mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-31 21:39:36 +03:00
5d859a2e22
#16047 notes that include/os/freebsd/spl/rpc/xdr.h carried an (apparently) incompatible license. While looking into it, it seems that this file is actually unnecessary these days - FreeBSD's kernel XDR has XDR_CONTROL, xdrmem_control and XDR_GET_BYTES_AVAIL, while userspace has XDR_CONTROL and xdrmem_control, and our implementation of XDR_GET_BYTES_AVAIL for libspl works nicely with it. So this removes that file outright. To keep the includes in nvpair.c tidy, I've made a few small adjustments to the Linux headers. By definition, rpc/types.h provides bool_t and is included before rpc/xdr.h, so I've created rpc/types.h for Linux. This isn't necessary for userspace; both FreeBSD native and tirpc on Linux already have these headers set up correctly. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rob Norris <robn@despairlabs.com> Sponsored-by: https://despairlabs.com/sponsor/ Closes #16047 Closes #16051
3798 lines
86 KiB
C
3798 lines
86 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2015, 2017 by Delphix. All rights reserved.
|
|
* Copyright 2018 RackTop Systems.
|
|
*/
|
|
|
|
/*
|
|
* Links to Illumos.org for more information on Interface Libraries:
|
|
* [1] https://illumos.org/man/3lib/libnvpair
|
|
* [2] https://illumos.org/man/3nvpair/nvlist_alloc
|
|
* [3] https://illumos.org/man/9f/nvlist_alloc
|
|
* [4] https://illumos.org/man/9f/nvlist_next_nvpair
|
|
* [5] https://illumos.org/man/9f/nvpair_value_byte
|
|
*/
|
|
|
|
#include <sys/debug.h>
|
|
#include <sys/isa_defs.h>
|
|
#include <sys/nvpair.h>
|
|
#include <sys/nvpair_impl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/string.h>
|
|
#include <rpc/types.h>
|
|
#include <rpc/xdr.h>
|
|
#include <sys/mod.h>
|
|
|
|
#if defined(_KERNEL)
|
|
#include <sys/sunddi.h>
|
|
#include <sys/sysmacros.h>
|
|
#else
|
|
#include <stdarg.h>
|
|
#include <stdlib.h>
|
|
#include <stddef.h>
|
|
#endif
|
|
|
|
#define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) (p)++
|
|
|
|
/*
|
|
* nvpair.c - Provides kernel & userland interfaces for manipulating
|
|
* name-value pairs.
|
|
*
|
|
* Overview Diagram
|
|
*
|
|
* +--------------+
|
|
* | nvlist_t |
|
|
* |--------------|
|
|
* | nvl_version |
|
|
* | nvl_nvflag |
|
|
* | nvl_priv -+-+
|
|
* | nvl_flag | |
|
|
* | nvl_pad | |
|
|
* +--------------+ |
|
|
* V
|
|
* +--------------+ last i_nvp in list
|
|
* | nvpriv_t | +--------------------->
|
|
* |--------------| |
|
|
* +--+- nvp_list | | +------------+
|
|
* | | nvp_last -+--+ + nv_alloc_t |
|
|
* | | nvp_curr | |------------|
|
|
* | | nvp_nva -+----> | nva_ops |
|
|
* | | nvp_stat | | nva_arg |
|
|
* | +--------------+ +------------+
|
|
* |
|
|
* +-------+
|
|
* V
|
|
* +---------------------+ +-------------------+
|
|
* | i_nvp_t | +-->| i_nvp_t | +-->
|
|
* |---------------------| | |-------------------| |
|
|
* | nvi_next -+--+ | nvi_next -+--+
|
|
* | nvi_prev (NULL) | <----+ nvi_prev |
|
|
* | . . . . . . . . . . | | . . . . . . . . . |
|
|
* | nvp (nvpair_t) | | nvp (nvpair_t) |
|
|
* | - nvp_size | | - nvp_size |
|
|
* | - nvp_name_sz | | - nvp_name_sz |
|
|
* | - nvp_value_elem | | - nvp_value_elem |
|
|
* | - nvp_type | | - nvp_type |
|
|
* | - data ... | | - data ... |
|
|
* +---------------------+ +-------------------+
|
|
*
|
|
*
|
|
*
|
|
* +---------------------+ +---------------------+
|
|
* | i_nvp_t | +--> +-->| i_nvp_t (last) |
|
|
* |---------------------| | | |---------------------|
|
|
* | nvi_next -+--+ ... --+ | nvi_next (NULL) |
|
|
* <-+- nvi_prev |<-- ... <----+ nvi_prev |
|
|
* | . . . . . . . . . | | . . . . . . . . . |
|
|
* | nvp (nvpair_t) | | nvp (nvpair_t) |
|
|
* | - nvp_size | | - nvp_size |
|
|
* | - nvp_name_sz | | - nvp_name_sz |
|
|
* | - nvp_value_elem | | - nvp_value_elem |
|
|
* | - DATA_TYPE_NVLIST | | - nvp_type |
|
|
* | - data (embedded) | | - data ... |
|
|
* | nvlist name | +---------------------+
|
|
* | +--------------+ |
|
|
* | | nvlist_t | |
|
|
* | |--------------| |
|
|
* | | nvl_version | |
|
|
* | | nvl_nvflag | |
|
|
* | | nvl_priv --+---+---->
|
|
* | | nvl_flag | |
|
|
* | | nvl_pad | |
|
|
* | +--------------+ |
|
|
* +---------------------+
|
|
*
|
|
*
|
|
* N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
|
|
* allow value to be aligned on 8 byte boundary
|
|
*
|
|
* name_len is the length of the name string including the null terminator
|
|
* so it must be >= 1
|
|
*/
|
|
#define NVP_SIZE_CALC(name_len, data_len) \
|
|
(NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
|
|
|
|
static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
|
|
static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
|
|
uint_t nelem, const void *data);
|
|
|
|
#define NV_STAT_EMBEDDED 0x1
|
|
#define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp))
|
|
#define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
|
|
|
|
#define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
|
|
#define NVPAIR2I_NVP(nvp) \
|
|
((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
|
|
|
|
#ifdef _KERNEL
|
|
static const int nvpair_max_recursion = 20;
|
|
#else
|
|
static const int nvpair_max_recursion = 100;
|
|
#endif
|
|
|
|
static const uint64_t nvlist_hashtable_init_size = (1 << 4);
|
|
|
|
int
|
|
nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
|
|
{
|
|
va_list valist;
|
|
int err = 0;
|
|
|
|
nva->nva_ops = nvo;
|
|
nva->nva_arg = NULL;
|
|
|
|
va_start(valist, nvo);
|
|
if (nva->nva_ops->nv_ao_init != NULL)
|
|
err = nva->nva_ops->nv_ao_init(nva, valist);
|
|
va_end(valist);
|
|
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
nv_alloc_reset(nv_alloc_t *nva)
|
|
{
|
|
if (nva->nva_ops->nv_ao_reset != NULL)
|
|
nva->nva_ops->nv_ao_reset(nva);
|
|
}
|
|
|
|
void
|
|
nv_alloc_fini(nv_alloc_t *nva)
|
|
{
|
|
if (nva->nva_ops->nv_ao_fini != NULL)
|
|
nva->nva_ops->nv_ao_fini(nva);
|
|
}
|
|
|
|
nv_alloc_t *
|
|
nvlist_lookup_nv_alloc(nvlist_t *nvl)
|
|
{
|
|
nvpriv_t *priv;
|
|
|
|
if (nvl == NULL ||
|
|
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
|
|
return (NULL);
|
|
|
|
return (priv->nvp_nva);
|
|
}
|
|
|
|
static void *
|
|
nv_mem_zalloc(nvpriv_t *nvp, size_t size)
|
|
{
|
|
nv_alloc_t *nva = nvp->nvp_nva;
|
|
void *buf;
|
|
|
|
if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
|
|
memset(buf, 0, size);
|
|
|
|
return (buf);
|
|
}
|
|
|
|
static void
|
|
nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
|
|
{
|
|
nv_alloc_t *nva = nvp->nvp_nva;
|
|
|
|
nva->nva_ops->nv_ao_free(nva, buf, size);
|
|
}
|
|
|
|
static void
|
|
nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
|
|
{
|
|
memset(priv, 0, sizeof (nvpriv_t));
|
|
|
|
priv->nvp_nva = nva;
|
|
priv->nvp_stat = stat;
|
|
}
|
|
|
|
static nvpriv_t *
|
|
nv_priv_alloc(nv_alloc_t *nva)
|
|
{
|
|
nvpriv_t *priv;
|
|
|
|
/*
|
|
* nv_mem_alloc() cannot called here because it needs the priv
|
|
* argument.
|
|
*/
|
|
if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
|
|
return (NULL);
|
|
|
|
nv_priv_init(priv, nva, 0);
|
|
|
|
return (priv);
|
|
}
|
|
|
|
/*
|
|
* Embedded lists need their own nvpriv_t's. We create a new
|
|
* nvpriv_t using the parameters and allocator from the parent
|
|
* list's nvpriv_t.
|
|
*/
|
|
static nvpriv_t *
|
|
nv_priv_alloc_embedded(nvpriv_t *priv)
|
|
{
|
|
nvpriv_t *emb_priv;
|
|
|
|
if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
|
|
return (NULL);
|
|
|
|
nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
|
|
|
|
return (emb_priv);
|
|
}
|
|
|
|
static int
|
|
nvt_tab_alloc(nvpriv_t *priv, uint64_t buckets)
|
|
{
|
|
ASSERT3P(priv->nvp_hashtable, ==, NULL);
|
|
ASSERT0(priv->nvp_nbuckets);
|
|
ASSERT0(priv->nvp_nentries);
|
|
|
|
i_nvp_t **tab = nv_mem_zalloc(priv, buckets * sizeof (i_nvp_t *));
|
|
if (tab == NULL)
|
|
return (ENOMEM);
|
|
|
|
priv->nvp_hashtable = tab;
|
|
priv->nvp_nbuckets = buckets;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
nvt_tab_free(nvpriv_t *priv)
|
|
{
|
|
i_nvp_t **tab = priv->nvp_hashtable;
|
|
if (tab == NULL) {
|
|
ASSERT0(priv->nvp_nbuckets);
|
|
ASSERT0(priv->nvp_nentries);
|
|
return;
|
|
}
|
|
|
|
nv_mem_free(priv, tab, priv->nvp_nbuckets * sizeof (i_nvp_t *));
|
|
|
|
priv->nvp_hashtable = NULL;
|
|
priv->nvp_nbuckets = 0;
|
|
priv->nvp_nentries = 0;
|
|
}
|
|
|
|
static uint32_t
|
|
nvt_hash(const char *p)
|
|
{
|
|
uint32_t g, hval = 0;
|
|
|
|
while (*p) {
|
|
hval = (hval << 4) + *p++;
|
|
if ((g = (hval & 0xf0000000)) != 0)
|
|
hval ^= g >> 24;
|
|
hval &= ~g;
|
|
}
|
|
return (hval);
|
|
}
|
|
|
|
static boolean_t
|
|
nvt_nvpair_match(const nvpair_t *nvp1, const nvpair_t *nvp2, uint32_t nvflag)
|
|
{
|
|
boolean_t match = B_FALSE;
|
|
if (nvflag & NV_UNIQUE_NAME_TYPE) {
|
|
if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0 &&
|
|
NVP_TYPE(nvp1) == NVP_TYPE(nvp2))
|
|
match = B_TRUE;
|
|
} else {
|
|
ASSERT(nvflag == 0 || nvflag & NV_UNIQUE_NAME);
|
|
if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0)
|
|
match = B_TRUE;
|
|
}
|
|
return (match);
|
|
}
|
|
|
|
static nvpair_t *
|
|
nvt_lookup_name_type(const nvlist_t *nvl, const char *name, data_type_t type)
|
|
{
|
|
const nvpriv_t *priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
ASSERT(priv != NULL);
|
|
|
|
i_nvp_t **tab = priv->nvp_hashtable;
|
|
|
|
if (tab == NULL) {
|
|
ASSERT3P(priv->nvp_list, ==, NULL);
|
|
ASSERT0(priv->nvp_nbuckets);
|
|
ASSERT0(priv->nvp_nentries);
|
|
return (NULL);
|
|
} else {
|
|
ASSERT(priv->nvp_nbuckets != 0);
|
|
}
|
|
|
|
uint64_t hash = nvt_hash(name);
|
|
uint64_t index = hash & (priv->nvp_nbuckets - 1);
|
|
|
|
ASSERT3U(index, <, priv->nvp_nbuckets);
|
|
i_nvp_t *entry = tab[index];
|
|
|
|
for (i_nvp_t *e = entry; e != NULL; e = e->nvi_hashtable_next) {
|
|
if (strcmp(NVP_NAME(&e->nvi_nvp), name) == 0 &&
|
|
(type == DATA_TYPE_DONTCARE ||
|
|
NVP_TYPE(&e->nvi_nvp) == type))
|
|
return (&e->nvi_nvp);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static nvpair_t *
|
|
nvt_lookup_name(const nvlist_t *nvl, const char *name)
|
|
{
|
|
return (nvt_lookup_name_type(nvl, name, DATA_TYPE_DONTCARE));
|
|
}
|
|
|
|
static int
|
|
nvt_resize(nvpriv_t *priv, uint32_t new_size)
|
|
{
|
|
i_nvp_t **tab = priv->nvp_hashtable;
|
|
|
|
/*
|
|
* Migrate all the entries from the current table
|
|
* to a newly-allocated table with the new size by
|
|
* re-adjusting the pointers of their entries.
