parent_id);
|
|
printf("\tid = %ju\n", (uintmax_t)node->sn_id);
|
|
}
|
|
|
|
static sfs_node_t *
|
|
sfs_alloc_node(size_t size, const char *name, uint64_t parent_id, uint64_t id)
|
|
{
|
|
struct sfs_node *node;
|
|
|
|
KASSERT(strlen(name) < sizeof (node->sn_name),
|
|
("sfs node name is too long"));
|
|
KASSERT(size >= sizeof (*node), ("sfs node size is too small"));
|
|
node = malloc(size, M_SFSNODES, M_WAITOK | M_ZERO);
|
|
strlcpy(node->sn_name, name, sizeof (node->sn_name));
|
|
node->sn_parent_id = parent_id;
|
|
node->sn_id = id;
|
|
|
|
return (node);
|
|
}
|
|
|
|
static void
|
|
sfs_destroy_node(sfs_node_t *node)
|
|
{
|
|
free(node, M_SFSNODES);
|
|
}
|
|
|
|
static void *
|
|
sfs_reclaim_vnode(vnode_t *vp)
|
|
{
|
|
void *data;
|
|
|
|
sfs_vnode_remove(vp);
|
|
data = vp->v_data;
|
|
vp->v_data = NULL;
|
|
return (data);
|
|
}
|
|
|
|
static int
|
|
sfs_readdir_common(uint64_t parent_id, uint64_t id, struct vop_readdir_args *ap,
|
|
zfs_uio_t *uio, off_t *offp)
|
|
{
|
|
struct dirent entry;
|
|
int error;
|
|
|
|
/* Reset ncookies for subsequent use of vfs_read_dirent. */
|
|
if (ap->a_ncookies != NULL)
|
|
*ap->a_ncookies = 0;
|
|
|
|
if (zfs_uio_resid(uio) < sizeof (entry))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (zfs_uio_offset(uio) < 0)
|
|
return (SET_ERROR(EINVAL));
|
|
if (zfs_uio_offset(uio) == 0) {
|
|
entry.d_fileno = id;
|
|
entry.d_type = DT_DIR;
|
|
entry.d_name[0] = '.';
|
|
entry.d_name[1] = '\0';
|
|
entry.d_namlen = 1;
|
|
entry.d_reclen = sizeof (entry);
|
|
error = vfs_read_dirent(ap, &entry, zfs_uio_offset(uio));
|
|
if (error != 0)
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
if (zfs_uio_offset(uio) < sizeof (entry))
|
|
return (SET_ERROR(EINVAL));
|
|
if (zfs_uio_offset(uio) == sizeof (entry)) {
|
|
entry.d_fileno = parent_id;
|
|
entry.d_type = DT_DIR;
|
|
entry.d_name[0] = '.';
|
|
entry.d_name[1] = '.';
|
|
entry.d_name[2] = '\0';
|
|
entry.d_namlen = 2;
|
|
entry.d_reclen = sizeof (entry);
|
|
error = vfs_read_dirent(ap, &entry, zfs_uio_offset(uio));
|
|
if (error != 0)
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
if (offp != NULL)
|
|
*offp = 2 * sizeof (entry);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* .zfs inode namespace
|
|
*
|
|
* We need to generate unique inode numbers for all files and directories
|
|
* within the .zfs pseudo-filesystem. We use the following scheme:
|
|
*
|
|
* ENTRY ZFSCTL_INODE
|
|
* .zfs 1
|
|
* .zfs/snapshot 2
|
|
* .zfs/snapshot/<snap> objectid(snap)
|
|
*/
|
|
#define ZFSCTL_INO_SNAP(id) (id)
|
|
|
|
static struct vop_vector zfsctl_ops_root;
|
|
static struct vop_vector zfsctl_ops_snapdir;
|
|
static struct vop_vector zfsctl_ops_snapshot;
|
|
|
|
void
|
|
zfsctl_init(void)
|
|
{
|
|
}
|
|
|
|
void
|
|
zfsctl_fini(void)
|
|
{
|
|
}
|
|
|
|
boolean_t
|
|
zfsctl_is_node(vnode_t *vp)
|
|
{
|
|
return (vn_matchops(vp, zfsctl_ops_root) ||
|
|
vn_matchops(vp, zfsctl_ops_snapdir) ||
|
|
vn_matchops(vp, zfsctl_ops_snapshot));
|
|
|
|
}
|
|
|
|
typedef struct zfsctl_root {
|
|
sfs_node_t node;
|
|
sfs_node_t *snapdir;
|
|
timestruc_t cmtime;
|
|
} zfsctl_root_t;
|
|
|
|
|
|
/*
|
|
* Create the '.zfs' directory.
