mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
677c6f8457
This implements a binary search algorithm for B-Trees that reduces branching to the absolute minimum necessary for a binary search algorithm. It also enables the compiler to inline the comparator to ensure that the only slowdown when doing binary search is from waiting for memory accesses. Additionally, it instructs the compiler to unroll the loop, which gives an additional 40% improve with Clang and 8% improvement with GCC. Consumers must opt into using the faster algorithm. At present, only B-Trees used inside kernel code have been modified to use the faster algorithm. Micro-benchmarks suggest that this can improve binary search performance by up to 3.5 times when compiling with Clang 16 and up to 1.9 times when compiling with GCC 12.2. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14866
558 lines
13 KiB
C
558 lines
13 KiB
C
/*
|
|
* This file and its contents are supplied under the terms of the
|
|
* Common Development and Distribution License ("CDDL"), version 1.0.
|
|
* You may only use this file in accordance with the terms of version
|
|
* 1.0 of the CDDL.
|
|
*
|
|
* A full copy of the text of the CDDL should have accompanied this
|
|
* source. A copy of the CDDL is also available via the Internet at
|
|
* http://www.illumos.org/license/CDDL.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/btree.h>
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
|
|
#define BUFSIZE 256
|
|
|
|
static int seed = 0;
|
|
static int stress_timeout = 180;
|
|
static int contents_frequency = 100;
|
|
static int tree_limit = 64 * 1024;
|
|
static boolean_t stress_only = B_FALSE;
|
|
|
|
static void
|
|
usage(int exit_value)
|
|
{
|
|
(void) fprintf(stderr, "Usage:\tbtree_test -n <test_name>\n");
|
|
(void) fprintf(stderr, "\tbtree_test -s [-r <seed>] [-l <limit>] "
|
|
"[-t timeout>] [-c check_contents]\n");
|
|
(void) fprintf(stderr, "\tbtree_test [-r <seed>] [-l <limit>] "
|
|
"[-t timeout>] [-c check_contents]\n");
|
|
(void) fprintf(stderr, "\n With the -n option, run the named "
|
|
"negative test. With the -s option,\n");
|
|
(void) fprintf(stderr, " run the stress test according to the "
|
|
"other options passed. With\n");
|
|
(void) fprintf(stderr, " neither, run all the positive tests, "
|
|
"including the stress test with\n");
|
|
(void) fprintf(stderr, " the default options.\n");
|
|
(void) fprintf(stderr, "\n Options that control the stress test\n");
|
|
(void) fprintf(stderr, "\t-c stress iterations after which to compare "
|
|
"tree contents [default: 100]\n");
|
|
(void) fprintf(stderr, "\t-l the largest value to allow in the tree "
|
|
"[default: 1M]\n");
|
|
(void) fprintf(stderr, "\t-r random seed [default: from "
|
|
"gettimeofday()]\n");
|
|
(void) fprintf(stderr, "\t-t seconds to let the stress test run "
|
|
"[default: 180]\n");
|
|
exit(exit_value);
|
|
}
|
|
|
|
typedef struct int_node {
|
|
avl_node_t node;
|
|
uint64_t data;
|
|
} int_node_t;
|
|
|
|
/*
|
|
* Utility functions
|
|
*/
|
|
|
|
static int
|
|
avl_compare(const void *v1, const void *v2)
|
|
{
|
|
const int_node_t *n1 = v1;
|
|
const int_node_t *n2 = v2;
|
|
uint64_t a = n1->data;
|
|
uint64_t b = n2->data;
|
|
|
|
return (TREE_CMP(a, b));
|
|
}
|
|
|
|
static int
|
|
zfs_btree_compare(const void *v1, const void *v2)
|
|
{
|
|
const uint64_t *a = v1;
|
|
const uint64_t *b = v2;
|
|
|
|
return (TREE_CMP(*a, *b));
|
|
}
|
|
|
|
static void
|
|
verify_contents(avl_tree_t *avl, zfs_btree_t *bt)
|
|
{
|
|
static int count = 0;
|
|
zfs_btree_index_t bt_idx = {0};
|
|
int_node_t *node;
|
|
uint64_t *data;