|
|
*/
|
|
uint32_t size = priv->nvp_nbuckets;
|
|
uint32_t new_mask = new_size - 1;
|
|
ASSERT(ISP2(new_size));
|
|
|
|
i_nvp_t **new_tab = nv_mem_zalloc(priv, new_size * sizeof (i_nvp_t *));
|
|
if (new_tab == NULL)
|
|
return (ENOMEM);
|
|
|
|
uint32_t nentries = 0;
|
|
for (uint32_t i = 0; i < size; i++) {
|
|
i_nvp_t *next, *e = tab[i];
|
|
|
|
while (e != NULL) {
|
|
next = e->nvi_hashtable_next;
|
|
|
|
uint32_t hash = nvt_hash(NVP_NAME(&e->nvi_nvp));
|
|
uint32_t index = hash & new_mask;
|
|
|
|
e->nvi_hashtable_next = new_tab[index];
|
|
new_tab[index] = e;
|
|
nentries++;
|
|
|
|
e = next;
|
|
}
|
|
tab[i] = NULL;
|
|
}
|
|
ASSERT3U(nentries, ==, priv->nvp_nentries);
|
|
|
|
nvt_tab_free(priv);
|
|
|
|
priv->nvp_hashtable = new_tab;
|
|
priv->nvp_nbuckets = new_size;
|
|
priv->nvp_nentries = nentries;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static boolean_t
|
|
nvt_needs_togrow(nvpriv_t *priv)
|
|
{
|
|
/*
|
|
* Grow only when we have more elements than buckets
|
|
* and the # of buckets doesn't overflow.
|
|
*/
|
|
return (priv->nvp_nentries > priv->nvp_nbuckets &&
|
|
(UINT32_MAX >> 1) >= priv->nvp_nbuckets);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new table that's twice the size of the old one,
|
|
* and migrate all the entries from the old one to the new
|
|
* one by re-adjusting their pointers.
|
|
*/
|
|
static int
|
|
nvt_grow(nvpriv_t *priv)
|
|
{
|
|
uint32_t current_size = priv->nvp_nbuckets;
|
|
/* ensure we won't overflow */
|
|
ASSERT3U(UINT32_MAX >> 1, >=, current_size);
|
|
return (nvt_resize(priv, current_size << 1));
|
|
}
|
|
|
|
static boolean_t
|
|
nvt_needs_toshrink(nvpriv_t *priv)
|
|
{
|
|
/*
|
|
* Shrink only when the # of elements is less than or
|
|
* equal to 1/4 the # of buckets. Never shrink less than
|
|
* nvlist_hashtable_init_size.
|
|
*/
|
|
ASSERT3U(priv->nvp_nbuckets, >=, nvlist_hashtable_init_size);
|
|
if (priv->nvp_nbuckets == nvlist_hashtable_init_size)
|
|
return (B_FALSE);
|
|
return (priv->nvp_nentries <= (priv->nvp_nbuckets >> 2));
|
|
}
|
|
|
|
/*
|
|
* Allocate a new table that's half the size of the old one,
|
|
* and migrate all the entries from the old one to the new
|
|
* one by re-adjusting their pointers.
|
|
*/
|
|
static int
|
|
nvt_shrink(nvpriv_t *priv)
|
|
{
|
|
uint32_t current_size = priv->nvp_nbuckets;
|
|
/* ensure we won't overflow */
|
|
ASSERT3U(current_size, >=, nvlist_hashtable_init_size);
|
|
return (nvt_resize(priv, current_size >> 1));
|
|
}
|
|
|
|
static int
|
|
nvt_remove_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
|
|
{
|
|
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
|
|
if (nvt_needs_toshrink(priv)) {
|
|
int err = nvt_shrink(priv);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
i_nvp_t **tab = priv->nvp_hashtable;
|
|
|
|
const char *name = NVP_NAME(nvp);
|
|
uint64_t hash = nvt_hash(name);
|
|
uint64_t index = hash & (priv->nvp_nbuckets - 1);
|
|
|
|
ASSERT3U(index, <, priv->nvp_nbuckets);
|
|
i_nvp_t *bucket = tab[index];
|
|
|
|
for (i_nvp_t *prev = NULL, *e = bucket;
|
|
e != NULL; prev = e, e = e->nvi_hashtable_next) {
|
|
if (nvt_nvpair_match(&e->nvi_nvp, nvp, nvl->nvl_nvflag)) {
|
|
if (prev != NULL) {
|
|
prev->nvi_hashtable_next =
|
|
e->nvi_hashtable_next;
|
|
} else {
|
|
ASSERT3P(e, ==, bucket);
|
|
tab[index] = e->nvi_hashtable_next;
|
|
}
|
|
e->nvi_hashtable_next = NULL;
|
|
priv->nvp_nentries--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvt_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
|
|
{
|
|
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
|
|
/* initialize nvpair table now if it doesn't exist. */
|
|
if (priv->nvp_hashtable == NULL) {
|
|
int err = nvt_tab_alloc(priv, nvlist_hashtable_init_size);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* if we don't allow duplicate entries, make sure to
|
|
* unlink any existing entries from the table.
|
|
*/
|
|
if (nvl->nvl_nvflag != 0) {
|
|
int err = nvt_remove_nvpair(nvl, nvp);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
|
|
if (nvt_needs_togrow(priv)) {
|
|
int err = nvt_grow(priv);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
i_nvp_t **tab = priv->nvp_hashtable;
|
|
|
|
const char *name = NVP_NAME(nvp);
|
|
uint64_t hash = nvt_hash(name);
|
|
uint64_t index = hash & (priv->nvp_nbuckets - 1);
|
|
|
|
ASSERT3U(index, <, priv->nvp_nbuckets);
|
|
// cppcheck-suppress nullPointerRedundantCheck
|
|
i_nvp_t *bucket = tab[index];
|
|
|
|
/* insert link at the beginning of the bucket */
|
|
i_nvp_t *new_entry = NVPAIR2I_NVP(nvp);
|
|
ASSERT3P(new_entry->nvi_hashtable_next, ==, NULL);
|
|
new_entry->nvi_hashtable_next = bucket;
|
|
// cppcheck-suppress nullPointerRedundantCheck
|
|
tab[index] = new_entry;
|
|
|
|
priv->nvp_nentries++;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
|
|
{
|
|
nvl->nvl_version = NV_VERSION;
|
|
nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
|
|
nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
|
|
nvl->nvl_flag = 0;
|
|
nvl->nvl_pad = 0;
|
|
}
|
|
|
|
uint_t
|
|
nvlist_nvflag(nvlist_t *nvl)
|
|
{
|
|
return (nvl->nvl_nvflag);
|
|
}
|
|
|
|
static nv_alloc_t *
|
|
nvlist_nv_alloc(int kmflag)
|
|
{
|
|
#if defined(_KERNEL)
|
|
switch (kmflag) {
|
|
case KM_SLEEP:
|
|
return (nv_alloc_sleep);
|
|
case KM_NOSLEEP:
|
|
return (nv_alloc_nosleep);
|
|
default:
|
|
return (nv_alloc_pushpage);
|
|
}
|
|
#else
|
|
(void) kmflag;
|
|
return (nv_alloc_nosleep);
|
|
#endif /* _KERNEL */
|
|
}
|
|
|
|
/*
|
|
* nvlist_alloc - Allocate nvlist.
|
|
*/
|
|
int
|
|
nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
|
|
{
|
|
return (nvlist_xalloc(nvlp, nvflag, nvlist_nv_alloc(kmflag)));
|
|
}
|
|
|
|
int
|
|
nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
|
|
{
|
|
nvpriv_t *priv;
|
|
|
|
if (nvlp == NULL || nva == NULL)
|
|
return (EINVAL);
|
|
|
|
if ((priv = nv_priv_alloc(nva)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
if ((*nvlp = nv_mem_zalloc(priv,
|
|
NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
|
|
nv_mem_free(priv, priv, sizeof (nvpriv_t));
|
|
return (ENOMEM);
|
|
}
|
|
|
|
nvlist_init(*nvlp, nvflag, priv);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
|
|
*/
|
|
static nvpair_t *
|
|
nvp_buf_alloc(nvlist_t *nvl, size_t len)
|
|
{
|
|
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
i_nvp_t *buf;
|
|
nvpair_t *nvp;
|
|
size_t nvsize;
|
|
|
|
/*
|
|
* Allocate the buffer
|
|
*/
|
|
nvsize = len + offsetof(i_nvp_t, nvi_nvp);
|
|
|
|
if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
|
|
return (NULL);
|
|
|
|
nvp = &buf->nvi_nvp;
|
|
nvp->nvp_size = len;
|
|
|
|
return (nvp);
|
|
}
|
|
|
|
/*
|
|
* nvp_buf_free - de-Allocate an i_nvp_t.
|
|
*/
|
|
static void
|
|
nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
|
|
{
|
|
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
|
|
|
|
nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
|
|
}
|
|
|
|
/*
|
|
* nvp_buf_link - link a new nv pair into the nvlist.
|
|
*/
|
|
static void
|
|
nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
|
|
{
|
|
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
i_nvp_t *curr = NVPAIR2I_NVP(nvp);
|
|
|
|
/* Put element at end of nvlist */
|
|
if (priv->nvp_list == NULL) {
|
|
priv->nvp_list = priv->nvp_last = curr;
|
|
} else {
|
|
curr->nvi_prev = priv->nvp_last;
|
|
priv->nvp_last->nvi_next = curr;
|
|
priv->nvp_last = curr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
|
|
*/
|
|
static void
|
|
nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
|
|
{
|
|
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
i_nvp_t *curr = NVPAIR2I_NVP(nvp);
|
|
|
|
/*
|
|
* protect nvlist_next_nvpair() against walking on freed memory.