|
|
*/
|
|
void
|
|
zfsctl_create(zfsvfs_t *zfsvfs)
|
|
{
|
|
zfsctl_root_t *dot_zfs;
|
|
sfs_node_t *snapdir;
|
|
vnode_t *rvp;
|
|
uint64_t crtime[2];
|
|
|
|
ASSERT3P(zfsvfs->z_ctldir, ==, NULL);
|
|
|
|
snapdir = sfs_alloc_node(sizeof (*snapdir), "snapshot", ZFSCTL_INO_ROOT,
|
|
ZFSCTL_INO_SNAPDIR);
|
|
dot_zfs = (zfsctl_root_t *)sfs_alloc_node(sizeof (*dot_zfs), ".zfs", 0,
|
|
ZFSCTL_INO_ROOT);
|
|
dot_zfs->snapdir = snapdir;
|
|
|
|
VERIFY0(VFS_ROOT(zfsvfs->z_vfs, LK_EXCLUSIVE, &rvp));
|
|
VERIFY0(sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
|
|
&crtime, sizeof (crtime)));
|
|
ZFS_TIME_DECODE(&dot_zfs->cmtime, crtime);
|
|
vput(rvp);
|
|
|
|
zfsvfs->z_ctldir = dot_zfs;
|
|
}
|
|
|
|
/*
|
|
* Destroy the '.zfs' directory. Only called when the filesystem is unmounted.
|
|
* The nodes must not have any associated vnodes by now as they should be
|
|
* vflush-ed.
|
|
*/
|
|
void
|
|
zfsctl_destroy(zfsvfs_t *zfsvfs)
|
|
{
|
|
sfs_destroy_node(zfsvfs->z_ctldir->snapdir);
|
|
sfs_destroy_node((sfs_node_t *)zfsvfs->z_ctldir);
|
|
zfsvfs->z_ctldir = NULL;
|
|
}
|
|
|
|
static int
|
|
zfsctl_fs_root_vnode(struct mount *mp, void *arg __unused, int flags,
|
|
struct vnode **vpp)
|
|
{
|
|
return (VFS_ROOT(mp, flags, vpp));
|
|
}
|
|
|
|
static void
|
|
zfsctl_common_vnode_setup(vnode_t *vp, void *arg)
|
|
{
|
|
ASSERT_VOP_ELOCKED(vp, __func__);
|
|
|
|
/* We support shared locking. */
|
|
VN_LOCK_ASHARE(vp);
|
|
vp->v_type = VDIR;
|
|
vp->v_data = arg;
|
|
}
|
|
|
|
static int
|
|
zfsctl_root_vnode(struct mount *mp, void *arg __unused, int flags,
|
|
struct vnode **vpp)
|
|
{
|
|
void *node;
|
|
int err;
|
|
|
|
node = ((zfsvfs_t *)mp->mnt_data)->z_ctldir;
|
|
err = sfs_vgetx(mp, flags, 0, ZFSCTL_INO_ROOT, "zfs", &zfsctl_ops_root,
|
|
zfsctl_common_vnode_setup, node, vpp);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
zfsctl_snapdir_vnode(struct mount *mp, void *arg __unused, int flags,
|
|
struct vnode **vpp)
|
|
{
|
|
void *node;
|
|
int err;
|
|
|
|
node = ((zfsvfs_t *)mp->mnt_data)->z_ctldir->snapdir;
|
|
err = sfs_vgetx(mp, flags, ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, "zfs",
|
|
&zfsctl_ops_snapdir, zfsctl_common_vnode_setup, node, vpp);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Given a root znode, retrieve the associated .zfs directory.
|
|
* Add a hold to the vnode and return it.
|
|
*/
|
|
int
|
|
zfsctl_root(zfsvfs_t *zfsvfs, int flags, vnode_t **vpp)
|
|
{
|
|
int error;
|
|
|
|
error = zfsctl_root_vnode(zfsvfs->z_vfs, NULL, flags, vpp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Common open routine. Disallow any write access.
|
|
*/
|
|
static int
|
|
zfsctl_common_open(struct vop_open_args *ap)
|
|
{
|
|
int flags = ap->a_mode;
|
|
|
|
if (flags & FWRITE)
|
|
return (SET_ERROR(EACCES));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Common close routine. Nothing to do here.
|
|
*/
|
|
/* ARGSUSED */
|
|
static int
|
|
zfsctl_common_close(struct vop_close_args *ap)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Common access routine. Disallow writes.
|
|
*/
|
|
static int
|
|
zfsctl_common_access(struct vop_access_args *ap)
|
|
{
|
|
accmode_t accmode = ap->a_accmode;
|
|
|
|
if (accmode & VWRITE)
|
|
return (SET_ERROR(EACCES));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Common getattr function. Fill in basic information.
|
|
*/
|
|
static void
|
|
zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
|
|
{
|
|
timestruc_t now;
|
|
sfs_node_t *node;
|
|
|
|
node = vp->v_data;
|
|
|
|
vap->va_uid = 0;
|
|
vap->va_gid = 0;
|
|
vap->va_rdev = 0;
|
|
/*
|
|
* We are a purely virtual object, so we have no
|
|
* blocksize or allocated blocks.
|
|
*/
|
|
vap->va_blksize = 0;
|
|
vap->va_nblocks = 0;
|
|
vap->va_gen = 0;
|
|
vn_fsid(vp, vap);
|
|
vap->va_mode = zfsctl_ctldir_mode;
|
|
vap->va_type = VDIR;
|
|
/*
|
|
* We live in the now (for atime).
