mirror_zfs/module/os/linux/spl/spl-xdr.c
Rob N 5d859a2e22 xdr: header cleanup
#16047 notes that include/os/freebsd/spl/rpc/xdr.h carried an
(apparently) incompatible license. While looking into it, it seems that
this file is actually unnecessary these days - FreeBSD's kernel XDR has
XDR_CONTROL, xdrmem_control and XDR_GET_BYTES_AVAIL, while userspace has
XDR_CONTROL and xdrmem_control, and our implementation of
XDR_GET_BYTES_AVAIL for libspl works nicely with it. So this removes
that file outright.

To keep the includes in nvpair.c tidy, I've made a few small adjustments
to the Linux headers. By definition, rpc/types.h provides bool_t and is
included before rpc/xdr.h, so I've created rpc/types.h for Linux. This
isn't necessary for userspace; both FreeBSD native and tirpc on Linux
already have these headers set up correctly.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://despairlabs.com/sponsor/
Closes #16047 
Closes #16051
2024-04-29 13:50:05 -07:00

514 lines
12 KiB
C

/*
* Copyright (c) 2008-2010 Sun Microsystems, Inc.
* Written by Ricardo Correia <Ricardo.M.Correia@Sun.COM>
*
* This file is part of the SPL, Solaris Porting Layer.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
*
* Solaris Porting Layer (SPL) XDR Implementation.
*/
#include <linux/string.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
/*
* SPL's XDR mem implementation.
*
* This is used by libnvpair to serialize/deserialize the name-value pair data
* structures into byte arrays in a well-defined and portable manner.
*
* These data structures are used by the DMU/ZFS to flexibly manipulate various
* information in memory and later serialize it/deserialize it to disk.
* Examples of usages include the pool configuration, lists of pool and dataset
* properties, etc.
*
* Reference documentation for the XDR representation and XDR operations can be
* found in RFC 1832 and xdr(3), respectively.
*
* === Implementation shortcomings ===
*
* It is assumed that the following C types have the following sizes:
*
* char/unsigned char: 1 byte
* short/unsigned short: 2 bytes
* int/unsigned int: 4 bytes
* longlong_t/u_longlong_t: 8 bytes
*
* The C standard allows these types to be larger (and in the case of ints,
* shorter), so if that is the case on some compiler/architecture, the build
* will fail (on purpose).
*
* If someone wants to fix the code to work properly on such environments, then:
*
* 1) Preconditions should be added to xdrmem_enc functions to make sure the
* caller doesn't pass arguments which exceed the expected range.
* 2) Functions which take signed integers should be changed to properly do
* sign extension.
* 3) For ints with less than 32 bits, well.. I suspect you'll have bigger
* problems than this implementation.
*
* It is also assumed that:
*
* 1) Chars have 8 bits.
* 2) We can always do 32-bit-aligned int memory accesses and byte-aligned
* memcpy, memset and memcmp.
* 3) Arrays passed to xdr_array() are packed and the compiler/architecture
* supports element-sized-aligned memory accesses.
* 4) Negative integers are natively stored in two's complement binary
* representation.
*
* No checks are done for the 4 assumptions above, though.
*
* === Caller expectations ===
*
* Existing documentation does not describe the semantics of XDR operations very
* well. Therefore, some assumptions about failure semantics will be made and
* will be described below:
*
* 1) If any encoding operation fails (e.g., due to lack of buffer space), the
* the stream should be considered valid only up to the encoding operation
* previous to the one that first failed. However, the stream size as returned
* by xdr_control() cannot be considered to be strictly correct (it may be
* bigger).
*
* Putting it another way, if there is an encoding failure it's undefined
* whether anything is added to the stream in that operation and therefore
* neither xdr_control() nor future encoding operations on the same stream can
* be relied upon to produce correct results.
*
* 2) If a decoding operation fails, it's undefined whether anything will be
* decoded into passed buffers/pointers during that operation, or what the
* values on those buffers will look like.