|
|
*/
|
|
if (priv->nvp_curr == curr)
|
|
priv->nvp_curr = curr->nvi_next;
|
|
|
|
if (curr == priv->nvp_list)
|
|
priv->nvp_list = curr->nvi_next;
|
|
else
|
|
curr->nvi_prev->nvi_next = curr->nvi_next;
|
|
|
|
if (curr == priv->nvp_last)
|
|
priv->nvp_last = curr->nvi_prev;
|
|
else
|
|
curr->nvi_next->nvi_prev = curr->nvi_prev;
|
|
}
|
|
|
|
/*
|
|
* take a nvpair type and number of elements and make sure the are valid
|
|
*/
|
|
static int
|
|
i_validate_type_nelem(data_type_t type, uint_t nelem)
|
|
{
|
|
switch (type) {
|
|
case DATA_TYPE_BOOLEAN:
|
|
if (nelem != 0)
|
|
return (EINVAL);
|
|
break;
|
|
case DATA_TYPE_BOOLEAN_VALUE:
|
|
case DATA_TYPE_BYTE:
|
|
case DATA_TYPE_INT8:
|
|
case DATA_TYPE_UINT8:
|
|
case DATA_TYPE_INT16:
|
|
case DATA_TYPE_UINT16:
|
|
case DATA_TYPE_INT32:
|
|
case DATA_TYPE_UINT32:
|
|
case DATA_TYPE_INT64:
|
|
case DATA_TYPE_UINT64:
|
|
case DATA_TYPE_STRING:
|
|
case DATA_TYPE_HRTIME:
|
|
case DATA_TYPE_NVLIST:
|
|
#if !defined(_KERNEL)
|
|
case DATA_TYPE_DOUBLE:
|
|
#endif
|
|
if (nelem != 1)
|
|
return (EINVAL);
|
|
break;
|
|
case DATA_TYPE_BOOLEAN_ARRAY:
|
|
case DATA_TYPE_BYTE_ARRAY:
|
|
case DATA_TYPE_INT8_ARRAY:
|
|
case DATA_TYPE_UINT8_ARRAY:
|
|
case DATA_TYPE_INT16_ARRAY:
|
|
case DATA_TYPE_UINT16_ARRAY:
|
|
case DATA_TYPE_INT32_ARRAY:
|
|
case DATA_TYPE_UINT32_ARRAY:
|
|
case DATA_TYPE_INT64_ARRAY:
|
|
case DATA_TYPE_UINT64_ARRAY:
|
|
case DATA_TYPE_STRING_ARRAY:
|
|
case DATA_TYPE_NVLIST_ARRAY:
|
|
/* we allow arrays with 0 elements */
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Verify nvp_name_sz and check the name string length.
|
|
*/
|
|
static int
|
|
i_validate_nvpair_name(nvpair_t *nvp)
|
|
{
|
|
if ((nvp->nvp_name_sz <= 0) ||
|
|
(nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
|
|
return (EFAULT);
|
|
|
|
/* verify the name string, make sure its terminated */
|
|
if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
|
|
return (EFAULT);
|
|
|
|
return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
|
|
}
|
|
|
|
static int
|
|
i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
|
|
{
|
|
switch (type) {
|
|
case DATA_TYPE_BOOLEAN_VALUE:
|
|
if (*(boolean_t *)data != B_TRUE &&
|
|
*(boolean_t *)data != B_FALSE)
|
|
return (EINVAL);
|
|
break;
|
|
case DATA_TYPE_BOOLEAN_ARRAY: {
|
|
int i;
|
|
|
|
for (i = 0; i < nelem; i++)
|
|
if (((boolean_t *)data)[i] != B_TRUE &&
|
|
((boolean_t *)data)[i] != B_FALSE)
|
|
return (EINVAL);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function takes a pointer to what should be a nvpair and it's size
|
|
* and then verifies that all the nvpair fields make sense and can be
|
|
* trusted. This function is used when decoding packed nvpairs.
|
|
*/
|
|
static int
|
|
i_validate_nvpair(nvpair_t *nvp)
|
|
{
|
|
data_type_t type = NVP_TYPE(nvp);
|
|
int size1, size2;
|
|
|
|
/* verify nvp_name_sz, check the name string length */
|
|
if (i_validate_nvpair_name(nvp) != 0)
|
|
return (EFAULT);
|
|
|
|
if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
|
|
return (EFAULT);
|
|
|
|
/*
|
|
* verify nvp_type, nvp_value_elem, and also possibly
|
|
* verify string values and get the value size.
|
|
*/
|
|
size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
|
|
size1 = nvp->nvp_size - NVP_VALOFF(nvp);
|
|
if (size2 < 0 || size1 != NV_ALIGN(size2))
|
|
return (EFAULT);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvlist_copy_pairs(const nvlist_t *snvl, nvlist_t *dnvl)
|
|
{
|
|
const nvpriv_t *priv;
|
|
const i_nvp_t *curr;
|
|
|
|
if ((priv = (const nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
|
|
return (EINVAL);
|
|
|
|
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
|
|
const nvpair_t *nvp = &curr->nvi_nvp;
|
|
int err;
|
|
|
|
if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
|
|
NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
|
|
return (err);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Frees all memory allocated for an nvpair (like embedded lists) with
|
|
* the exception of the nvpair buffer itself.
|
|
*/
|
|
static void
|
|
nvpair_free(nvpair_t *nvp)
|
|
{
|
|
switch (NVP_TYPE(nvp)) {
|
|
case DATA_TYPE_NVLIST:
|
|
nvlist_free(EMBEDDED_NVL(nvp));
|
|
break;
|
|
case DATA_TYPE_NVLIST_ARRAY: {
|
|
nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
|
|
int i;
|
|
|
|
for (i = 0; i < NVP_NELEM(nvp); i++)
|
|
if (nvlp[i] != NULL)
|
|
nvlist_free(nvlp[i]);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* nvlist_free - free an unpacked nvlist
|
|
*/
|
|
void
|
|
nvlist_free(nvlist_t *nvl)
|
|
{
|
|
nvpriv_t *priv;
|
|
i_nvp_t *curr;
|
|
|
|
if (nvl == NULL ||
|
|
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Unpacked nvlist are linked through i_nvp_t
|
|
*/
|
|
curr = priv->nvp_list;
|
|
while (curr != NULL) {
|
|
nvpair_t *nvp = &curr->nvi_nvp;
|
|
curr = curr->nvi_next;
|
|
|
|
nvpair_free(nvp);
|
|
nvp_buf_free(nvl, nvp);
|
|
}
|
|
|
|
if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
|
|
nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
|
|
else
|
|
nvl->nvl_priv = 0;
|
|
|
|
nvt_tab_free(priv);
|
|
nv_mem_free(priv, priv, sizeof (nvpriv_t));
|
|
}
|
|
|
|
static int
|
|
nvlist_contains_nvp(const nvlist_t *nvl, const nvpair_t *nvp)
|
|
{
|
|
const nvpriv_t *priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
const i_nvp_t *curr;
|
|
|
|
if (nvp == NULL)
|
|
return (0);
|
|
|
|
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
|
|
if (&curr->nvi_nvp == nvp)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Make a copy of nvlist
|
|
*/
|
|
int
|
|
nvlist_dup(const nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
|
|
{
|
|
return (nvlist_xdup(nvl, nvlp, nvlist_nv_alloc(kmflag)));
|
|
}
|
|
|
|
int
|
|
nvlist_xdup(const nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
|
|
{
|
|
int err;
|
|
nvlist_t *ret;
|
|
|
|
if (nvl == NULL || nvlp == NULL)
|
|
return (EINVAL);
|
|
|
|
if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
|
|
return (err);
|
|
|
|
if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
|
|
nvlist_free(ret);
|
|
else
|
|
*nvlp = ret;
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Remove all with matching name
|
|
*/
|
|
int
|
|
nvlist_remove_all(nvlist_t *nvl, const char *name)
|
|
{
|
|
int error = ENOENT;
|
|
|
|
if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
|
|
return (EINVAL);
|
|
|
|
nvpair_t *nvp;
|
|
while ((nvp = nvt_lookup_name(nvl, name)) != NULL) {
|
|
VERIFY0(nvlist_remove_nvpair(nvl, nvp));
|
|
error = 0;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Remove first one with matching name and type
|
|
*/
|
|
int
|
|
nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
|
|
{
|
|
if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
|
|
return (EINVAL);
|
|
|
|
nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
|
|
if (nvp == NULL)
|
|
return (ENOENT);
|
|
|
|
return (nvlist_remove_nvpair(nvl, nvp));
|
|
}
|
|
|
|
int
|
|
nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
|
|
{
|
|
if (nvl == NULL || nvp == NULL)
|
|
return (EINVAL);
|
|
|
|
int err = nvt_remove_nvpair(nvl, nvp);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
nvp_buf_unlink(nvl, nvp);
|
|
nvpair_free(nvp);
|
|
nvp_buf_free(nvl, nvp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function calculates the size of an nvpair value.
|
|
*
|
|
* The data argument controls the behavior in case of the data types
|
|
* DATA_TYPE_STRING and
|
|
* DATA_TYPE_STRING_ARRAY
|
|
* Is data == NULL then the size of the string(s) is excluded.
|
|
*/
|
|
static int
|
|
i_get_value_size(data_type_t type, const void *data, uint_t nelem)
|
|
{
|
|
uint64_t value_sz;
|
|
|
|
if (i_validate_type_nelem(type, nelem) != 0)
|
|
return (-1);
|
|
|
|
/* Calculate required size for holding value */
|
|
switch (type) {
|
|
case DATA_TYPE_BOOLEAN:
|
|
value_sz = 0;
|
|
break;
|
|
case DATA_TYPE_BOOLEAN_VALUE:
|
|
value_sz = sizeof (boolean_t);
|
|
break;
|
|
case DATA_TYPE_BYTE:
|
|
value_sz = sizeof (uchar_t);
|
|
break;
|
|
case DATA_TYPE_INT8:
|
|
value_sz = sizeof (int8_t);
|
|
break;
|
|
case DATA_TYPE_UINT8:
|
|
value_sz = sizeof (uint8_t);
|
|
break;
|
|
case DATA_TYPE_INT16:
|
|
value_sz = sizeof (int16_t);
|
|
break;
|
|
case DATA_TYPE_UINT16:
|
|
value_sz = sizeof (uint16_t);
|
|
break;
|
|
case DATA_TYPE_INT32:
|
|
value_sz = sizeof (int32_t);
|
|
break;
|
|
case DATA_TYPE_UINT32:
|
|
value_sz = sizeof (uint32_t);
|
|
break;
|
|
case DATA_TYPE_INT64:
|
|
value_sz = sizeof (int64_t);
|
|
break;
|
|
case DATA_TYPE_UINT64:
|
|
value_sz = sizeof (uint64_t);
|
|
break;
|
|
#if !defined(_KERNEL)
|
|
case DATA_TYPE_DOUBLE:
|
|
value_sz = sizeof (double);
|
|
break;
|
|
#endif
|
|
case DATA_TYPE_STRING:
|
|
if (data == NULL)
|
|
value_sz = 0;
|
|
else
|
|
value_sz = strlen(data) + 1;
|
|
break;
|
|
case DATA_TYPE_BOOLEAN_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (boolean_t);
|
|
break;
|
|
case DATA_TYPE_BYTE_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (uchar_t);
|
|
break;
|
|
case DATA_TYPE_INT8_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (int8_t);
|
|
break;
|
|
case DATA_TYPE_UINT8_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (uint8_t);
|
|
break;
|
|
case DATA_TYPE_INT16_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (int16_t);
|
|
break;
|
|
case DATA_TYPE_UINT16_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (uint16_t);
|
|
break;
|
|
case DATA_TYPE_INT32_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (int32_t);
|
|
break;
|
|
case DATA_TYPE_UINT32_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (uint32_t);
|
|
break;
|
|
case DATA_TYPE_INT64_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (int64_t);
|
|
break;
|
|
case DATA_TYPE_UINT64_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (uint64_t);
|
|
break;
|
|
case DATA_TYPE_STRING_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (uint64_t);
|
|
|
|
if (data != NULL) {
|
|
char *const *strs = data;
|
|
uint_t i;
|
|
|
|
/* no alignment requirement for strings */
|
|
for (i = 0; i < nelem; i++) {
|
|
if (strs[i] == NULL)
|
|
return (-1);
|
|
value_sz += strlen(strs[i]) + 1;
|
|
}
|
|
}
|
|
break;
|
|
case DATA_TYPE_HRTIME:
|
|
value_sz = sizeof (hrtime_t);
|
|
break;
|
|
case DATA_TYPE_NVLIST:
|
|
value_sz = NV_ALIGN(sizeof (nvlist_t));
|
|
break;
|
|
case DATA_TYPE_NVLIST_ARRAY:
|
|
value_sz = (uint64_t)nelem * sizeof (uint64_t) +
|
|
(uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
|
|
break;
|
|
default:
|
|
return (-1);
|
|
}
|
|
|
|
return (value_sz > INT32_MAX ? -1 : (int)value_sz);
|
|
}
|
|
|
|
static int
|
|
nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
|
|
{
|
|
nvpriv_t *priv;
|
|
int err;
|
|
|
|
if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
|
|
nvl->nvl_priv)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
|
|
|
|
if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
|
|
nvlist_free(emb_nvl);
|
|
emb_nvl->nvl_priv = 0;
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* nvlist_add_common - Add new <name,value> pair to nvlist
|
|
*/
|
|
static int
|
|
nvlist_add_common(nvlist_t *nvl, const char *name,
|
|
data_type_t type, uint_t nelem, const void *data)
|
|
{
|
|
nvpair_t *nvp;
|
|
uint_t i;
|
|
|
|
int nvp_sz, name_sz, value_sz;
|
|
int err = 0;
|
|
|
|
if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
|
|
return (EINVAL);
|
|
|
|
if (nelem != 0 && data == NULL)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Verify type and nelem and get the value size.