|
|
*/
|
|
gethrestime(&now);
|
|
vap->va_atime = now;
|
|
/* FreeBSD: Reset chflags(2) flags. */
|
|
vap->va_flags = 0;
|
|
|
|
vap->va_nodeid = node->sn_id;
|
|
|
|
/* At least '.' and '..'. */
|
|
vap->va_nlink = 2;
|
|
}
|
|
|
|
#ifndef _OPENSOLARIS_SYS_VNODE_H_
|
|
struct vop_fid_args {
|
|
struct vnode *a_vp;
|
|
struct fid *a_fid;
|
|
};
|
|
#endif
|
|
|
|
static int
|
|
zfsctl_common_fid(struct vop_fid_args *ap)
|
|
{
|
|
vnode_t *vp = ap->a_vp;
|
|
fid_t *fidp = (void *)ap->a_fid;
|
|
sfs_node_t *node = vp->v_data;
|
|
uint64_t object = node->sn_id;
|
|
zfid_short_t *zfid;
|
|
int i;
|
|
|
|
zfid = (zfid_short_t *)fidp;
|
|
zfid->zf_len = SHORT_FID_LEN;
|
|
|
|
for (i = 0; i < sizeof (zfid->zf_object); i++)
|
|
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
|
|
|
|
/* .zfs nodes always have a generation number of 0 */
|
|
for (i = 0; i < sizeof (zfid->zf_gen); i++)
|
|
zfid->zf_gen[i] = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct vop_reclaim_args {
|
|
struct vnode *a_vp;
|
|
struct thread *a_td;
|
|
};
|
|
#endif
|
|
|
|
static int
|
|
zfsctl_common_reclaim(struct vop_reclaim_args *ap)
|
|
{
|
|
vnode_t *vp = ap->a_vp;
|
|
|
|
(void) sfs_reclaim_vnode(vp);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct vop_print_args {
|
|
struct vnode *a_vp;
|
|
};
|
|
#endif
|
|
|
|
static int
|
|
zfsctl_common_print(struct vop_print_args *ap)
|
|
{
|
|
sfs_print_node(ap->a_vp->v_data);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct vop_getattr_args {
|
|
struct vnode *a_vp;
|
|
struct vattr *a_vap;
|
|
struct ucred *a_cred;
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Get root directory attributes.
|
|
*/
|
|
static int
|
|
zfsctl_root_getattr(struct vop_getattr_args *ap)
|
|
{
|
|
struct vnode *vp = ap->a_vp;
|
|
struct vattr *vap = ap->a_vap;
|
|
zfsctl_root_t *node = vp->v_data;
|
|
|
|
zfsctl_common_getattr(vp, vap);
|
|
vap->va_ctime = node->cmtime;
|
|
vap->va_mtime = vap->va_ctime;
|
|
vap->va_birthtime = vap->va_ctime;
|
|
vap->va_nlink += 1; /* snapdir */
|
|
vap->va_size = vap->va_nlink;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* When we lookup "." we still can be asked to lock it
|
|
* differently, can't we?
|
|
*/
|
|
static int
|
|
zfsctl_relock_dot(vnode_t *dvp, int ltype)
|
|
{
|
|
vref(dvp);
|
|
if (ltype != VOP_ISLOCKED(dvp)) {
|
|
if (ltype == LK_EXCLUSIVE)
|
|
vn_lock(dvp, LK_UPGRADE | LK_RETRY);
|
|
else /* if (ltype == LK_SHARED) */
|
|
vn_lock(dvp, LK_DOWNGRADE | LK_RETRY);
|
|
|
|
/* Relock for the "." case may left us with reclaimed vnode. */
|
|
if (VN_IS_DOOMED(dvp)) {
|
|
vrele(dvp);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Special case the handling of "..".
|
|
*/
|
|
static int
|
|
zfsctl_root_lookup(struct vop_lookup_args *ap)
|
|
{
|
|
struct componentname *cnp = ap->a_cnp;
|
|
vnode_t *dvp = ap->a_dvp;
|
|
vnode_t **vpp = ap->a_vpp;
|
|
int flags = ap->a_cnp->cn_flags;
|
|
int lkflags = ap->a_cnp->cn_lkflags;
|
|
int nameiop = ap->a_cnp->cn_nameiop;
|
|
int err;
|
|
|
|
ASSERT3S(dvp->v_type, ==, VDIR);
|
|
|
|
if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
|
|
err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
|
|
if (err == 0)
|
|
*vpp = dvp;
|
|
} else if ((flags & ISDOTDOT) != 0) {
|
|
err = vn_vget_ino_gen(dvp, zfsctl_fs_root_vnode, NULL,
|
|
lkflags, vpp);
|
|
} else if (strncmp(cnp->cn_nameptr, "snapshot", cnp->cn_namelen) == 0) {
|
|
err = zfsctl_snapdir_vnode(dvp->v_mount, NULL, lkflags, vpp);
|
|
} else {
|
|
err = SET_ERROR(ENOENT);
|
|
}
|
|
if (err != 0)
|
|
*vpp = NULL;
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
zfsctl_root_readdir(struct vop_readdir_args *ap)
|
|
{
|
|
struct dirent entry;
|
|
vnode_t *vp = ap->a_vp;
|
|
zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
|
|
zfsctl_root_t *node = vp->v_data;
|
|
zfs_uio_t uio;
|
|
int *eofp = ap->a_eofflag;
|
|
off_t dots_offset;
|
|
int error;
|
|
|
|
zfs_uio_init(&uio, ap->a_uio);
|
|
|
|
ASSERT3S(vp->v_type, ==, VDIR);
|
|
|
|
error = sfs_readdir_common(zfsvfs->z_root, ZFSCTL_INO_ROOT, ap, &uio,
|
|
&dots_offset);
|
|
if (error != 0) {
|
|
if (error == ENAMETOOLONG) /* ran out of destination space */
|
|
error = 0;
|
|
return (error);
|
|
}
|
|
if (zfs_uio_offset(&uio) != dots_offset)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
CTASSERT(sizeof (node->snapdir->sn_name) <= sizeof (entry.d_name));
|
|
entry.d_fileno = node->snapdir->sn_id;