|
|
|
|
boolean_t forward = count % 2 == 0 ? B_TRUE : B_FALSE;
|
|
count++;
|
|
|
|
ASSERT3U(avl_numnodes(avl), ==, zfs_btree_numnodes(bt));
|
|
if (forward == B_TRUE) {
|
|
node = avl_first(avl);
|
|
data = zfs_btree_first(bt, &bt_idx);
|
|
} else {
|
|
node = avl_last(avl);
|
|
data = zfs_btree_last(bt, &bt_idx);
|
|
}
|
|
|
|
while (node != NULL) {
|
|
ASSERT3U(*data, ==, node->data);
|
|
if (forward == B_TRUE) {
|
|
data = zfs_btree_next(bt, &bt_idx, &bt_idx);
|
|
node = AVL_NEXT(avl, node);
|
|
} else {
|
|
data = zfs_btree_prev(bt, &bt_idx, &bt_idx);
|
|
node = AVL_PREV(avl, node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
verify_node(avl_tree_t *avl, zfs_btree_t *bt, int_node_t *node)
|
|
{
|
|
zfs_btree_index_t bt_idx = {0};
|
|
zfs_btree_index_t bt_idx2 = {0};
|
|
int_node_t *inp;
|
|
uint64_t data = node->data;
|
|
uint64_t *rv = NULL;
|
|
|
|
ASSERT3U(avl_numnodes(avl), ==, zfs_btree_numnodes(bt));
|
|
ASSERT3P((rv = (uint64_t *)zfs_btree_find(bt, &data, &bt_idx)), !=,
|
|
NULL);
|
|
ASSERT3S(*rv, ==, data);
|
|
ASSERT3P(zfs_btree_get(bt, &bt_idx), !=, NULL);
|
|
ASSERT3S(data, ==, *(uint64_t *)zfs_btree_get(bt, &bt_idx));
|
|
|
|
if ((inp = AVL_NEXT(avl, node)) != NULL) {
|
|
ASSERT3P((rv = zfs_btree_next(bt, &bt_idx, &bt_idx2)), !=,
|
|
NULL);
|
|
ASSERT3P(rv, ==, zfs_btree_get(bt, &bt_idx2));
|
|
ASSERT3S(inp->data, ==, *rv);
|
|
} else {
|
|
ASSERT3U(data, ==, *(uint64_t *)zfs_btree_last(bt, &bt_idx));
|
|
}
|
|
|
|
if ((inp = AVL_PREV(avl, node)) != NULL) {
|
|
ASSERT3P((rv = zfs_btree_prev(bt, &bt_idx, &bt_idx2)), !=,
|
|
NULL);
|
|
ASSERT3P(rv, ==, zfs_btree_get(bt, &bt_idx2));
|
|
ASSERT3S(inp->data, ==, *rv);
|
|
} else {
|
|
ASSERT3U(data, ==, *(uint64_t *)zfs_btree_first(bt, &bt_idx));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tests
|
|
*/
|
|
|
|
/* Verify that zfs_btree_find works correctly with a NULL index. */
|
|
static int
|
|
find_without_index(zfs_btree_t *bt, char *why)
|
|
{
|
|
u_longlong_t *p, i = 12345;
|
|
|
|
zfs_btree_add(bt, &i);
|
|
if ((p = (u_longlong_t *)zfs_btree_find(bt, &i, NULL)) == NULL ||
|
|
*p != i) {
|
|
(void) snprintf(why, BUFSIZE, "Unexpectedly found %llu\n",
|
|
p == NULL ? 0 : *p);
|
|
return (1);
|
|
}
|
|
|
|
i++;
|
|
|
|
if ((p = (u_longlong_t *)zfs_btree_find(bt, &i, NULL)) != NULL) {
|
|
(void) snprintf(why, BUFSIZE, "Found bad value: %llu\n", *p);
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Verify simple insertion and removal from the tree. */
|
|
static int
|
|
insert_find_remove(zfs_btree_t *bt, char *why)
|
|
{
|
|
u_longlong_t *p, i = 12345;
|
|
zfs_btree_index_t bt_idx = {0};
|
|
|
|
/* Insert 'i' into the tree, and attempt to find it again. */
|
|
zfs_btree_add(bt, &i);
|
|
if ((p = (u_longlong_t *)zfs_btree_find(bt, &i, &bt_idx)) == NULL) {
|
|
(void) snprintf(why, BUFSIZE, "Didn't find value in tree\n");
|
|
return (1);
|
|
} else if (*p != i) {
|
|
(void) snprintf(why, BUFSIZE, "Found (%llu) in tree\n", *p);
|
|
return (1);
|
|
}
|
|
ASSERT3S(zfs_btree_numnodes(bt), ==, 1);
|
|
zfs_btree_verify(bt);
|
|
|
|
/* Remove 'i' from the tree, and verify it is not found. */
|
|
zfs_btree_remove(bt, &i);
|
|
if ((p = (u_longlong_t *)zfs_btree_find(bt, &i, &bt_idx)) != NULL) {
|
|
(void) snprintf(why, BUFSIZE,
|
|
"Found removed value (%llu)\n", *p);
|
|
return (1);
|
|
}
|
|
ASSERT3S(zfs_btree_numnodes(bt), ==, 0);
|
|
zfs_btree_verify(bt);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add a number of random entries into a btree and avl tree. Then walk them
|
|
* backwards and forwards while emptying the tree, verifying the trees look
|
|
* the same.