|
|
* In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
|
|
* is the size of the string(s) included.
|
|
*/
|
|
if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
|
|
return (EINVAL);
|
|
|
|
if (i_validate_nvpair_value(type, nelem, data) != 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* If we're adding an nvlist or nvlist array, ensure that we are not
|
|
* adding the input nvlist to itself, which would cause recursion,
|
|
* and ensure that no NULL nvlist pointers are present.
|
|
*/
|
|
switch (type) {
|
|
case DATA_TYPE_NVLIST:
|
|
if (data == nvl || data == NULL)
|
|
return (EINVAL);
|
|
break;
|
|
case DATA_TYPE_NVLIST_ARRAY: {
|
|
nvlist_t **onvlp = (nvlist_t **)data;
|
|
for (i = 0; i < nelem; i++) {
|
|
if (onvlp[i] == nvl || onvlp[i] == NULL)
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* calculate sizes of the nvpair elements and the nvpair itself */
|
|
name_sz = strlen(name) + 1;
|
|
if (name_sz >= 1ULL << (sizeof (nvp->nvp_name_sz) * NBBY - 1))
|
|
return (EINVAL);
|
|
|
|
nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
|
|
|
|
if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
ASSERT(nvp->nvp_size == nvp_sz);
|
|
nvp->nvp_name_sz = name_sz;
|
|
nvp->nvp_value_elem = nelem;
|
|
nvp->nvp_type = type;
|
|
memcpy(NVP_NAME(nvp), name, name_sz);
|
|
|
|
switch (type) {
|
|
case DATA_TYPE_BOOLEAN:
|
|
break;
|
|
case DATA_TYPE_STRING_ARRAY: {
|
|
char *const *strs = data;
|
|
char *buf = NVP_VALUE(nvp);
|
|
char **cstrs = (void *)buf;
|
|
|
|
/* skip pre-allocated space for pointer array */
|
|
buf += nelem * sizeof (uint64_t);
|
|
for (i = 0; i < nelem; i++) {
|
|
int slen = strlen(strs[i]) + 1;
|
|
memcpy(buf, strs[i], slen);
|
|
cstrs[i] = buf;
|
|
buf += slen;
|
|
}
|
|
break;
|
|
}
|
|
case DATA_TYPE_NVLIST: {
|
|
nvlist_t *nnvl = EMBEDDED_NVL(nvp);
|
|
nvlist_t *onvl = (nvlist_t *)data;
|
|
|
|
if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
|
|
nvp_buf_free(nvl, nvp);
|
|
return (err);
|
|
}
|
|
break;
|
|
}
|
|
case DATA_TYPE_NVLIST_ARRAY: {
|
|
nvlist_t **onvlp = (nvlist_t **)data;
|
|
nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
|
|
nvlist_t *embedded = (nvlist_t *)
|
|
((uintptr_t)nvlp + nelem * sizeof (uint64_t));
|
|
|
|
for (i = 0; i < nelem; i++) {
|
|
if ((err = nvlist_copy_embedded(nvl,
|
|
onvlp[i], embedded)) != 0) {
|
|
/*
|
|
* Free any successfully created lists
|
|
*/
|
|
nvpair_free(nvp);
|
|
nvp_buf_free(nvl, nvp);
|
|
return (err);
|
|
}
|
|
|
|
nvlp[i] = embedded++;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
memcpy(NVP_VALUE(nvp), data, value_sz);
|
|
}
|
|
|
|
/* if unique name, remove before add */
|
|
if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
|
|
(void) nvlist_remove_all(nvl, name);
|
|
else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
|
|
(void) nvlist_remove(nvl, name, type);
|
|
|
|
err = nvt_add_nvpair(nvl, nvp);
|
|
if (err != 0) {
|
|
nvpair_free(nvp);
|
|
nvp_buf_free(nvl, nvp);
|
|
return (err);
|
|
}
|
|
nvp_buf_link(nvl, nvp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
nvlist_add_boolean(nvlist_t *nvl, const char *name)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
|
|
}
|
|
|
|
int
|
|
nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
|
|
}
|
|
|
|
#if !defined(_KERNEL)
|
|
int
|
|
nvlist_add_double(nvlist_t *nvl, const char *name, double val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
|
|
const boolean_t *a, uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_byte_array(nvlist_t *nvl, const char *name, const uchar_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_int8_array(nvlist_t *nvl, const char *name, const int8_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_uint8_array(nvlist_t *nvl, const char *name, const uint8_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_int16_array(nvlist_t *nvl, const char *name, const int16_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_uint16_array(nvlist_t *nvl, const char *name, const uint16_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_int32_array(nvlist_t *nvl, const char *name, const int32_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_uint32_array(nvlist_t *nvl, const char *name, const uint32_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_int64_array(nvlist_t *nvl, const char *name, const int64_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_uint64_array(nvlist_t *nvl, const char *name, const uint64_t *a,
|
|
uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_string_array(nvlist_t *nvl, const char *name,
|
|
const char *const *a, uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_nvlist(nvlist_t *nvl, const char *name, const nvlist_t *val)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
|
|
}
|
|
|
|
int
|
|
nvlist_add_nvlist_array(nvlist_t *nvl, const char *name,
|
|
const nvlist_t * const *a, uint_t n)
|
|
{
|
|
return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
|
|
}
|
|
|
|
/* reading name-value pairs */
|
|
nvpair_t *
|
|
nvlist_next_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
|
|
{
|
|
nvpriv_t *priv;
|
|
i_nvp_t *curr;
|
|
|
|
if (nvl == NULL ||
|
|
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
|
|
return (NULL);
|
|
|
|
curr = NVPAIR2I_NVP(nvp);
|
|
|
|
/*
|
|
* Ensure that nvp is a valid nvpair on this nvlist.
|
|
* NB: nvp_curr is used only as a hint so that we don't always
|
|
* have to walk the list to determine if nvp is still on the list.
|
|
*/
|
|
if (nvp == NULL)
|
|
curr = priv->nvp_list;
|
|
else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
|
|
curr = curr->nvi_next;
|
|
else
|
|
curr = NULL;
|
|
|
|
priv->nvp_curr = curr;
|
|
|
|
return (curr != NULL ? &curr->nvi_nvp : NULL);
|
|
}
|
|
|
|
nvpair_t *
|
|
nvlist_prev_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
|
|
{
|
|
nvpriv_t *priv;
|
|
i_nvp_t *curr;
|
|
|
|
if (nvl == NULL ||
|
|
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
|
|
return (NULL);
|
|
|
|
curr = NVPAIR2I_NVP(nvp);
|
|
|
|
if (nvp == NULL)
|
|
curr = priv->nvp_last;
|
|
else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
|
|
curr = curr->nvi_prev;
|
|
else
|
|
curr = NULL;
|
|
|
|
priv->nvp_curr = curr;
|
|
|
|
return (curr != NULL ? &curr->nvi_nvp : NULL);
|
|
}
|
|
|
|
boolean_t
|
|
nvlist_empty(const nvlist_t *nvl)
|
|
{
|
|
const nvpriv_t *priv;
|
|
|
|
if (nvl == NULL ||
|
|
(priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
|
|
return (B_TRUE);
|
|
|
|
return (priv->nvp_list == NULL);
|
|
}
|
|
|
|
const char *
|
|
nvpair_name(const nvpair_t *nvp)
|
|
{
|
|
return (NVP_NAME(nvp));
|
|
}
|
|
|
|
data_type_t
|
|
nvpair_type(const nvpair_t *nvp)
|
|
{
|
|
return (NVP_TYPE(nvp));
|
|
}
|
|
|
|
int
|
|
nvpair_type_is_array(const nvpair_t *nvp)
|
|
{
|
|
data_type_t type = NVP_TYPE(nvp);
|
|
|
|
if ((type == DATA_TYPE_BYTE_ARRAY) ||
|
|
(type == DATA_TYPE_INT8_ARRAY) ||
|
|
(type == DATA_TYPE_UINT8_ARRAY) ||
|
|
(type == DATA_TYPE_INT16_ARRAY) ||
|
|
(type == DATA_TYPE_UINT16_ARRAY) ||
|
|
(type == DATA_TYPE_INT32_ARRAY) ||
|
|
(type == DATA_TYPE_UINT32_ARRAY) ||
|
|
(type == DATA_TYPE_INT64_ARRAY) ||
|
|
(type == DATA_TYPE_UINT64_ARRAY) ||
|
|
(type == DATA_TYPE_BOOLEAN_ARRAY) ||
|
|
(type == DATA_TYPE_STRING_ARRAY) ||
|
|
(type == DATA_TYPE_NVLIST_ARRAY))
|
|
return (1);
|
|
return (0);
|
|
|
|
}
|
|
|
|
static int
|
|
nvpair_value_common(const nvpair_t *nvp, data_type_t type, uint_t *nelem,
|
|
void *data)
|
|
{
|
|
int value_sz;
|
|
|
|
if (nvp == NULL || nvpair_type(nvp) != type)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* For non-array types, we copy the data.
|
|
* For array types (including string), we set a pointer.
|
|
*/
|
|
switch (type) {
|
|
case DATA_TYPE_BOOLEAN:
|
|
if (nelem != NULL)
|
|
*nelem = 0;
|
|
break;
|
|
|
|
case DATA_TYPE_BOOLEAN_VALUE:
|
|
case DATA_TYPE_BYTE:
|
|
case DATA_TYPE_INT8:
|
|
case DATA_TYPE_UINT8:
|
|
case DATA_TYPE_INT16:
|
|
case DATA_TYPE_UINT16:
|
|
case DATA_TYPE_INT32:
|
|
case DATA_TYPE_UINT32:
|
|
case DATA_TYPE_INT64:
|
|
case DATA_TYPE_UINT64:
|
|
case DATA_TYPE_HRTIME:
|
|
#if !defined(_KERNEL)
|
|
case DATA_TYPE_DOUBLE:
|
|
#endif
|
|
if (data == NULL)
|
|
return (EINVAL);
|
|
if ((value_sz = i_get_value_size(type, NULL, 1)) < 0)
|
|
return (EINVAL);
|
|
memcpy(data, NVP_VALUE(nvp), (size_t)value_sz);
|
|
if (nelem != NULL)
|
|
*nelem = 1;
|
|
break;
|
|
|
|
case DATA_TYPE_NVLIST:
|
|
case DATA_TYPE_STRING:
|
|
if (data == NULL)
|
|
return (EINVAL);
|
|
/*
|
|
* This discards the const from nvp, so all callers for these
|
|
* types must not accept const nvpairs.