|
|
entry.d_type = DT_DIR;
|
|
strcpy(entry.d_name, node->snapdir->sn_name);
|
|
entry.d_namlen = strlen(entry.d_name);
|
|
entry.d_reclen = sizeof (entry);
|
|
error = vfs_read_dirent(ap, &entry, zfs_uio_offset(&uio));
|
|
if (error != 0) {
|
|
if (error == ENAMETOOLONG)
|
|
error = 0;
|
|
return (SET_ERROR(error));
|
|
}
|
|
if (eofp != NULL)
|
|
*eofp = 1;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfsctl_root_vptocnp(struct vop_vptocnp_args *ap)
|
|
{
|
|
static const char dotzfs_name[4] = ".zfs";
|
|
vnode_t *dvp;
|
|
int error;
|
|
|
|
if (*ap->a_buflen < sizeof (dotzfs_name))
|
|
return (SET_ERROR(ENOMEM));
|
|
|
|
error = vn_vget_ino_gen(ap->a_vp, zfsctl_fs_root_vnode, NULL,
|
|
LK_SHARED, &dvp);
|
|
if (error != 0)
|
|
return (SET_ERROR(error));
|
|
|
|
VOP_UNLOCK1(dvp);
|
|
*ap->a_vpp = dvp;
|
|
*ap->a_buflen -= sizeof (dotzfs_name);
|
|
bcopy(dotzfs_name, ap->a_buf + *ap->a_buflen, sizeof (dotzfs_name));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfsctl_common_pathconf(struct vop_pathconf_args *ap)
|
|
{
|
|
/*
|
|
* We care about ACL variables so that user land utilities like ls
|
|
* can display them correctly. Since the ctldir's st_dev is set to be
|
|
* the same as the parent dataset, we must support all variables that
|
|
* it supports.
|
|
*/
|
|
switch (ap->a_name) {
|
|
case _PC_LINK_MAX:
|
|
*ap->a_retval = MIN(LONG_MAX, ZFS_LINK_MAX);
|
|
return (0);
|
|
|
|
case _PC_FILESIZEBITS:
|
|
*ap->a_retval = 64;
|
|
return (0);
|
|
|
|
case _PC_MIN_HOLE_SIZE:
|
|
*ap->a_retval = (int)SPA_MINBLOCKSIZE;
|
|
return (0);
|
|
|
|
case _PC_ACL_EXTENDED:
|
|
*ap->a_retval = 0;
|
|
return (0);
|
|
|
|
case _PC_ACL_NFS4:
|
|
*ap->a_retval = 1;
|
|
return (0);
|
|
|
|
case _PC_ACL_PATH_MAX:
|
|
*ap->a_retval = ACL_MAX_ENTRIES;
|
|
return (0);
|
|
|
|
case _PC_NAME_MAX:
|
|
*ap->a_retval = NAME_MAX;
|
|
return (0);
|
|
|
|
default:
|
|
return (vop_stdpathconf(ap));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns a trivial ACL
|
|
*/
|
|
static int
|
|
zfsctl_common_getacl(struct vop_getacl_args *ap)
|
|
{
|
|
int i;
|
|
|
|
if (ap->a_type != ACL_TYPE_NFS4)
|
|
return (EINVAL);
|
|
|
|
acl_nfs4_sync_acl_from_mode(ap->a_aclp, zfsctl_ctldir_mode, 0);
|
|
/*
|
|
* acl_nfs4_sync_acl_from_mode assumes that the owner can always modify
|
|
* attributes. That is not the case for the ctldir, so we must clear
|
|
* those bits. We also must clear ACL_READ_NAMED_ATTRS, because xattrs
|
|
* aren't supported by the ctldir.
|
|
*/
|
|
for (i = 0; i < ap->a_aclp->acl_cnt; i++) {
|
|
struct acl_entry *entry;
|
|
entry = &(ap->a_aclp->acl_entry[i]);
|
|
entry->ae_perm &= ~(ACL_WRITE_ACL | ACL_WRITE_OWNER |
|
|
ACL_WRITE_ATTRIBUTES | ACL_WRITE_NAMED_ATTRS |
|
|
ACL_READ_NAMED_ATTRS);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct vop_vector zfsctl_ops_root = {
|
|
.vop_default = &default_vnodeops,
|
|
#if __FreeBSD_version >= 1300121
|
|
.vop_fplookup_vexec = VOP_EAGAIN,
|
|
#endif
|
|
.vop_open = zfsctl_common_open,
|
|
.vop_close = zfsctl_common_close,
|
|
.vop_ioctl = VOP_EINVAL,
|
|
.vop_getattr = zfsctl_root_getattr,
|
|
.vop_access = zfsctl_common_access,
|
|
.vop_readdir = zfsctl_root_readdir,
|
|
.vop_lookup = zfsctl_root_lookup,
|
|
.vop_inactive = VOP_NULL,
|
|
.vop_reclaim = zfsctl_common_reclaim,
|
|
.vop_fid = zfsctl_common_fid,
|
|
.vop_print = zfsctl_common_print,
|
|
.vop_vptocnp = zfsctl_root_vptocnp,
|
|
.vop_pathconf = zfsctl_common_pathconf,
|
|
.vop_getacl = zfsctl_common_getacl,
|
|
#if __FreeBSD_version >= 1400043
|
|
.vop_add_writecount = vop_stdadd_writecount_nomsync,
|
|
#endif
|
|
};
|
|
VFS_VOP_VECTOR_REGISTER(zfsctl_ops_root);
|
|
|
|
static int
|
|
zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
|
|
{
|
|
objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
|
|
|
|
dmu_objset_name(os, zname);
|
|
if (strlen(zname) + 1 + strlen(name) >= len)
|
|
return (SET_ERROR(ENAMETOOLONG));
|
|
(void) strcat(zname, "@");
|
|
(void) strcat(zname, name);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfsctl_snapshot_lookup(vnode_t *vp, const char *name, uint64_t *id)
|
|
{
|
|
objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
|
|
int err;
|
|
|
|
err = dsl_dataset_snap_lookup(dmu_objset_ds(os), name, id);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Given a vnode get a root vnode of a filesystem mounted on top of
|
|
* the vnode, if any. The root vnode is referenced and locked.