*
* Future decoding operations on the same stream will also have similar
* undefined behavior.
*
* 3) When the first decoding operation fails it is OK to trust the results of
* previous decoding operations on the same stream, as long as the caller
* expects a failure to be possible (e.g. due to end-of-stream).
*
* However, this is highly discouraged because the caller should know the
* stream size and should be coded to expect any decoding failure to be data
* corruption due to hardware, accidental or even malicious causes, which should
* be handled gracefully in all cases.
*
* In very rare situations where there are strong reasons to believe the data
* can be trusted to be valid and non-tampered with, then the caller may assume
* a decoding failure to be a bug (e.g. due to mismatched data types) and may
* fail non-gracefully.
*
* 4) Non-zero padding bytes will cause the decoding operation to fail.
*
* 5) Zero bytes on string types will also cause the decoding operation to fail.
*
* 6) It is assumed that either the pointer to the stream buffer given by the
* caller is 32-bit aligned or the architecture supports non-32-bit-aligned int
* memory accesses.
*
* 7) The stream buffer and encoding/decoding buffers/ptrs should not overlap.
*
* 8) If a caller passes pointers to non-kernel memory (e.g., pointers to user
* space or MMIO space), the computer may explode.
*/
static const struct xdr_ops xdrmem_encode_ops;
static const struct xdr_ops xdrmem_decode_ops;
void
xdrmem_create(XDR *xdrs, const caddr_t addr, const uint_t size,
const enum xdr_op op)
{
switch (op) {
case XDR_ENCODE:
xdrs->x_ops = &xdrmem_encode_ops;
break;
case XDR_DECODE:
xdrs->x_ops = &xdrmem_decode_ops;
break;
default:
xdrs->x_ops = NULL; /* Let the caller know we failed */
return;
}
xdrs->x_op = op;
xdrs->x_addr = addr;
xdrs->x_addr_end = addr + size;
if (xdrs->x_addr_end < xdrs->x_addr) {
xdrs->x_ops = NULL;
}
}
EXPORT_SYMBOL(xdrmem_create);
static bool_t
xdrmem_control(XDR *xdrs, int req, void *info)
{
struct xdr_bytesrec *rec = (struct xdr_bytesrec *)info;
if (req != XDR_GET_BYTES_AVAIL)
return (FALSE);
rec->xc_is_last_record = TRUE; /* always TRUE in xdrmem streams */
rec->xc_num_avail = xdrs->x_addr_end - xdrs->x_addr;
return (TRUE);
}
static bool_t
xdrmem_enc_bytes(XDR *xdrs, caddr_t cp, const uint_t cnt)
{
uint_t size = roundup(cnt, 4);
uint_t pad;
if (size < cnt)
return (FALSE); /* Integer overflow */
if (xdrs->x_addr > xdrs->x_addr_end)
return (FALSE);
if (xdrs->x_addr_end - xdrs->x_addr < size)
return (FALSE);
memcpy(xdrs->x_addr, cp, cnt);
xdrs->x_addr += cnt;
pad = size - cnt;
if (pad > 0) {
memset(xdrs->x_addr, 0, pad);
xdrs->x_addr += pad;
}
return (TRUE);
}
static bool_t
xdrmem_dec_bytes(XDR *xdrs, caddr_t cp, const uint_t cnt)
{
static uint32_t zero = 0;
uint_t size = roundup(cnt, 4);
uint_t pad;
if (size < cnt)
return (FALSE); /* Integer overflow */
if (xdrs->x_addr > xdrs->x_addr_end)
return (FALSE);
if (xdrs->x_addr_end - xdrs->x_addr < size)
return (FALSE);
memcpy(cp, xdrs->x_addr, cnt);
xdrs->x_addr += cnt;
pad = size - cnt;
if (pad > 0) {
/* An inverted memchr() would be useful here... */
if (memcmp(&zero, xdrs->x_addr, pad) != 0)
return (FALSE);
xdrs->x_addr += pad;