|
|
*/
|
|
static int
|
|
drain_tree(zfs_btree_t *bt, char *why)
|
|
{
|
|
avl_tree_t avl;
|
|
int i = 0;
|
|
int_node_t *node;
|
|
avl_index_t avl_idx = {0};
|
|
zfs_btree_index_t bt_idx = {0};
|
|
|
|
avl_create(&avl, avl_compare, sizeof (int_node_t),
|
|
offsetof(int_node_t, node));
|
|
|
|
/* Fill both trees with the same data */
|
|
for (i = 0; i < 64 * 1024; i++) {
|
|
u_longlong_t randval = random();
|
|
if (zfs_btree_find(bt, &randval, &bt_idx) != NULL) {
|
|
continue;
|
|
}
|
|
zfs_btree_add_idx(bt, &randval, &bt_idx);
|
|
|
|
node = malloc(sizeof (int_node_t));
|
|
if (node == NULL) {
|
|
perror("malloc");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
node->data = randval;
|
|
if (avl_find(&avl, node, &avl_idx) != NULL) {
|
|
(void) snprintf(why, BUFSIZE,
|
|
"Found in avl: %llu\n", randval);
|
|
return (1);
|
|
}
|
|
avl_insert(&avl, node, avl_idx);
|
|
}
|
|
|
|
/* Remove data from either side of the trees, comparing the data */
|
|
while (avl_numnodes(&avl) != 0) {
|
|
uint64_t *data;
|
|
|
|
ASSERT3U(avl_numnodes(&avl), ==, zfs_btree_numnodes(bt));
|
|
if (avl_numnodes(&avl) % 2 == 0) {
|
|
node = avl_first(&avl);
|
|
data = zfs_btree_first(bt, &bt_idx);
|
|
} else {
|
|
node = avl_last(&avl);
|
|
data = zfs_btree_last(bt, &bt_idx);
|
|
}
|
|
ASSERT3U(node->data, ==, *data);
|
|
zfs_btree_remove_idx(bt, &bt_idx);
|
|
avl_remove(&avl, node);
|
|
|
|
if (avl_numnodes(&avl) == 0) {
|
|
break;
|
|
}
|
|
|
|
node = avl_first(&avl);
|
|
ASSERT3U(node->data, ==,
|
|
*(uint64_t *)zfs_btree_first(bt, NULL));
|
|
node = avl_last(&avl);
|
|
ASSERT3U(node->data, ==, *(uint64_t *)zfs_btree_last(bt, NULL));
|
|
}
|
|
ASSERT3S(zfs_btree_numnodes(bt), ==, 0);
|
|
|
|
void *avl_cookie = NULL;
|
|
while ((node = avl_destroy_nodes(&avl, &avl_cookie)) != NULL)
|
|
free(node);
|
|
avl_destroy(&avl);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This test uses an avl and btree, and continually processes new random
|
|
* values. Each value is either removed or inserted, depending on whether
|
|
* or not it is found in the tree. The test periodically checks that both
|
|
* trees have the same data and does consistency checks. This stress
|
|
* option can also be run on its own from the command line.