|
|
* If no filesystem is mounted then the orinal vnode remains referenced
|
|
* and locked. If any error happens the orinal vnode is unlocked and
|
|
* released.
|
|
*/
|
|
static int
|
|
zfsctl_mounted_here(vnode_t **vpp, int flags)
|
|
{
|
|
struct mount *mp;
|
|
int err;
|
|
|
|
ASSERT_VOP_LOCKED(*vpp, __func__);
|
|
ASSERT3S((*vpp)->v_type, ==, VDIR);
|
|
|
|
if ((mp = (*vpp)->v_mountedhere) != NULL) {
|
|
err = vfs_busy(mp, 0);
|
|
KASSERT(err == 0, ("vfs_busy(mp, 0) failed with %d", err));
|
|
KASSERT(vrefcnt(*vpp) > 1, ("unreferenced mountpoint"));
|
|
vput(*vpp);
|
|
err = VFS_ROOT(mp, flags, vpp);
|
|
vfs_unbusy(mp);
|
|
return (err);
|
|
}
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
typedef struct {
|
|
const char *snap_name;
|
|
uint64_t snap_id;
|
|
} snapshot_setup_arg_t;
|
|
|
|
static void
|
|
zfsctl_snapshot_vnode_setup(vnode_t *vp, void *arg)
|
|
{
|
|
snapshot_setup_arg_t *ssa = arg;
|
|
sfs_node_t *node;
|
|
|
|
ASSERT_VOP_ELOCKED(vp, __func__);
|
|
|
|
node = sfs_alloc_node(sizeof (sfs_node_t),
|
|
ssa->snap_name, ZFSCTL_INO_SNAPDIR, ssa->snap_id);
|
|
zfsctl_common_vnode_setup(vp, node);
|
|
|
|
/* We have to support recursive locking. */
|
|
VN_LOCK_AREC(vp);
|
|
}
|
|
|
|
/*
|
|
* Lookup entry point for the 'snapshot' directory. Try to open the
|
|
* snapshot if it exist, creating the pseudo filesystem vnode as necessary.
|
|
* Perform a mount of the associated dataset on top of the vnode.
|
|
* There are four possibilities:
|
|
* - the snapshot node and vnode do not exist
|
|
* - the snapshot vnode is covered by the mounted snapshot
|
|
* - the snapshot vnode is not covered yet, the mount operation is in progress
|
|
* - the snapshot vnode is not covered, because the snapshot has been unmounted
|
|
* The last two states are transient and should be relatively short-lived.
|
|
*/
|
|
static int
|
|
zfsctl_snapdir_lookup(struct vop_lookup_args *ap)
|
|
{
|
|
vnode_t *dvp = ap->a_dvp;
|
|
vnode_t **vpp = ap->a_vpp;
|
|
struct componentname *cnp = ap->a_cnp;
|
|
char name[NAME_MAX + 1];
|
|
char fullname[ZFS_MAX_DATASET_NAME_LEN];
|
|
char *mountpoint;
|
|
size_t mountpoint_len;
|
|
zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
|
|
uint64_t snap_id;
|
|
int nameiop = cnp->cn_nameiop;
|
|
int lkflags = cnp->cn_lkflags;
|
|
int flags = cnp->cn_flags;
|
|
int err;
|
|
|
|
ASSERT3S(dvp->v_type, ==, VDIR);
|
|
|
|
if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
|
|
err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
|
|
if (err == 0)
|
|
*vpp = dvp;
|
|
return (err);
|
|
}
|
|
if (flags & ISDOTDOT) {
|
|
err = vn_vget_ino_gen(dvp, zfsctl_root_vnode, NULL, lkflags,
|
|
vpp);
|
|
return (err);
|
|
}
|
|
|
|
if (cnp->cn_namelen >= sizeof (name))
|
|
return (SET_ERROR(ENAMETOOLONG));
|
|
|
|
strlcpy(name, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_namelen + 1);
|
|
err = zfsctl_snapshot_lookup(dvp, name, &snap_id);
|
|
if (err != 0)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
for (;;) {
|
|
snapshot_setup_arg_t ssa;
|
|
|
|
ssa.snap_name = name;
|
|
ssa.snap_id = snap_id;
|
|
err = sfs_vgetx(dvp->v_mount, LK_SHARED, ZFSCTL_INO_SNAPDIR,
|
|
snap_id, "zfs", &zfsctl_ops_snapshot,
|
|
zfsctl_snapshot_vnode_setup, &ssa, vpp);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
/* Check if a new vnode has just been created. */
|
|
if (VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE)
|
|
break;
|
|
|
|
/*
|
|
* Check if a snapshot is already mounted on top of the vnode.