|
|
*/
|
|
*(void **)data = (void *)NVP_VALUE(nvp);
|
|
if (nelem != NULL)
|
|
*nelem = 1;
|
|
break;
|
|
|
|
case DATA_TYPE_BOOLEAN_ARRAY:
|
|
case DATA_TYPE_BYTE_ARRAY:
|
|
case DATA_TYPE_INT8_ARRAY:
|
|
case DATA_TYPE_UINT8_ARRAY:
|
|
case DATA_TYPE_INT16_ARRAY:
|
|
case DATA_TYPE_UINT16_ARRAY:
|
|
case DATA_TYPE_INT32_ARRAY:
|
|
case DATA_TYPE_UINT32_ARRAY:
|
|
case DATA_TYPE_INT64_ARRAY:
|
|
case DATA_TYPE_UINT64_ARRAY:
|
|
case DATA_TYPE_STRING_ARRAY:
|
|
case DATA_TYPE_NVLIST_ARRAY:
|
|
if (nelem == NULL || data == NULL)
|
|
return (EINVAL);
|
|
/*
|
|
* This discards the const from nvp, so all callers for these
|
|
* types must not accept const nvpairs.
|
|
*/
|
|
if ((*nelem = NVP_NELEM(nvp)) != 0)
|
|
*(void **)data = (void *)NVP_VALUE(nvp);
|
|
else
|
|
*(void **)data = NULL;
|
|
break;
|
|
|
|
default:
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvlist_lookup_common(const nvlist_t *nvl, const char *name, data_type_t type,
|
|
uint_t *nelem, void *data)
|
|
{
|
|
if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
|
|
return (EINVAL);
|
|
|
|
if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
|
|
return (ENOTSUP);
|
|
|
|
nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
|
|
if (nvp == NULL)
|
|
return (ENOENT);
|
|
|
|
return (nvpair_value_common(nvp, type, nelem, data));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_boolean(const nvlist_t *nvl, const char *name)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_boolean_value(const nvlist_t *nvl, const char *name,
|
|
boolean_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name,
|
|
DATA_TYPE_BOOLEAN_VALUE, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_byte(const nvlist_t *nvl, const char *name, uchar_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_int8(const nvlist_t *nvl, const char *name, int8_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_uint8(const nvlist_t *nvl, const char *name, uint8_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_int16(const nvlist_t *nvl, const char *name, int16_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_uint16(const nvlist_t *nvl, const char *name, uint16_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_int32(const nvlist_t *nvl, const char *name, int32_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_uint32(const nvlist_t *nvl, const char *name, uint32_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_int64(const nvlist_t *nvl, const char *name, int64_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_uint64(const nvlist_t *nvl, const char *name, uint64_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
|
|
}
|
|
|
|
#if !defined(_KERNEL)
|
|
int
|
|
nvlist_lookup_double(const nvlist_t *nvl, const char *name, double *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
nvlist_lookup_string(const nvlist_t *nvl, const char *name, const char **val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
|
|
boolean_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name,
|
|
DATA_TYPE_BOOLEAN_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
|
|
uchar_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
|
|
uint8_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
|
|
int16_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
|
|
uint16_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
|
|
int32_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
|
|
uint32_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
|
|
int64_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
|
|
uint64_t **a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
|
|
char ***a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
|
|
nvlist_t ***a, uint_t *n)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
|
|
{
|
|
return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
|
|
{
|
|
va_list ap;
|
|
char *name;
|
|
int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
|
|
int ret = 0;
|
|
|
|
va_start(ap, flag);
|
|
while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
|
|
data_type_t type;
|
|
void *val;
|
|
uint_t *nelem;
|
|
|
|
switch (type = va_arg(ap, data_type_t)) {
|
|
case DATA_TYPE_BOOLEAN:
|
|
ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
|
|
break;
|
|
|
|
case DATA_TYPE_BOOLEAN_VALUE:
|
|
case DATA_TYPE_BYTE:
|
|
case DATA_TYPE_INT8:
|
|
case DATA_TYPE_UINT8:
|
|
case DATA_TYPE_INT16:
|
|
case DATA_TYPE_UINT16:
|
|
case DATA_TYPE_INT32:
|
|
case DATA_TYPE_UINT32:
|
|
case DATA_TYPE_INT64:
|
|
case DATA_TYPE_UINT64:
|
|
case DATA_TYPE_HRTIME:
|
|
case DATA_TYPE_STRING:
|
|
case DATA_TYPE_NVLIST:
|
|
#if !defined(_KERNEL)
|
|
case DATA_TYPE_DOUBLE:
|
|
#endif
|
|
val = va_arg(ap, void *);
|
|
ret = nvlist_lookup_common(nvl, name, type, NULL, val);
|
|
break;
|
|
|
|
case DATA_TYPE_BYTE_ARRAY:
|
|
case DATA_TYPE_BOOLEAN_ARRAY:
|
|
case DATA_TYPE_INT8_ARRAY:
|
|
case DATA_TYPE_UINT8_ARRAY:
|
|
case DATA_TYPE_INT16_ARRAY:
|
|
case DATA_TYPE_UINT16_ARRAY:
|
|
case DATA_TYPE_INT32_ARRAY:
|
|
case DATA_TYPE_UINT32_ARRAY:
|
|
case DATA_TYPE_INT64_ARRAY:
|
|
case DATA_TYPE_UINT64_ARRAY:
|
|
case DATA_TYPE_STRING_ARRAY:
|
|
case DATA_TYPE_NVLIST_ARRAY:
|
|
val = va_arg(ap, void *);
|
|
nelem = va_arg(ap, uint_t *);
|
|
ret = nvlist_lookup_common(nvl, name, type, nelem, val);
|
|
break;
|
|
|
|
default:
|
|
ret = EINVAL;
|
|
}
|
|
|
|
if (ret == ENOENT && noentok)
|
|
ret = 0;
|
|
}
|
|
va_end(ap);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
|
|
* returns zero and a pointer to the matching nvpair is returned in '*ret'
|
|
* (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
|
|
* multiple levels of embedded nvlists, with 'sep' as the separator. As an
|
|
* example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
|
|
* "a.d[3].e[1]". This matches the C syntax for array embed (for convenience,
|
|
* code also supports "a.d[3]e[1]" syntax).
|
|
*
|
|
* If 'ip' is non-NULL and the last name component is an array, return the
|
|
* value of the "...[index]" array index in *ip. For an array reference that
|
|
* is not indexed, *ip will be returned as -1. If there is a syntax error in
|
|
* 'name', and 'ep' is non-NULL then *ep will be set to point to the location
|
|
* inside the 'name' string where the syntax error was detected.
|
|
*/
|
|
static int
|
|
nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
|
|
nvpair_t **ret, int *ip, const char **ep)
|
|
{
|
|
nvpair_t *nvp;
|
|
const char *np;
|
|
char *sepp = NULL;
|
|
char *idxp, *idxep;
|
|
nvlist_t **nva;
|
|
long idx = 0;
|
|
int n;
|
|
|
|
if (ip)
|
|
*ip = -1; /* not indexed */
|
|
if (ep)
|
|
*ep = NULL;
|
|
|
|
if ((nvl == NULL) || (name == NULL))
|
|
return (EINVAL);
|
|
|
|
sepp = NULL;
|
|
idx = 0;
|
|
/* step through components of name */
|
|
for (np = name; np && *np; np = sepp) {
|
|
/* ensure unique names */
|
|
if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
|
|
return (ENOTSUP);
|
|
|
|
/* skip white space */
|
|
skip_whitespace(np);
|
|
if (*np == 0)
|
|
break;
|
|
|
|
/* set 'sepp' to end of current component 'np' */
|
|
if (sep)
|
|
sepp = strchr(np, sep);
|
|
else
|
|
sepp = NULL;
|
|
|
|
/* find start of next "[ index ]..." */
|
|
idxp = strchr(np, '[');
|
|
|
|
/* if sepp comes first, set idxp to NULL */
|
|
if (sepp && idxp && (sepp < idxp))
|
|
idxp = NULL;
|
|
|
|
/*
|
|
* At this point 'idxp' is set if there is an index
|
|
* expected for the current component.
|
|
*/
|
|
if (idxp) {
|
|
/* set 'n' to length of current 'np' name component */
|
|
n = idxp++ - np;
|
|
|
|
/* keep sepp up to date for *ep use as we advance */
|
|
skip_whitespace(idxp);
|
|
sepp = idxp;
|
|
|
|
/* determine the index value */
|
|
#if defined(_KERNEL)
|
|
if (ddi_strtol(idxp, &idxep, 0, &idx))
|
|
goto fail;
|
|
#else
|
|
idx = strtol(idxp, &idxep, 0);
|
|
#endif
|
|
if (idxep == idxp)
|
|
goto fail;
|
|
|
|
/* keep sepp up to date for *ep use as we advance */
|
|
sepp = idxep;
|
|
|
|
/* skip white space index value and check for ']' */
|
|
skip_whitespace(sepp);
|
|
if (*sepp++ != ']')
|
|
goto fail;
|
|
|
|
/* for embedded arrays, support C syntax: "a[1].b" */
|
|
skip_whitespace(sepp);
|
|
if (sep && (*sepp == sep))
|
|
sepp++;
|
|
} else if (sepp) {
|
|
n = sepp++ - np;
|
|
} else {
|
|
n = strlen(np);
|
|
}
|
|
|
|
/* trim trailing whitespace by reducing length of 'np' */
|
|
if (n == 0)
|
|
goto fail;
|
|
for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
|
|
;
|
|
n++;
|
|
|
|
/* skip whitespace, and set sepp to NULL if complete */
|
|
if (sepp) {
|
|
skip_whitespace(sepp);
|
|
if (*sepp == 0)
|
|
sepp = NULL;
|
|
}
|
|
|
|
/*
|
|
* At this point:
|
|
* o 'n' is the length of current 'np' component.
|
|
* o 'idxp' is set if there was an index, and value 'idx'.
|
|
* o 'sepp' is set to the beginning of the next component,
|
|
* and set to NULL if we have no more components.
|
|
*
|
|
* Search for nvpair with matching component name.
|
|
*/
|
|
for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
|
|
nvp = nvlist_next_nvpair(nvl, nvp)) {
|
|
|
|
/* continue if no match on name */
|
|
if (strncmp(np, nvpair_name(nvp), n) ||
|
|
(strlen(nvpair_name(nvp)) != n))
|
|
continue;
|
|
|
|
/* if indexed, verify type is array oriented */
|
|
if (idxp && !nvpair_type_is_array(nvp))
|
|
goto fail;
|
|
|
|
/*
|
|
* Full match found, return nvp and idx if this
|
|
* was the last component.
|
|
*/
|
|
if (sepp == NULL) {
|
|
if (ret)
|
|
*ret = nvp;
|
|
if (ip && idxp)
|
|
*ip = (int)idx; /* return index */
|
|
return (0); /* found */
|
|
}
|
|
|
|
/*
|
|
* More components: current match must be
|
|
* of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
|
|
* to support going deeper.
|
|
*/
|
|
if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
|
|
nvl = EMBEDDED_NVL(nvp);
|
|
break;
|
|
} else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
|
|
if (nvpair_value_nvlist_array(nvp,
|
|
&nva, (uint_t *)&n) != 0)
|
|
goto fail;
|
|
if (nva == NULL)
|
|
goto fail;
|
|
if ((n < 0) || (idx >= n))
|
|
goto fail;
|
|
nvl = nva[idx];
|
|
break;
|
|
}
|
|
|
|
/* type does not support more levels */
|
|
goto fail;
|
|
}
|
|
if (nvp == NULL)
|
|
goto fail; /* 'name' not found */
|
|
|
|
/* search for match of next component in embedded 'nvl' list */
|
|
}
|
|
|
|
fail: if (ep && sepp)
|
|
*ep = sepp;
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Return pointer to nvpair with specified 'name'.