|
|
*/
|
|
static int
|
|
stress_tree(zfs_btree_t *bt, char *why)
|
|
{
|
|
(void) why;
|
|
avl_tree_t avl;
|
|
int_node_t *node;
|
|
struct timeval tp;
|
|
time_t t0;
|
|
int insertions = 0, removals = 0, iterations = 0;
|
|
u_longlong_t max = 0, min = UINT64_MAX;
|
|
|
|
(void) gettimeofday(&tp, NULL);
|
|
t0 = tp.tv_sec;
|
|
|
|
avl_create(&avl, avl_compare, sizeof (int_node_t),
|
|
offsetof(int_node_t, node));
|
|
|
|
while (1) {
|
|
zfs_btree_index_t bt_idx = {0};
|
|
avl_index_t avl_idx = {0};
|
|
|
|
uint64_t randval = random() % tree_limit;
|
|
node = malloc(sizeof (*node));
|
|
if (node == NULL) {
|
|
perror("malloc");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
node->data = randval;
|
|
|
|
max = randval > max ? randval : max;
|
|
min = randval < min ? randval : min;
|
|
|
|
void *ret = avl_find(&avl, node, &avl_idx);
|
|
if (ret == NULL) {
|
|
insertions++;
|
|
avl_insert(&avl, node, avl_idx);
|
|
ASSERT3P(zfs_btree_find(bt, &randval, &bt_idx), ==,
|
|
NULL);
|
|
zfs_btree_add_idx(bt, &randval, &bt_idx);
|
|
verify_node(&avl, bt, node);
|
|
} else {
|
|
removals++;
|
|
verify_node(&avl, bt, ret);
|
|
zfs_btree_remove(bt, &randval);
|
|
avl_remove(&avl, ret);
|
|
free(ret);
|
|
free(node);
|
|
}
|
|
|
|
zfs_btree_verify(bt);
|
|
|
|
iterations++;
|
|
if (iterations % contents_frequency == 0) {
|
|
verify_contents(&avl, bt);
|
|
}
|
|
|
|
zfs_btree_verify(bt);
|
|
|
|
(void) gettimeofday(&tp, NULL);
|
|
if (tp.tv_sec > t0 + stress_timeout) {
|
|
fprintf(stderr, "insertions/removals: %u/%u\nmax/min: "
|
|
"%llu/%llu\n", insertions, removals, max, min);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void *avl_cookie = NULL;
|
|
while ((node = avl_destroy_nodes(&avl, &avl_cookie)) != NULL)
|
|
free(node);
|
|
avl_destroy(&avl);
|
|
|
|
if (stress_only) {
|
|
zfs_btree_index_t *idx = NULL;
|
|
while (zfs_btree_destroy_nodes(bt, &idx) != NULL)
|
|
;
|
|
zfs_btree_verify(bt);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Verify inserting a duplicate value will cause a crash.
|
|
* Note: negative test; return of 0 is a failure.
|
|
*/
|
|
static int
|
|
insert_duplicate(zfs_btree_t *bt)
|
|
{
|
|
uint64_t i = 23456;
|
|
zfs_btree_index_t bt_idx = {0};
|
|
|
|
if (zfs_btree_find(bt, &i, &bt_idx) != NULL) {
|
|
fprintf(stderr, "Found value in empty tree.\n");
|
|
return (0);
|
|
}
|
|
zfs_btree_add_idx(bt, &i, &bt_idx);
|
|
if (zfs_btree_find(bt, &i, &bt_idx) == NULL) {
|
|
fprintf(stderr, "Did not find expected value.\n");
|
|
return (0);
|
|
}
|
|
|
|
/* Crash on inserting a duplicate */
|
|
zfs_btree_add_idx(bt, &i, NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Verify removing a non-existent value will cause a crash.
|
|
* Note: negative test; return of 0 is a failure.