|
|
*/
|
|
err = zfsctl_mounted_here(vpp, lkflags);
|
|
if (err != EJUSTRETURN)
|
|
return (err);
|
|
|
|
/*
|
|
* If the vnode is not covered, then either the mount operation
|
|
* is in progress or the snapshot has already been unmounted
|
|
* but the vnode hasn't been inactivated and reclaimed yet.
|
|
* We can try to re-use the vnode in the latter case.
|
|
*/
|
|
VI_LOCK(*vpp);
|
|
if (((*vpp)->v_iflag & VI_MOUNT) == 0) {
|
|
/*
|
|
* Upgrade to exclusive lock in order to:
|
|
* - avoid race conditions
|
|
* - satisfy the contract of mount_snapshot()
|
|
*/
|
|
err = VOP_LOCK(*vpp, LK_TRYUPGRADE | LK_INTERLOCK);
|
|
if (err == 0)
|
|
break;
|
|
} else {
|
|
VI_UNLOCK(*vpp);
|
|
}
|
|
|
|
/*
|
|
* In this state we can loop on uncontested locks and starve
|
|
* the thread doing the lengthy, non-trivial mount operation.
|
|
* So, yield to prevent that from happening.
|
|
*/
|
|
vput(*vpp);
|
|
kern_yield(PRI_USER);
|
|
}
|
|
|
|
VERIFY0(zfsctl_snapshot_zname(dvp, name, sizeof (fullname), fullname));
|
|
|
|
mountpoint_len = strlen(dvp->v_vfsp->mnt_stat.f_mntonname) +
|
|
strlen("/" ZFS_CTLDIR_NAME "/snapshot/") + strlen(name) + 1;
|
|
mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
|
|
(void) snprintf(mountpoint, mountpoint_len,
|
|
"%s/" ZFS_CTLDIR_NAME "/snapshot/%s",
|
|
dvp->v_vfsp->mnt_stat.f_mntonname, name);
|
|
|
|
err = mount_snapshot(curthread, vpp, "zfs", mountpoint, fullname, 0);
|
|
kmem_free(mountpoint, mountpoint_len);
|
|
if (err == 0) {
|
|
/*
|
|
* Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
|
|
*
|
|
* This is where we lie about our v_vfsp in order to
|
|
* make .zfs/snapshot/<snapname> accessible over NFS
|
|
* without requiring manual mounts of <snapname>.
|
|
*/
|
|
ASSERT3P(VTOZ(*vpp)->z_zfsvfs, !=, zfsvfs);
|
|
VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
|
|
|
|
/* Clear the root flag (set via VFS_ROOT) as well. */
|
|
(*vpp)->v_vflag &= ~VV_ROOT;
|
|
}
|
|
|
|
if (err != 0)
|
|
*vpp = NULL;
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
zfsctl_snapdir_readdir(struct vop_readdir_args *ap)
|
|
{
|
|
char snapname[ZFS_MAX_DATASET_NAME_LEN];
|
|
struct dirent entry;
|
|
vnode_t *vp = ap->a_vp;
|
|
zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
|
|
zfs_uio_t uio;
|
|
int *eofp = ap->a_eofflag;
|
|
off_t dots_offset;
|
|
int error;
|
|
|
|
zfs_uio_init(&uio, ap->a_uio);
|
|
|
|
ASSERT3S(vp->v_type, ==, VDIR);
|
|
|
|
error = sfs_readdir_common(ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, ap,
|
|
&uio, &dots_offset);
|
|
if (error != 0) {
|
|
if (error == ENAMETOOLONG) /* ran out of destination space */
|
|
error = 0;
|
|
return (error);
|
|
}
|
|
|
|
ZFS_ENTER(zfsvfs);
|
|
for (;;) {
|
|
uint64_t cookie;
|
|
uint64_t id;
|
|
|
|
cookie = zfs_uio_offset(&uio) - dots_offset;
|
|
|
|
dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
|
|
error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof (snapname),
|
|
snapname, &id, &cookie, NULL);
|
|
dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
|
|
if (error != 0) {
|
|
if (error == ENOENT) {
|
|
if (eofp != NULL)
|
|
*eofp = 1;
|
|
error = 0;
|
|
}
|
|
ZFS_EXIT(zfsvfs);
|
|
return (error);
|
|
}
|
|
|
|
entry.d_fileno = id;
|
|
entry.d_type = DT_DIR;
|
|
strcpy(entry.d_name, snapname);
|
|
entry.d_namlen = strlen(entry.d_name);
|
|
entry.d_reclen = sizeof (entry);
|
|
error = vfs_read_dirent(ap, &entry, zfs_uio_offset(&uio));
|
|
if (error != 0) {
|
|
if (error == ENAMETOOLONG)
|
|
error = 0;
|
|
ZFS_EXIT(zfsvfs);
|
|
return (SET_ERROR(error));
|
|
}
|
|
zfs_uio_setoffset(&uio, cookie + dots_offset);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
static int
|
|
zfsctl_snapdir_getattr(struct vop_getattr_args *ap)
|
|
{
