mirror_zfs/modules/splat/splat-kmem.c
2008-05-26 04:38:26 +00:00

445 lines
12 KiB
C

/*
* This file is part of the SPL: Solaris Porting Layer.
*
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory
* Written by:
* Brian Behlendorf <behlendorf1@llnl.gov>,
* Herb Wartens <wartens2@llnl.gov>,
* Jim Garlick <garlick@llnl.gov>
* UCRL-CODE-235197
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "splat-internal.h"
#define SPLAT_SUBSYSTEM_KMEM 0x0100
#define SPLAT_KMEM_NAME "kmem"
#define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests"
#define SPLAT_KMEM_TEST1_ID 0x0101
#define SPLAT_KMEM_TEST1_NAME "kmem_alloc"
#define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)"
#define SPLAT_KMEM_TEST2_ID 0x0102
#define SPLAT_KMEM_TEST2_NAME "kmem_zalloc"
#define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)"
#define SPLAT_KMEM_TEST3_ID 0x0103
#define SPLAT_KMEM_TEST3_NAME "slab_alloc"
#define SPLAT_KMEM_TEST3_DESC "Slab constructor/destructor test"
#define SPLAT_KMEM_TEST4_ID 0x0104
#define SPLAT_KMEM_TEST4_NAME "slab_reap"
#define SPLAT_KMEM_TEST4_DESC "Slab reaping test"
#define SPLAT_KMEM_TEST5_ID 0x0105
#define SPLAT_KMEM_TEST5_NAME "vmem_alloc"
#define SPLAT_KMEM_TEST5_DESC "Memory allocation test (vmem_alloc)"
#define SPLAT_KMEM_ALLOC_COUNT 10
#define SPLAT_VMEM_ALLOC_COUNT 10
/* XXX - This test may fail under tight memory conditions */
static int
splat_kmem_test1(struct file *file, void *arg)
{
void *ptr[SPLAT_KMEM_ALLOC_COUNT];
int size = PAGE_SIZE;
int i, count, rc = 0;
/* We are intentionally going to push kmem_alloc to its max
* allocation size, so suppress the console warnings for now */
kmem_set_warning(0);
while ((!rc) && (size <= (PAGE_SIZE * 32))) {
count = 0;
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
ptr[i] = kmem_alloc(size, KM_SLEEP);
if (ptr[i])
count++;
}
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
if (ptr[i])
kmem_free(ptr[i], size);
splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
"%d byte allocations, %d/%d successful\n",
size, count, SPLAT_KMEM_ALLOC_COUNT);
if (count != SPLAT_KMEM_ALLOC_COUNT)
rc = -ENOMEM;
size *= 2;
}
kmem_set_warning(1);
return rc;
}
static int
splat_kmem_test2(struct file *file, void *arg)
{
void *ptr[SPLAT_KMEM_ALLOC_COUNT];
int size = PAGE_SIZE;
int i, j, count, rc = 0;
/* We are intentionally going to push kmem_alloc to its max
* allocation size, so suppress the console warnings for now */
kmem_set_warning(0);
while ((!rc) && (size <= (PAGE_SIZE * 32))) {
count = 0;
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
ptr[i] = kmem_zalloc(size, KM_SLEEP);
if (ptr[i])
count++;
}
/* Ensure buffer has been zero filled */
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
for (j = 0; j < size; j++) {
if (((char *)ptr[i])[j] != '\0') {
splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
"%d-byte allocation was "
"not zeroed\n", size);
rc = -EFAULT;
}
}
}
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
if (ptr[i])
kmem_free(ptr[i], size);
splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
"%d byte allocations, %d/%d successful\n",
size, count, SPLAT_KMEM_ALLOC_COUNT);
if (count != SPLAT_KMEM_ALLOC_COUNT)
rc = -ENOMEM;
size *= 2;
}
kmem_set_warning(1);
return rc;
}
#define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL
#define SPLAT_KMEM_CACHE_NAME "kmem_test"
#define SPLAT_KMEM_CACHE_SIZE 256
#define SPLAT_KMEM_OBJ_COUNT 128
#define SPLAT_KMEM_OBJ_RECLAIM 64
typedef struct kmem_cache_data {
char kcd_buf[SPLAT_KMEM_CACHE_SIZE];
unsigned long kcd_magic;
int kcd_flag;
} kmem_cache_data_t;
typedef struct kmem_cache_priv {
unsigned long kcp_magic;
struct file *kcp_file;
kmem_cache_t *kcp_cache;
kmem_cache_data_t *kcp_kcd[SPLAT_KMEM_OBJ_COUNT];
int kcp_count;
int kcp_rc;
} kmem_cache_priv_t;
static int
splat_kmem_test34_constructor(void *ptr, void *priv, int flags)
{
kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
if (kcd) {
memset(kcd->kcd_buf, 0xaa, SPLAT_KMEM_CACHE_SIZE);
kcd->kcd_flag = 1;
if (kcp) {
kcd->kcd_magic = kcp->kcp_magic;
kcp->kcp_count++;
}
}
return 0;
}
static void
splat_kmem_test34_destructor(void *ptr, void *priv)
{
kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
if (kcd) {
memset(kcd->kcd_buf, 0xbb, SPLAT_KMEM_CACHE_SIZE);
kcd->kcd_flag = 0;
if (kcp)
kcp->kcp_count--;
}
return;
}
static int
splat_kmem_test3(struct file *file, void *arg)
{
kmem_cache_t *cache = NULL;
kmem_cache_data_t *kcd = NULL;
kmem_cache_priv_t kcp;
int rc = 0, max;
kcp.kcp_magic = SPLAT_KMEM_TEST_MAGIC;
kcp.kcp_file = file;
kcp.kcp_count = 0;
kcp.kcp_rc = 0;
cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME, sizeof(*kcd), 0,
splat_kmem_test34_constructor,
splat_kmem_test34_destructor,
NULL, &kcp, NULL, 0);
if (!cache) {
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
return -ENOMEM;
}
kcd = kmem_cache_alloc(cache, 0);
if (!kcd) {
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
"Unable to allocate from '%s'\n",
SPLAT_KMEM_CACHE_NAME);
rc = -EINVAL;
goto out_free;
}
if (!kcd->kcd_flag) {
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
"Failed to run contructor for '%s'\n",
SPLAT_KMEM_CACHE_NAME);
rc = -EINVAL;
goto out_free;
}
if (kcd->kcd_magic != kcp.kcp_magic) {
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
"Failed to pass private data to constructor "
"for '%s'\n", SPLAT_KMEM_CACHE_NAME);
rc = -EINVAL;
goto out_free;
}
max = kcp.kcp_count;
/* Destructor's run lazily so it hard to check correctness here.