|
|
*/
|
|
int
|
|
nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
|
|
{
|
|
return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
|
|
}
|
|
|
|
/*
|
|
* Determine if named nvpair exists in nvlist (use embedded separator of '.'
|
|
* and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed
|
|
* description.
|
|
*/
|
|
int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
|
|
const char *name, nvpair_t **ret, int *ip, const char **ep)
|
|
{
|
|
return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
|
|
}
|
|
|
|
boolean_t
|
|
nvlist_exists(const nvlist_t *nvl, const char *name)
|
|
{
|
|
nvpriv_t *priv;
|
|
nvpair_t *nvp;
|
|
i_nvp_t *curr;
|
|
|
|
if (name == NULL || nvl == NULL ||
|
|
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
|
|
return (B_FALSE);
|
|
|
|
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
|
|
nvp = &curr->nvi_nvp;
|
|
|
|
if (strcmp(name, NVP_NAME(nvp)) == 0)
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
int
|
|
nvpair_value_boolean_value(const nvpair_t *nvp, boolean_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_byte(const nvpair_t *nvp, uchar_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_int8(const nvpair_t *nvp, int8_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_uint8(const nvpair_t *nvp, uint8_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_int16(const nvpair_t *nvp, int16_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_uint16(const nvpair_t *nvp, uint16_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_int32(const nvpair_t *nvp, int32_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_uint32(const nvpair_t *nvp, uint32_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_int64(const nvpair_t *nvp, int64_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_uint64(const nvpair_t *nvp, uint64_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
|
|
}
|
|
|
|
#if !defined(_KERNEL)
|
|
int
|
|
nvpair_value_double(const nvpair_t *nvp, double *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
nvpair_value_string(const nvpair_t *nvp, const char **val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_string_array(nvpair_t *nvp, const char ***val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
|
|
}
|
|
|
|
int
|
|
nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
|
|
{
|
|
return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
|
|
}
|
|
|
|
/*
|
|
* Add specified pair to the list.
|
|
*/
|
|
int
|
|
nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
|
|
{
|
|
if (nvl == NULL || nvp == NULL)
|
|
return (EINVAL);
|
|
|
|
return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
|
|
NVP_NELEM(nvp), NVP_VALUE(nvp)));
|
|
}
|
|
|
|
/*
|
|
* Merge the supplied nvlists and put the result in dst.
|
|
* The merged list will contain all names specified in both lists,
|
|
* the values are taken from nvl in the case of duplicates.
|
|
* Return 0 on success.
|
|
*/
|
|
int
|
|
nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
|
|
{
|
|
(void) flag;
|
|
|
|
if (nvl == NULL || dst == NULL)
|
|
return (EINVAL);
|
|
|
|
if (dst != nvl)
|
|
return (nvlist_copy_pairs(nvl, dst));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Encoding related routines
|
|
*/
|
|
#define NVS_OP_ENCODE 0
|
|
#define NVS_OP_DECODE 1
|
|
#define NVS_OP_GETSIZE 2
|
|
|
|
typedef struct nvs_ops nvs_ops_t;
|
|
|
|
typedef struct {
|
|
int nvs_op;
|
|
const nvs_ops_t *nvs_ops;
|
|
void *nvs_private;
|
|
nvpriv_t *nvs_priv;
|
|
int nvs_recursion;
|
|
} nvstream_t;
|
|
|
|
/*
|
|
* nvs operations are:
|
|
* - nvs_nvlist
|
|
* encoding / decoding of an nvlist header (nvlist_t)
|
|
* calculates the size used for header and end detection
|
|
*
|
|
* - nvs_nvpair
|
|
* responsible for the first part of encoding / decoding of an nvpair
|
|
* calculates the decoded size of an nvpair
|
|
*
|
|
* - nvs_nvp_op
|
|
* second part of encoding / decoding of an nvpair
|
|
*
|
|
* - nvs_nvp_size
|
|
* calculates the encoding size of an nvpair
|
|
*
|
|
* - nvs_nvl_fini
|
|
* encodes the end detection mark (zeros).
|
|
*/
|
|
struct nvs_ops {
|
|
int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
|
|
int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
|
|
int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
|
|
int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
|
|
int (*nvs_nvl_fini)(nvstream_t *);
|
|
};
|
|
|
|
typedef struct {
|
|
char nvh_encoding; /* nvs encoding method */
|
|
char nvh_endian; /* nvs endian */
|
|
char nvh_reserved1; /* reserved for future use */
|
|
char nvh_reserved2; /* reserved for future use */
|
|
} nvs_header_t;
|
|
|
|
static int
|
|
nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
|
|
{
|
|
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
i_nvp_t *curr;
|
|
|
|
/*
|
|
* Walk nvpair in list and encode each nvpair
|
|
*/
|
|
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
|
|
if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
|
|
return (EFAULT);
|
|
|
|
return (nvs->nvs_ops->nvs_nvl_fini(nvs));
|
|
}
|
|
|
|
static int
|
|
nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
|
|
{
|
|
nvpair_t *nvp;
|
|
size_t nvsize;
|
|
int err;
|
|
|
|
/*
|
|
* Get decoded size of next pair in stream, alloc
|
|
* memory for nvpair_t, then decode the nvpair
|
|
*/
|
|
while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
|
|
if (nvsize == 0) /* end of list */
|
|
break;
|
|
|
|
/* make sure len makes sense */
|
|
if (nvsize < NVP_SIZE_CALC(1, 0))
|
|
return (EFAULT);
|
|
|
|
if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
|
|
nvp_buf_free(nvl, nvp);
|
|
return (err);
|
|
}
|
|
|
|
if (i_validate_nvpair(nvp) != 0) {
|
|
nvpair_free(nvp);
|
|
nvp_buf_free(nvl, nvp);
|
|
return (EFAULT);
|
|
}
|
|
|
|
err = nvt_add_nvpair(nvl, nvp);
|
|
if (err != 0) {
|
|
nvpair_free(nvp);
|
|
nvp_buf_free(nvl, nvp);
|
|
return (err);
|
|
}
|
|
nvp_buf_link(nvl, nvp);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
|
|
{
|
|
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
|
|
i_nvp_t *curr;
|
|
uint64_t nvsize = *buflen;
|
|
size_t size;
|
|
|
|
/*
|
|
* Get encoded size of nvpairs in nvlist
|
|
*/
|
|
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
|
|
if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
|
|
return (EINVAL);
|
|
|
|
if ((nvsize += size) > INT32_MAX)
|
|
return (EINVAL);
|
|
}
|
|
|
|
*buflen = nvsize;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
|
|
{
|
|
int err;
|
|
|
|
if (nvl->nvl_priv == 0)
|
|
return (EFAULT);
|
|
|
|
/*
|
|
* Perform the operation, starting with header, then each nvpair
|
|
*/
|
|
if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
|
|
return (err);
|
|
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
err = nvs_encode_pairs(nvs, nvl);
|
|
break;
|
|
|
|
case NVS_OP_DECODE:
|
|
err = nvs_decode_pairs(nvs, nvl);
|
|
break;
|
|
|
|
case NVS_OP_GETSIZE:
|
|
err = nvs_getsize_pairs(nvs, nvl, buflen);
|
|
break;
|
|
|
|
default:
|
|
err = EINVAL;
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
|
|
{
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE: {
|
|
int err;
|
|
|
|
if (nvs->nvs_recursion >= nvpair_max_recursion)
|
|
return (EINVAL);
|
|
nvs->nvs_recursion++;
|
|
err = nvs_operation(nvs, embedded, NULL);
|
|
nvs->nvs_recursion--;
|
|
return (err);
|
|
}
|
|
case NVS_OP_DECODE: {
|
|
nvpriv_t *priv;
|
|
int err;
|
|
|
|
if (embedded->nvl_version != NV_VERSION)
|
|
return (ENOTSUP);
|
|
|
|
if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
nvlist_init(embedded, embedded->nvl_nvflag, priv);
|
|
|
|
if (nvs->nvs_recursion >= nvpair_max_recursion) {
|
|
nvlist_free(embedded);
|
|
return (EINVAL);
|
|
}
|
|
nvs->nvs_recursion++;
|
|
if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
|
|
nvlist_free(embedded);
|
|
nvs->nvs_recursion--;
|
|
return (err);
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
|
|
{
|
|
size_t nelem = NVP_NELEM(nvp);
|
|
nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
|
|
int i;
|
|
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
for (i = 0; i < nelem; i++)
|
|
if (nvs_embedded(nvs, nvlp[i]) != 0)
|
|
return (EFAULT);
|
|
break;
|
|
|
|
case NVS_OP_DECODE: {
|
|
size_t len = nelem * sizeof (uint64_t);
|
|
nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
|
|
|
|
memset(nvlp, 0, len); /* don't trust packed data */
|
|
for (i = 0; i < nelem; i++) {
|
|
if (nvs_embedded(nvs, embedded) != 0) {
|
|
nvpair_free(nvp);
|
|
return (EFAULT);
|
|
}
|
|
|
|
nvlp[i] = embedded++;
|
|
}
|
|
break;
|
|
}
|
|
case NVS_OP_GETSIZE: {
|
|
uint64_t nvsize = 0;
|
|
|
|
for (i = 0; i < nelem; i++) {
|
|
size_t nvp_sz = 0;
|
|
|
|
if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
|
|
return (EINVAL);
|
|
|
|
if ((nvsize += nvp_sz) > INT32_MAX)
|
|
return (EINVAL);
|
|
}
|
|
|
|
*size = nvsize;
|
|
break;
|
|
}
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
|
|
static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
|
|
|
|
/*
|
|
* Common routine for nvlist operations:
|
|
* encode, decode, getsize (encoded size).
|
|
*/
|
|
static int
|
|
nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
|
|
int nvs_op)
|
|
{
|
|
int err = 0;
|
|
nvstream_t nvs;
|
|
int nvl_endian;
|
|
#if defined(_ZFS_LITTLE_ENDIAN)
|
|
int host_endian = 1;
|
|
#elif defined(_ZFS_BIG_ENDIAN)
|
|
int host_endian = 0;
|
|
#else
|
|
#error "No endian defined!"
|
|
#endif /* _ZFS_LITTLE_ENDIAN */
|
|
nvs_header_t *nvh;
|
|
|
|
if (buflen == NULL || nvl == NULL ||
|
|
(nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
|
|
return (EINVAL);
|
|
|
|
nvs.nvs_op = nvs_op;
|
|
nvs.nvs_recursion = 0;
|
|
|
|
/*
|
|
* For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
|
|
* a buffer is allocated. The first 4 bytes in the buffer are
|
|
* used for encoding method and host endian.