|
|
vnode_t *vp = ap->a_vp;
|
|
vattr_t *vap = ap->a_vap;
|
|
zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
|
|
dsl_dataset_t *ds;
|
|
uint64_t snap_count;
|
|
int err;
|
|
|
|
ZFS_ENTER(zfsvfs);
|
|
ds = dmu_objset_ds(zfsvfs->z_os);
|
|
zfsctl_common_getattr(vp, vap);
|
|
vap->va_ctime = dmu_objset_snap_cmtime(zfsvfs->z_os);
|
|
vap->va_mtime = vap->va_ctime;
|
|
vap->va_birthtime = vap->va_ctime;
|
|
if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
|
|
err = zap_count(dmu_objset_pool(ds->ds_objset)->dp_meta_objset,
|
|
dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
|
|
if (err != 0) {
|
|
ZFS_EXIT(zfsvfs);
|
|
return (err);
|
|
}
|
|
vap->va_nlink += snap_count;
|
|
}
|
|
vap->va_size = vap->va_nlink;
|
|
|
|
ZFS_EXIT(zfsvfs);
|
|
return (0);
|
|
}
|
|
|
|
static struct vop_vector zfsctl_ops_snapdir = {
|
|
.vop_default = &default_vnodeops,
|
|
#if __FreeBSD_version >= 1300121
|
|
.vop_fplookup_vexec = VOP_EAGAIN,
|
|
#endif
|
|
.vop_open = zfsctl_common_open,
|
|
.vop_close = zfsctl_common_close,
|
|
.vop_getattr = zfsctl_snapdir_getattr,
|
|
.vop_access = zfsctl_common_access,
|
|
.vop_readdir = zfsctl_snapdir_readdir,
|
|
.vop_lookup = zfsctl_snapdir_lookup,
|
|
.vop_reclaim = zfsctl_common_reclaim,
|
|
.vop_fid = zfsctl_common_fid,
|
|
.vop_print = zfsctl_common_print,
|
|
.vop_pathconf = zfsctl_common_pathconf,
|
|
.vop_getacl = zfsctl_common_getacl,
|
|
#if __FreeBSD_version >= 1400043
|
|
.vop_add_writecount = vop_stdadd_writecount_nomsync,
|
|
#endif
|
|
};
|
|
VFS_VOP_VECTOR_REGISTER(zfsctl_ops_snapdir);
|
|
|
|
|
|
static int
|
|
zfsctl_snapshot_inactive(struct vop_inactive_args *ap)
|
|
{
|
|
vnode_t *vp = ap->a_vp;
|
|
|
|
VERIFY3S(vrecycle(vp), ==, 1);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfsctl_snapshot_reclaim(struct vop_reclaim_args *ap)
|
|
{
|
|
vnode_t *vp = ap->a_vp;
|
|
void *data = vp->v_data;
|
|
|
|
sfs_reclaim_vnode(vp);
|
|
sfs_destroy_node(data);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfsctl_snapshot_vptocnp(struct vop_vptocnp_args *ap)
|
|
{
|
|
struct mount *mp;
|
|
vnode_t *dvp;
|
|
vnode_t *vp;
|
|
sfs_node_t *node;
|
|
size_t len;
|
|
int locked;
|
|
int error;
|
|
|
|
vp = ap->a_vp;
|
|
node = vp->v_data;
|
|
len = strlen(node->sn_name);
|
|
if (*ap->a_buflen < len)
|
|
return (SET_ERROR(ENOMEM));
|
|
|
|
/*
|
|
* Prevent unmounting of the snapshot while the vnode lock
|
|
* is not held. That is not strictly required, but allows
|
|
* us to assert that an uncovered snapshot vnode is never
|
|
* "leaked".
|
|
*/
|
|
mp = vp->v_mountedhere;
|
|
if (mp == NULL)
|
|
return (SET_ERROR(ENOENT));
|
|
error = vfs_busy(mp, 0);
|
|
KASSERT(error == 0, ("vfs_busy(mp, 0) failed with %d", error));
|
|
|
|
/*
|
|
* We can vput the vnode as we can now depend on the reference owned
|
|
* by the busied mp. But we also need to hold the vnode, because
|
|
* the reference may go after vfs_unbusy() which has to be called
|
|
* before we can lock the vnode again.
|
|
*/
|
|
locked = VOP_ISLOCKED(vp);
|
|
#if __FreeBSD_version >= 1300045
|
|
enum vgetstate vs = vget_prep(vp);
|
|
#else
|
|
vhold(vp);
|
|
#endif
|
|
vput(vp);
|
|
|
|
/* Look up .zfs/snapshot, our parent. */
|
|
error = zfsctl_snapdir_vnode(vp->v_mount, NULL, LK_SHARED, &dvp);
|
|
if (error == 0) {
|
|
VOP_UNLOCK1(dvp);
|
|
*ap->a_vpp = dvp;
|
|
*ap->a_buflen -= len;
|
|
bcopy(node->sn_name, ap->a_buf + *ap->a_buflen, len);
|
|
}
|
|
vfs_unbusy(mp);
|
|
#if __FreeBSD_version >= 1300045
|
|
vget_finish(vp, locked | LK_RETRY, vs);
|
|
#else
|
|
vget(vp, locked | LK_VNHELD | LK_RETRY, curthread);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* These VP's should never see the light of day. They should always
|
|
* be covered.