}
return (TRUE);
}
static bool_t
xdrmem_enc_uint32(XDR *xdrs, uint32_t val)
{
if (xdrs->x_addr + sizeof (uint32_t) > xdrs->x_addr_end)
return (FALSE);
*((uint32_t *)xdrs->x_addr) = cpu_to_be32(val);
xdrs->x_addr += sizeof (uint32_t);
return (TRUE);
}
static bool_t
xdrmem_dec_uint32(XDR *xdrs, uint32_t *val)
{
if (xdrs->x_addr + sizeof (uint32_t) > xdrs->x_addr_end)
return (FALSE);
*val = be32_to_cpu(*((uint32_t *)xdrs->x_addr));
xdrs->x_addr += sizeof (uint32_t);
return (TRUE);
}
static bool_t
xdrmem_enc_char(XDR *xdrs, char *cp)
{
uint32_t val;
BUILD_BUG_ON(sizeof (char) != 1);
val = *((unsigned char *) cp);
return (xdrmem_enc_uint32(xdrs, val));
}
static bool_t
xdrmem_dec_char(XDR *xdrs, char *cp)
{
uint32_t val;
BUILD_BUG_ON(sizeof (char) != 1);
if (!xdrmem_dec_uint32(xdrs, &val))
return (FALSE);
/*
* If any of the 3 other bytes are non-zero then val will be greater
* than 0xff and we fail because according to the RFC, this block does
* not have a char encoded in it.
*/
if (val > 0xff)
return (FALSE);
*((unsigned char *) cp) = val;
return (TRUE);
}
static bool_t
xdrmem_enc_ushort(XDR *xdrs, unsigned short *usp)
{
BUILD_BUG_ON(sizeof (unsigned short) != 2);
return (xdrmem_enc_uint32(xdrs, *usp));
}
static bool_t
xdrmem_dec_ushort(XDR *xdrs, unsigned short *usp)
{
uint32_t val;
BUILD_BUG_ON(sizeof (unsigned short) != 2);
if (!xdrmem_dec_uint32(xdrs, &val))
return (FALSE);
/*
* Short ints are not in the RFC, but we assume similar logic as in
* xdrmem_dec_char().
*/
if (val > 0xffff)
return (FALSE);
*usp = val;
return (TRUE);
}
static bool_t
xdrmem_enc_uint(XDR *xdrs, unsigned *up)
{
BUILD_BUG_ON(sizeof (unsigned) != 4);
return (xdrmem_enc_uint32(xdrs, *up));
}
static bool_t
xdrmem_dec_uint(XDR *xdrs, unsigned *up)
{
BUILD_BUG_ON(sizeof (unsigned) != 4);
return (xdrmem_dec_uint32(xdrs, (uint32_t *)up));
}
static bool_t
xdrmem_enc_ulonglong(XDR *xdrs, u_longlong_t *ullp)
{
BUILD_BUG_ON(sizeof (u_longlong_t) != 8);
if (!xdrmem_enc_uint32(xdrs, *ullp >> 32))
return (FALSE);
return (xdrmem_enc_uint32(xdrs, *ullp & 0xffffffff));
}
static bool_t
xdrmem_dec_ulonglong(XDR *xdrs, u_longlong_t *ullp)
{
uint32_t low, high;
BUILD_BUG_ON(sizeof (u_longlong_t) != 8);
if (!xdrmem_dec_uint32(xdrs, &high))
return (FALSE);
if (!xdrmem_dec_uint32(xdrs, &low))
return (FALSE);
*ullp = ((u_longlong_t)high << 32) | low;
return (TRUE);
}
static bool_t
xdr_enc_array(XDR *xdrs, caddr_t *arrp, uint_t *sizep, const uint_t maxsize,
const uint_t elsize, const xdrproc_t elproc)
{
uint_t i;
caddr_t addr = *arrp;
if (*sizep > maxsize || *sizep > UINT_MAX / elsize)
return (FALSE);
if (!xdrmem_enc_uint(xdrs, sizep))
return (FALSE);
for (i = 0; i < *sizep; i++) {
if (!elproc(xdrs, addr))
return (FALSE);
addr += elsize;
}
return (TRUE);
}
static bool_t
xdr_dec_array(XDR *xdrs, caddr_t *arrp, uint_t *sizep, const uint_t maxsize,
const uint_t elsize, const xdrproc_t elproc)
{
uint_t i, size;
bool_t alloc = FALSE;
caddr_t addr;
if (!xdrmem_dec_uint(xdrs, sizep))
return (FALSE);
size = *sizep;
if (size > maxsize || size > UINT_MAX / elsize)
return (FALSE);
/*
* The Solaris man page says: "If *arrp is NULL when decoding,
* xdr_array() allocates memory and *arrp points to it".