|
|
*/
|
|
switch (nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
if (buf == NULL || *buflen < sizeof (nvs_header_t))
|
|
return (EINVAL);
|
|
|
|
nvh = (void *)buf;
|
|
nvh->nvh_encoding = encoding;
|
|
nvh->nvh_endian = nvl_endian = host_endian;
|
|
nvh->nvh_reserved1 = 0;
|
|
nvh->nvh_reserved2 = 0;
|
|
break;
|
|
|
|
case NVS_OP_DECODE:
|
|
if (buf == NULL || *buflen < sizeof (nvs_header_t))
|
|
return (EINVAL);
|
|
|
|
/* get method of encoding from first byte */
|
|
nvh = (void *)buf;
|
|
encoding = nvh->nvh_encoding;
|
|
nvl_endian = nvh->nvh_endian;
|
|
break;
|
|
|
|
case NVS_OP_GETSIZE:
|
|
nvl_endian = host_endian;
|
|
|
|
/*
|
|
* add the size for encoding
|
|
*/
|
|
*buflen = sizeof (nvs_header_t);
|
|
break;
|
|
|
|
default:
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
/*
|
|
* Create an nvstream with proper encoding method
|
|
*/
|
|
switch (encoding) {
|
|
case NV_ENCODE_NATIVE:
|
|
/*
|
|
* check endianness, in case we are unpacking
|
|
* from a file
|
|
*/
|
|
if (nvl_endian != host_endian)
|
|
return (ENOTSUP);
|
|
err = nvs_native(&nvs, nvl, buf, buflen);
|
|
break;
|
|
case NV_ENCODE_XDR:
|
|
err = nvs_xdr(&nvs, nvl, buf, buflen);
|
|
break;
|
|
default:
|
|
err = ENOTSUP;
|
|
break;
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
|
|
{
|
|
return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
|
|
}
|
|
|
|
/*
|
|
* Pack nvlist into contiguous memory
|
|
*/
|
|
int
|
|
nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
|
|
int kmflag)
|
|
{
|
|
return (nvlist_xpack(nvl, bufp, buflen, encoding,
|
|
nvlist_nv_alloc(kmflag)));
|
|
}
|
|
|
|
int
|
|
nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
|
|
nv_alloc_t *nva)
|
|
{
|
|
nvpriv_t nvpriv;
|
|
size_t alloc_size;
|
|
char *buf;
|
|
int err;
|
|
|
|
if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
|
|
return (EINVAL);
|
|
|
|
if (*bufp != NULL)
|
|
return (nvlist_common(nvl, *bufp, buflen, encoding,
|
|
NVS_OP_ENCODE));
|
|
|
|
/*
|
|
* Here is a difficult situation:
|
|
* 1. The nvlist has fixed allocator properties.
|
|
* All other nvlist routines (like nvlist_add_*, ...) use
|
|
* these properties.
|
|
* 2. When using nvlist_pack() the user can specify their own
|
|
* allocator properties (e.g. by using KM_NOSLEEP).
|
|
*
|
|
* We use the user specified properties (2). A clearer solution
|
|
* will be to remove the kmflag from nvlist_pack(), but we will
|
|
* not change the interface.
|
|
*/
|
|
nv_priv_init(&nvpriv, nva, 0);
|
|
|
|
if ((err = nvlist_size(nvl, &alloc_size, encoding)))
|
|
return (err);
|
|
|
|
if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
|
|
NVS_OP_ENCODE)) != 0) {
|
|
nv_mem_free(&nvpriv, buf, alloc_size);
|
|
} else {
|
|
*buflen = alloc_size;
|
|
*bufp = buf;
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Unpack buf into an nvlist_t
|
|
*/
|
|
int
|
|
nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
|
|
{
|
|
return (nvlist_xunpack(buf, buflen, nvlp, nvlist_nv_alloc(kmflag)));
|
|
}
|
|
|
|
int
|
|
nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
|
|
{
|
|
nvlist_t *nvl;
|
|
int err;
|
|
|
|
if (nvlp == NULL)
|
|
return (EINVAL);
|
|
|
|
if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
|
|
return (err);
|
|
|
|
if ((err = nvlist_common(nvl, buf, &buflen, NV_ENCODE_NATIVE,
|
|
NVS_OP_DECODE)) != 0)
|
|
nvlist_free(nvl);
|
|
else
|
|
*nvlp = nvl;
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Native encoding functions
|
|
*/
|
|
typedef struct {
|
|
/*
|
|
* This structure is used when decoding a packed nvpair in
|
|
* the native format. n_base points to a buffer containing the
|
|
* packed nvpair. n_end is a pointer to the end of the buffer.
|
|
* (n_end actually points to the first byte past the end of the
|
|
* buffer.) n_curr is a pointer that lies between n_base and n_end.
|
|
* It points to the current data that we are decoding.
|
|
* The amount of data left in the buffer is equal to n_end - n_curr.
|
|
* n_flag is used to recognize a packed embedded list.
|
|
*/
|
|
caddr_t n_base;
|
|
caddr_t n_end;
|
|
caddr_t n_curr;
|
|
uint_t n_flag;
|
|
} nvs_native_t;
|
|
|
|
static int
|
|
nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
|
|
size_t buflen)
|
|
{
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
case NVS_OP_DECODE:
|
|
nvs->nvs_private = native;
|
|
native->n_curr = native->n_base = buf;
|
|
native->n_end = buf + buflen;
|
|
native->n_flag = 0;
|
|
return (0);
|
|
|
|
case NVS_OP_GETSIZE:
|
|
nvs->nvs_private = native;
|
|
native->n_curr = native->n_base = native->n_end = NULL;
|
|
native->n_flag = 0;
|
|
return (0);
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvs_native_destroy(nvstream_t *nvs)
|
|
{
|
|
nvs->nvs_private = NULL;
|
|
}
|
|
|
|
static int
|
|
native_cp(nvstream_t *nvs, void *buf, size_t size)
|
|
{
|
|
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
|
|
|
|
if (native->n_curr + size > native->n_end)
|
|
return (EFAULT);
|
|
|
|
/*
|
|
* The memcpy() below eliminates alignment requirement
|
|
* on the buffer (stream) and is preferred over direct access.
|
|
*/
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
memcpy(native->n_curr, buf, size);
|
|
break;
|
|
case NVS_OP_DECODE:
|
|
memcpy(buf, native->n_curr, size);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
native->n_curr += size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* operate on nvlist_t header
|
|
*/
|
|
static int
|
|
nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
|
|
{
|
|
nvs_native_t *native = nvs->nvs_private;
|
|
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
case NVS_OP_DECODE:
|
|
if (native->n_flag)
|
|
return (0); /* packed embedded list */
|
|
|
|
native->n_flag = 1;
|
|
|
|
/* copy version and nvflag of the nvlist_t */
|
|
if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
|
|
native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
|
|
return (EFAULT);
|
|
|
|
return (0);
|
|
|
|
case NVS_OP_GETSIZE:
|
|
/*
|
|
* if calculate for packed embedded list
|
|
* 4 for end of the embedded list
|
|
* else
|
|
* 2 * sizeof (int32_t) for nvl_version and nvl_nvflag
|
|
* and 4 for end of the entire list
|
|
*/
|
|
if (native->n_flag) {
|
|
*size += 4;
|
|
} else {
|
|
native->n_flag = 1;
|
|
*size += 2 * sizeof (int32_t) + 4;
|
|
}
|
|
|
|
return (0);
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvs_native_nvl_fini(nvstream_t *nvs)
|
|
{
|
|
if (nvs->nvs_op == NVS_OP_ENCODE) {
|
|
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
|
|
/*
|
|
* Add 4 zero bytes at end of nvlist. They are used
|
|
* for end detection by the decode routine.
|
|
*/
|
|
if (native->n_curr + sizeof (int) > native->n_end)
|
|
return (EFAULT);
|
|
|
|
memset(native->n_curr, 0, sizeof (int));
|
|
native->n_curr += sizeof (int);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
|
|
{
|
|
if (nvs->nvs_op == NVS_OP_ENCODE) {
|
|
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
|
|
nvlist_t *packed = (void *)
|
|
(native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
|
|
/*
|
|
* Null out the pointer that is meaningless in the packed
|
|
* structure. The address may not be aligned, so we have
|
|
* to use memset.
|
|
*/
|
|
memset((char *)packed + offsetof(nvlist_t, nvl_priv),
|
|
0, sizeof (uint64_t));
|
|
}
|
|
|
|
return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
|
|
}
|
|
|
|
static int
|
|
nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
|
|
{
|
|
if (nvs->nvs_op == NVS_OP_ENCODE) {
|
|
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
|
|
char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
|
|
size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
|
|
nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
|
|
int i;
|
|
/*
|
|
* Null out pointers that are meaningless in the packed
|
|
* structure. The addresses may not be aligned, so we have
|
|
* to use memset.
|
|
*/
|
|
memset(value, 0, len);
|
|
|
|
for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
|
|
/*
|
|
* Null out the pointer that is meaningless in the
|
|
* packed structure. The address may not be aligned,
|
|
* so we have to use memset.
|
|
*/
|
|
memset((char *)packed + offsetof(nvlist_t, nvl_priv),
|
|
0, sizeof (uint64_t));
|
|
}
|
|
|
|
return (nvs_embedded_nvl_array(nvs, nvp, NULL));
|
|
}
|
|
|
|
static void
|
|
nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
|
|
{
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE: {
|
|
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
|
|
uint64_t *strp = (void *)
|
|
(native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
|
|
/*
|
|
* Null out pointers that are meaningless in the packed
|
|
* structure. The addresses may not be aligned, so we have
|
|
* to use memset.
|
|
*/
|
|
memset(strp, 0, NVP_NELEM(nvp) * sizeof (uint64_t));
|
|
break;
|
|
}
|
|
case NVS_OP_DECODE: {
|
|
char **strp = (void *)NVP_VALUE(nvp);
|
|
char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
|
|
int i;
|
|
|
|
for (i = 0; i < NVP_NELEM(nvp); i++) {
|
|
strp[i] = buf;
|
|
buf += strlen(buf) + 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
|
|
{
|
|
data_type_t type;
|
|
int value_sz;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We do the initial memcpy of the data before we look at
|
|
* the nvpair type, because when we're decoding, we won't
|
|
* have the correct values for the pair until we do the memcpy.
|
|
*/
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
case NVS_OP_DECODE:
|
|
if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
|
|
return (EFAULT);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* verify nvp_name_sz, check the name string length */
|
|
if (i_validate_nvpair_name(nvp) != 0)
|
|
return (EFAULT);
|
|
|
|
type = NVP_TYPE(nvp);
|
|
|
|
/*
|
|
* Verify type and nelem and get the value size.
|
|
* In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
|
|
* is the size of the string(s) excluded.
|
|
*/
|
|
if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
|
|
return (EFAULT);
|
|
|
|
if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
|
|
return (EFAULT);
|
|
|
|
switch (type) {
|
|
case DATA_TYPE_NVLIST:
|
|
ret = nvpair_native_embedded(nvs, nvp);
|
|
break;
|
|
case DATA_TYPE_NVLIST_ARRAY:
|
|
ret = nvpair_native_embedded_array(nvs, nvp);
|
|
break;
|
|
case DATA_TYPE_STRING_ARRAY:
|
|
nvpair_native_string_array(nvs, nvp);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
|
|
{
|
|
uint64_t nvp_sz = nvp->nvp_size;
|
|
|
|
switch (NVP_TYPE(nvp)) {
|
|
case DATA_TYPE_NVLIST: {
|
|
size_t nvsize = 0;
|
|
|
|
if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
|
|
return (EINVAL);
|
|
|
|
nvp_sz += nvsize;
|
|
break;
|
|
}
|
|
case DATA_TYPE_NVLIST_ARRAY: {
|
|
size_t nvsize;
|
|
|
|
if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
|
|
return (EINVAL);
|
|
|
|
nvp_sz += nvsize;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (nvp_sz > INT32_MAX)
|
|
return (EINVAL);
|
|
|
|
*size = nvp_sz;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
|
|
{
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
return (nvs_native_nvp_op(nvs, nvp));
|
|
|
|
case NVS_OP_DECODE: {
|
|
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
|
|
int32_t decode_len;
|
|
|
|
/* try to read the size value from the stream */
|
|
if (native->n_curr + sizeof (int32_t) > native->n_end)
|
|
return (EFAULT);
|
|
memcpy(&decode_len, native->n_curr, sizeof (int32_t));
|
|
|
|
/* sanity check the size value */
|
|
if (decode_len < 0 ||
|
|
decode_len > native->n_end - native->n_curr)
|
|
return (EFAULT);
|
|
|
|
*size = decode_len;
|
|
|
|
/*
|
|
* If at the end of the stream then move the cursor
|
|
* forward, otherwise nvpair_native_op() will read
|
|
* the entire nvpair at the same cursor position.