|
|
*/
|
|
static struct vop_vector zfsctl_ops_snapshot = {
|
|
.vop_default = NULL, /* ensure very restricted access */
|
|
#if __FreeBSD_version >= 1300121
|
|
.vop_fplookup_vexec = VOP_EAGAIN,
|
|
#endif
|
|
.vop_inactive = zfsctl_snapshot_inactive,
|
|
#if __FreeBSD_version >= 1300045
|
|
.vop_need_inactive = vop_stdneed_inactive,
|
|
#endif
|
|
.vop_reclaim = zfsctl_snapshot_reclaim,
|
|
.vop_vptocnp = zfsctl_snapshot_vptocnp,
|
|
.vop_lock1 = vop_stdlock,
|
|
.vop_unlock = vop_stdunlock,
|
|
.vop_islocked = vop_stdislocked,
|
|
.vop_advlockpurge = vop_stdadvlockpurge, /* called by vgone */
|
|
.vop_print = zfsctl_common_print,
|
|
#if __FreeBSD_version >= 1400043
|
|
.vop_add_writecount = vop_stdadd_writecount_nomsync,
|
|
#endif
|
|
};
|
|
VFS_VOP_VECTOR_REGISTER(zfsctl_ops_snapshot);
|
|
|
|
int
|
|
zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
|
|
{
|
|
zfsvfs_t *zfsvfs __unused = vfsp->vfs_data;
|
|
vnode_t *vp;
|
|
int error;
|
|
|
|
ASSERT3P(zfsvfs->z_ctldir, !=, NULL);
|
|
*zfsvfsp = NULL;
|
|
error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
|
|
ZFSCTL_INO_SNAPDIR, objsetid, &vp);
|
|
if (error == 0 && vp != NULL) {
|
|
/*
|
|
* XXX Probably need to at least reference, if not busy, the mp.
|
|
*/
|
|
if (vp->v_mountedhere != NULL)
|
|
*zfsvfsp = vp->v_mountedhere->mnt_data;
|
|
vput(vp);
|
|
}
|
|
if (*zfsvfsp == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unmount any snapshots for the given filesystem. This is called from
|
|
* zfs_umount() - if we have a ctldir, then go through and unmount all the
|
|
* snapshots.
|
|
*/
|
|
int
|
|
zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
|
|
{
|
|
char snapname[ZFS_MAX_DATASET_NAME_LEN];
|
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
|
struct mount *mp;
|
|
vnode_t *vp;
|
|
uint64_t cookie;
|
|
int error;
|
|
|
|
ASSERT3P(zfsvfs->z_ctldir, !=, NULL);
|
|
|
|
cookie = 0;
|
|
for (;;) {
|
|
uint64_t id;
|
|
|
|
dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
|
|
error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof (snapname),
|
|
snapname, &id, &cookie, NULL);
|
|
dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
|
|
if (error != 0) {
|
|
if (error == ENOENT)
|
|
error = 0;
|
|
break;
|
|
}
|
|
|
|
for (;;) {
|
|
error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
|
|
ZFSCTL_INO_SNAPDIR, id, &vp);
|
|
if (error != 0 || vp == NULL)
|
|
break;
|
|
|
|
mp = vp->v_mountedhere;
|
|
|
|
/*
|
|
* v_mountedhere being NULL means that the
|
|
* (uncovered) vnode is in a transient state
|
|
* (mounting or unmounting), so loop until it
|
|
* settles down.
|
|
*/
|
|
if (mp != NULL)
|
|
break;
|
|
vput(vp);
|
|
}
|
|
if (error != 0)
|
|
break;
|
|
if (vp == NULL)
|
|
continue; /* no mountpoint, nothing to do */
|
|
|
|
/*
|
|
* The mount-point vnode is kept locked to avoid spurious EBUSY
|
|
* from a concurrent umount.
|
|
* The vnode lock must have recursive locking enabled.
|
|
*/
|
|
vfs_ref(mp);
|
|
error = dounmount(mp, fflags, curthread);
|
|
KASSERT_IMPLY(error == 0, vrefcnt(vp) == 1,
|
|
("extra references after unmount"));
|
|
vput(vp);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
KASSERT_IMPLY((fflags & MS_FORCE) != 0, error == 0,
|
|
("force unmounting failed"));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfsctl_snapshot_unmount(const char *snapname, int flags __unused)
|
|
{
|
|
vfs_t *vfsp = NULL;
|
|
zfsvfs_t *zfsvfs = NULL;
|
|
|
|
if (strchr(snapname, '@') == NULL)
|
|
return (0);
|
|
|
|
int err = getzfsvfs(snapname, &zfsvfs);
|
|
if (err != 0) {
|
|
ASSERT3P(zfsvfs, ==, NULL);
|
|
return (0);
|
|
}
|
|
vfsp = zfsvfs->z_vfs;
|
|
|
|
ASSERT(!dsl_pool_config_held(dmu_objset_pool(zfsvfs->z_os)));
|
|
|
|
vfs_ref(vfsp);
|
|
vfs_unbusy(vfsp);
|
|
return (dounmount(vfsp, MS_FORCE, curthread));
|
|
}
|