|
|
*/
|
|
static int
|
|
remove_missing(zfs_btree_t *bt)
|
|
{
|
|
uint64_t i = 23456;
|
|
zfs_btree_index_t bt_idx = {0};
|
|
|
|
if (zfs_btree_find(bt, &i, &bt_idx) != NULL) {
|
|
fprintf(stderr, "Found value in empty tree.\n");
|
|
return (0);
|
|
}
|
|
|
|
/* Crash removing a nonexistent entry */
|
|
zfs_btree_remove(bt, &i);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
do_negative_test(zfs_btree_t *bt, char *test_name)
|
|
{
|
|
int rval = 0;
|
|
struct rlimit rlim = {0};
|
|
|
|
(void) setrlimit(RLIMIT_CORE, &rlim);
|
|
|
|
if (strcmp(test_name, "insert_duplicate") == 0) {
|
|
rval = insert_duplicate(bt);
|
|
} else if (strcmp(test_name, "remove_missing") == 0) {
|
|
rval = remove_missing(bt);
|
|
}
|
|
|
|
/*
|
|
* Return 0, since callers will expect non-zero return values for
|
|
* these tests, and we should have crashed before getting here anyway.
|
|
*/
|
|
(void) fprintf(stderr, "Test: %s returned %d.\n", test_name, rval);
|
|
return (0);
|
|
}
|
|
|
|
typedef struct btree_test {
|
|
const char *name;
|
|
int (*func)(zfs_btree_t *, char *);
|
|
} btree_test_t;
|
|
|
|
static btree_test_t test_table[] = {
|
|
{ "insert_find_remove", insert_find_remove },
|
|
{ "find_without_index", find_without_index },
|
|
{ "drain_tree", drain_tree },
|
|
{ "stress_tree", stress_tree },
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
char *negative_test = NULL;
|
|
int failed_tests = 0;
|
|
struct timeval tp;
|
|
zfs_btree_t bt;
|
|
int c;
|
|
|
|
while ((c = getopt(argc, argv, "c:l:n:r:st:")) != -1) {
|
|
switch (c) {
|
|
case 'c':
|
|
contents_frequency = atoi(optarg);
|
|
break;
|
|
case 'l':
|
|
tree_limit = atoi(optarg);
|
|
break;
|
|
case 'n':
|
|
negative_test = optarg;
|
|
break;
|
|
case 'r':
|
|
seed = atoi(optarg);
|
|
break;
|
|
case 's':
|
|
stress_only = B_TRUE;
|
|
break;
|
|
case 't':
|
|
stress_timeout = atoi(optarg);
|
|
break;
|
|
case 'h':
|
|
default:
|
|
usage(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (seed == 0) {
|
|
(void) gettimeofday(&tp, NULL);
|
|
seed = tp.tv_sec;
|
|
}
|
|
srandom(seed);
|
|
|
|
zfs_btree_init();
|
|
zfs_btree_create(&bt, zfs_btree_compare, NULL, sizeof (uint64_t));
|
|
|
|
/*
|
|
* This runs the named negative test. None of them should
|
|
* return, as they both cause crashes.
|
|
*/
|
|
if (negative_test) {
|
|
return (do_negative_test(&bt, negative_test));
|
|
}
|
|
|
|
fprintf(stderr, "Seed: %u\n", seed);
|
|
|
|
/*
|
|
* This is a stress test that does operations on a btree over the
|
|
* requested timeout period, verifying them against identical
|
|
* operations in an avl tree.
|
|
*/
|
|
if (stress_only != 0) {
|
|
return (stress_tree(&bt, NULL));
|
|
}
|
|
|
|
/* Do the positive tests */
|
|
btree_test_t *test = &test_table[0];
|
|
while (test->name) {
|
|
int retval;
|
|
char why[BUFSIZE] = {0};
|
|
zfs_btree_index_t *idx = NULL;
|
|
|
|
(void) fprintf(stdout, "%-20s", test->name);
|
|
retval = test->func(&bt, why);
|
|
|
|
if (retval == 0) {
|
|
(void) fprintf(stdout, "ok\n");
|
|
} else {
|
|
(void) fprintf(stdout, "failed with %d\n", retval);
|
|
if (strlen(why) != 0)
|
|
(void) fprintf(stdout, "\t%s\n", why);
|
|
why[0] = '\0';
|
|
failed_tests++;
|
|
}
|
|
|
|
/* Remove all the elements and re-verify the tree */
|
|
while (zfs_btree_destroy_nodes(&bt, &idx) != NULL)
|
|
;
|
|
zfs_btree_verify(&bt);
|
|
|
|
test++;
|
|
}
|
|
|
|
zfs_btree_verify(&bt);
|
|
zfs_btree_fini();
|
|
|
|
return (failed_tests);
|
|
}
|