* We assume if it doesn't crash the free worked properly */
kmem_cache_free(cache, kcd);
/* Destroy the entire cache which will force destructors to
* run and we can verify one was called for every object */
kmem_cache_destroy(cache);
if (kcp.kcp_count) {
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
"Failed to run destructor on all slab objects "
"for '%s'\n", SPLAT_KMEM_CACHE_NAME);
rc = -EINVAL;
}
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
"%d allocated/destroyed objects for '%s'\n",
max, SPLAT_KMEM_CACHE_NAME);
return rc;
out_free:
if (kcd)
kmem_cache_free(cache, kcd);
kmem_cache_destroy(cache);
return rc;
}
static void
splat_kmem_test4_reclaim(void *priv)
{
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
int i;
splat_vprint(kcp->kcp_file, SPLAT_KMEM_TEST4_NAME,
"Reaping %d objects from '%s'\n",
SPLAT_KMEM_OBJ_RECLAIM, SPLAT_KMEM_CACHE_NAME);
for (i = 0; i < SPLAT_KMEM_OBJ_RECLAIM; i++) {
if (kcp->kcp_kcd[i]) {
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]);
kcp->kcp_kcd[i] = NULL;
}
}
return;
}
static int
splat_kmem_test4(struct file *file, void *arg)
{
kmem_cache_t *cache;
kmem_cache_priv_t kcp;
int i, rc = 0, max, reclaim_percent, target_percent;
kcp.kcp_magic = SPLAT_KMEM_TEST_MAGIC;
kcp.kcp_file = file;
kcp.kcp_count = 0;
kcp.kcp_rc = 0;
cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
sizeof(kmem_cache_data_t), 0,
splat_kmem_test34_constructor,
splat_kmem_test34_destructor,
splat_kmem_test4_reclaim, &kcp, NULL, 0);
if (!cache) {
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
return -ENOMEM;
}
kcp.kcp_cache = cache;
for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) {
/* All allocations need not succeed */
kcp.kcp_kcd[i] = kmem_cache_alloc(cache, 0);
if (!kcp.kcp_kcd[i]) {
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
"Unable to allocate from '%s'\n",
SPLAT_KMEM_CACHE_NAME);
}
}
max = kcp.kcp_count;
ASSERT(max > 0);
/* Force shrinker to run */
kmem_reap();
/* Reclaim reclaimed objects, this ensure the destructors are run */
kmem_cache_reap_now(cache);
reclaim_percent = ((kcp.kcp_count * 100) / max);
target_percent = (((SPLAT_KMEM_OBJ_COUNT - SPLAT_KMEM_OBJ_RECLAIM) * 100) /
SPLAT_KMEM_OBJ_COUNT);
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
"%d%% (%d/%d) of previous size, target of "
"%d%%-%d%% for '%s'\n", reclaim_percent, kcp.kcp_count,
max, target_percent - 10, target_percent + 10,
SPLAT_KMEM_CACHE_NAME);
if ((reclaim_percent < target_percent - 10) ||
(reclaim_percent > target_percent + 10))
rc = -EINVAL;
/* Cleanup our mess */
for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++)
if (kcp.kcp_kcd[i])
kmem_cache_free(cache, kcp.kcp_kcd[i]);
kmem_cache_destroy(cache);
return rc;
}
static int
splat_kmem_test5(struct file *file, void *arg)
{
void *ptr[SPLAT_VMEM_ALLOC_COUNT];
int size = PAGE_SIZE;
int i, count, rc = 0;
while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
count = 0;
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
ptr[i] = vmem_alloc(size, KM_SLEEP);
if (ptr[i])
count++;
}
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
if (ptr[i])
vmem_free(ptr[i], size);
splat_vprint(file, SPLAT_KMEM_TEST5_NAME,
"%d byte allocations, %d/%d successful\n",
size, count, SPLAT_VMEM_ALLOC_COUNT);
if (count != SPLAT_VMEM_ALLOC_COUNT)
rc = -ENOMEM;
size *= 2;
}
return rc;
}
splat_subsystem_t *
splat_kmem_init(void)
{
splat_subsystem_t *sub;
sub = kmalloc(sizeof(*sub), GFP_KERNEL);
if (sub == NULL)
return NULL;
memset(sub, 0, sizeof(*sub));
strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
INIT_LIST_HEAD(&sub->subsystem_list);
INIT_LIST_HEAD(&sub->test_list);
spin_lock_init(&sub->test_lock);
sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
return sub;
}
void
splat_kmem_fini(splat_subsystem_t *sub)
{
ASSERT(sub);
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
kfree(sub);
}
int
splat_kmem_id(void) {
return SPLAT_SUBSYSTEM_KMEM;
}