*/
if (*arrp == NULL) {
BUILD_BUG_ON(sizeof (uint_t) > sizeof (size_t));
*arrp = kmem_alloc(size * elsize, KM_NOSLEEP);
if (*arrp == NULL)
return (FALSE);
alloc = TRUE;
}
addr = *arrp;
for (i = 0; i < size; i++) {
if (!elproc(xdrs, addr)) {
if (alloc)
kmem_free(*arrp, size * elsize);
return (FALSE);
}
addr += elsize;
}
return (TRUE);
}
static bool_t
xdr_enc_string(XDR *xdrs, char **sp, const uint_t maxsize)
{
size_t slen = strlen(*sp);
uint_t len;
if (slen > maxsize)
return (FALSE);
len = slen;
if (!xdrmem_enc_uint(xdrs, &len))
return (FALSE);
return (xdrmem_enc_bytes(xdrs, *sp, len));
}
static bool_t
xdr_dec_string(XDR *xdrs, char **sp, const uint_t maxsize)
{
uint_t size;
bool_t alloc = FALSE;
if (!xdrmem_dec_uint(xdrs, &size))
return (FALSE);
if (size > maxsize || size > UINT_MAX - 1)
return (FALSE);
/*
* Solaris man page: "If *sp is NULL when decoding, xdr_string()
* allocates memory and *sp points to it".
*/
if (*sp == NULL) {
BUILD_BUG_ON(sizeof (uint_t) > sizeof (size_t));
*sp = kmem_alloc(size + 1, KM_NOSLEEP);
if (*sp == NULL)
return (FALSE);
alloc = TRUE;
}
if (!xdrmem_dec_bytes(xdrs, *sp, size))
goto fail;
if (memchr(*sp, 0, size) != NULL)
goto fail;
(*sp)[size] = '\0';
return (TRUE);
fail:
if (alloc)
kmem_free(*sp, size + 1);
return (FALSE);
}
static const struct xdr_ops xdrmem_encode_ops = {
.xdr_control = xdrmem_control,
.xdr_char = xdrmem_enc_char,
.xdr_u_short = xdrmem_enc_ushort,
.xdr_u_int = xdrmem_enc_uint,
.xdr_u_longlong_t = xdrmem_enc_ulonglong,
.xdr_opaque = xdrmem_enc_bytes,
.xdr_string = xdr_enc_string,
.xdr_array = xdr_enc_array
};
static const struct xdr_ops xdrmem_decode_ops = {
.xdr_control = xdrmem_control,
.xdr_char = xdrmem_dec_char,
.xdr_u_short = xdrmem_dec_ushort,
.xdr_u_int = xdrmem_dec_uint,
.xdr_u_longlong_t = xdrmem_dec_ulonglong,
.xdr_opaque = xdrmem_dec_bytes,
.xdr_string = xdr_dec_string,
.xdr_array = xdr_dec_array
};