|
|
*/
|
|
if (*size == 0)
|
|
native->n_curr += sizeof (int32_t);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static const nvs_ops_t nvs_native_ops = {
|
|
.nvs_nvlist = nvs_native_nvlist,
|
|
.nvs_nvpair = nvs_native_nvpair,
|
|
.nvs_nvp_op = nvs_native_nvp_op,
|
|
.nvs_nvp_size = nvs_native_nvp_size,
|
|
.nvs_nvl_fini = nvs_native_nvl_fini
|
|
};
|
|
|
|
static int
|
|
nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
|
|
{
|
|
nvs_native_t native;
|
|
int err;
|
|
|
|
nvs->nvs_ops = &nvs_native_ops;
|
|
|
|
if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
|
|
*buflen - sizeof (nvs_header_t))) != 0)
|
|
return (err);
|
|
|
|
err = nvs_operation(nvs, nvl, buflen);
|
|
|
|
nvs_native_destroy(nvs);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* XDR encoding functions
|
|
*
|
|
* An xdr packed nvlist is encoded as:
|
|
*
|
|
* - encoding method and host endian (4 bytes)
|
|
* - nvl_version (4 bytes)
|
|
* - nvl_nvflag (4 bytes)
|
|
*
|
|
* - encoded nvpairs, the format of one xdr encoded nvpair is:
|
|
* - encoded size of the nvpair (4 bytes)
|
|
* - decoded size of the nvpair (4 bytes)
|
|
* - name string, (4 + sizeof(NV_ALIGN4(string))
|
|
* a string is coded as size (4 bytes) and data
|
|
* - data type (4 bytes)
|
|
* - number of elements in the nvpair (4 bytes)
|
|
* - data
|
|
*
|
|
* - 2 zero's for end of the entire list (8 bytes)
|
|
*/
|
|
static int
|
|
nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
|
|
{
|
|
/* xdr data must be 4 byte aligned */
|
|
if ((ulong_t)buf % 4 != 0)
|
|
return (EFAULT);
|
|
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
|
|
nvs->nvs_private = xdr;
|
|
return (0);
|
|
case NVS_OP_DECODE:
|
|
xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
|
|
nvs->nvs_private = xdr;
|
|
return (0);
|
|
case NVS_OP_GETSIZE:
|
|
nvs->nvs_private = NULL;
|
|
return (0);
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvs_xdr_destroy(nvstream_t *nvs)
|
|
{
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
case NVS_OP_DECODE:
|
|
nvs->nvs_private = NULL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
|
|
{
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE:
|
|
case NVS_OP_DECODE: {
|
|
XDR *xdr = nvs->nvs_private;
|
|
|
|
if (!xdr_int(xdr, &nvl->nvl_version) ||
|
|
!xdr_u_int(xdr, &nvl->nvl_nvflag))
|
|
return (EFAULT);
|
|
break;
|
|
}
|
|
case NVS_OP_GETSIZE: {
|
|
/*
|
|
* 2 * 4 for nvl_version + nvl_nvflag
|
|
* and 8 for end of the entire list
|
|
*/
|
|
*size += 2 * 4 + 8;
|
|
break;
|
|
}
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvs_xdr_nvl_fini(nvstream_t *nvs)
|
|
{
|
|
if (nvs->nvs_op == NVS_OP_ENCODE) {
|
|
XDR *xdr = nvs->nvs_private;
|
|
int zero = 0;
|
|
|
|
if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
|
|
return (EFAULT);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* xdrproc_t-compatible callbacks for xdr_array()
|
|
*/
|
|
|
|
#if defined(_KERNEL) && defined(__linux__) /* Linux kernel */
|
|
|
|
#define NVS_BUILD_XDRPROC_T(type) \
|
|
static bool_t \
|
|
nvs_xdr_nvp_##type(XDR *xdrs, void *ptr) \
|
|
{ \
|
|
return (xdr_##type(xdrs, ptr)); \
|
|
}
|
|
|
|
#elif !defined(_KERNEL) && defined(XDR_CONTROL) /* tirpc */
|
|
|
|
#define NVS_BUILD_XDRPROC_T(type) \
|
|
static bool_t \
|
|
nvs_xdr_nvp_##type(XDR *xdrs, ...) \
|
|
{ \
|
|
va_list args; \
|
|
void *ptr; \
|
|
\
|
|
va_start(args, xdrs); \
|
|
ptr = va_arg(args, void *); \
|
|
va_end(args); \
|
|
\
|
|
return (xdr_##type(xdrs, ptr)); \
|
|
}
|
|
|
|
#else /* FreeBSD, sunrpc */
|
|
|
|
#define NVS_BUILD_XDRPROC_T(type) \
|
|
static bool_t \
|
|
nvs_xdr_nvp_##type(XDR *xdrs, void *ptr, ...) \
|
|
{ \
|
|
return (xdr_##type(xdrs, ptr)); \
|
|
}
|
|
|
|
#endif
|
|
|
|
/* BEGIN CSTYLED */
|
|
NVS_BUILD_XDRPROC_T(char);
|
|
NVS_BUILD_XDRPROC_T(short);
|
|
NVS_BUILD_XDRPROC_T(u_short);
|
|
NVS_BUILD_XDRPROC_T(int);
|
|
NVS_BUILD_XDRPROC_T(u_int);
|
|
NVS_BUILD_XDRPROC_T(longlong_t);
|
|
NVS_BUILD_XDRPROC_T(u_longlong_t);
|
|
/* END CSTYLED */
|
|
|
|
/*
|
|
* The format of xdr encoded nvpair is:
|
|
* encode_size, decode_size, name string, data type, nelem, data
|
|
*/
|
|
static int
|
|
nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
|
|
{
|
|
ASSERT(nvs != NULL && nvp != NULL);
|
|
|
|
data_type_t type;
|
|
char *buf;
|
|
char *buf_end = (char *)nvp + nvp->nvp_size;
|
|
int value_sz;
|
|
uint_t nelem, buflen;
|
|
bool_t ret = FALSE;
|
|
XDR *xdr = nvs->nvs_private;
|
|
|
|
ASSERT(xdr != NULL);
|
|
|
|
/* name string */
|
|
if ((buf = NVP_NAME(nvp)) >= buf_end)
|
|
return (EFAULT);
|
|
buflen = buf_end - buf;
|
|
|
|
if (!xdr_string(xdr, &buf, buflen - 1))
|
|
return (EFAULT);
|
|
nvp->nvp_name_sz = strlen(buf) + 1;
|
|
|
|
/* type and nelem */
|
|
if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
|
|
!xdr_int(xdr, &nvp->nvp_value_elem))
|
|
return (EFAULT);
|
|
|
|
type = NVP_TYPE(nvp);
|
|
nelem = nvp->nvp_value_elem;
|
|
|
|
/*
|
|
* Verify type and nelem and get the value size.
|
|
* In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
|
|
* is the size of the string(s) excluded.
|
|
*/
|
|
if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
|
|
return (EFAULT);
|
|
|
|
/* if there is no data to extract then return */
|
|
if (nelem == 0)
|
|
return (0);
|
|
|
|
/* value */
|
|
if ((buf = NVP_VALUE(nvp)) >= buf_end)
|
|
return (EFAULT);
|
|
buflen = buf_end - buf;
|
|
|
|
if (buflen < value_sz)
|
|
return (EFAULT);
|
|
|
|
switch (type) {
|
|
case DATA_TYPE_NVLIST:
|
|
if (nvs_embedded(nvs, (void *)buf) == 0)
|
|
return (0);
|
|
break;
|
|
|
|
case DATA_TYPE_NVLIST_ARRAY:
|
|
if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
|
|
return (0);
|
|
break;
|
|
|
|
case DATA_TYPE_BOOLEAN:
|
|
ret = TRUE;
|
|
break;
|
|
|
|
case DATA_TYPE_BYTE:
|
|
case DATA_TYPE_INT8:
|
|
case DATA_TYPE_UINT8:
|
|
ret = xdr_char(xdr, buf);
|
|
break;
|
|
|
|
case DATA_TYPE_INT16:
|
|
ret = xdr_short(xdr, (void *)buf);
|
|
break;
|
|
|
|
case DATA_TYPE_UINT16:
|
|
ret = xdr_u_short(xdr, (void *)buf);
|
|
break;
|
|
|
|
case DATA_TYPE_BOOLEAN_VALUE:
|
|
case DATA_TYPE_INT32:
|
|
ret = xdr_int(xdr, (void *)buf);
|
|
break;
|
|
|
|
case DATA_TYPE_UINT32:
|
|
ret = xdr_u_int(xdr, (void *)buf);
|
|
break;
|
|
|
|
case DATA_TYPE_INT64:
|
|
ret = xdr_longlong_t(xdr, (void *)buf);
|
|
break;
|
|
|
|
case DATA_TYPE_UINT64:
|
|
ret = xdr_u_longlong_t(xdr, (void *)buf);
|
|
break;
|
|
|
|
case DATA_TYPE_HRTIME:
|
|
/*
|
|
* NOTE: must expose the definition of hrtime_t here
|
|
*/
|
|
ret = xdr_longlong_t(xdr, (void *)buf);
|
|
break;
|
|
#if !defined(_KERNEL)
|
|
case DATA_TYPE_DOUBLE:
|
|
ret = xdr_double(xdr, (void *)buf);
|
|
break;
|
|
#endif
|
|
case DATA_TYPE_STRING:
|
|
ret = xdr_string(xdr, &buf, buflen - 1);
|
|
break;
|
|
|
|
case DATA_TYPE_BYTE_ARRAY:
|
|
ret = xdr_opaque(xdr, buf, nelem);
|
|
break;
|
|
|
|
case DATA_TYPE_INT8_ARRAY:
|
|
case DATA_TYPE_UINT8_ARRAY:
|
|
ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
|
|
nvs_xdr_nvp_char);
|
|
break;
|
|
|
|
case DATA_TYPE_INT16_ARRAY:
|
|
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
|
|
sizeof (int16_t), nvs_xdr_nvp_short);
|
|
break;
|
|
|
|
case DATA_TYPE_UINT16_ARRAY:
|
|
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
|
|
sizeof (uint16_t), nvs_xdr_nvp_u_short);
|
|
break;
|
|
|
|
case DATA_TYPE_BOOLEAN_ARRAY:
|
|
case DATA_TYPE_INT32_ARRAY:
|
|
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
|
|
sizeof (int32_t), nvs_xdr_nvp_int);
|
|
break;
|
|
|
|
case DATA_TYPE_UINT32_ARRAY:
|
|
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
|
|
sizeof (uint32_t), nvs_xdr_nvp_u_int);
|
|
break;
|
|
|
|
case DATA_TYPE_INT64_ARRAY:
|
|
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
|
|
sizeof (int64_t), nvs_xdr_nvp_longlong_t);
|
|
break;
|
|
|
|
case DATA_TYPE_UINT64_ARRAY:
|
|
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
|
|
sizeof (uint64_t), nvs_xdr_nvp_u_longlong_t);
|
|
break;
|
|
|
|
case DATA_TYPE_STRING_ARRAY: {
|
|
size_t len = nelem * sizeof (uint64_t);
|
|
char **strp = (void *)buf;
|
|
int i;
|
|
|
|
if (nvs->nvs_op == NVS_OP_DECODE)
|
|
memset(buf, 0, len); /* don't trust packed data */
|
|
|
|
for (i = 0; i < nelem; i++) {
|
|
if (buflen <= len)
|
|
return (EFAULT);
|
|
|
|
buf += len;
|
|
buflen -= len;
|
|
|
|
if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
|
|
return (EFAULT);
|
|
|
|
if (nvs->nvs_op == NVS_OP_DECODE)
|
|
strp[i] = buf;
|
|
len = strlen(buf) + 1;
|
|
}
|
|
ret = TRUE;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (ret == TRUE ? 0 : EFAULT);
|
|
}
|
|
|
|
static int
|
|
nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
|
|
{
|
|
data_type_t type = NVP_TYPE(nvp);
|
|
/*
|
|
* encode_size + decode_size + name string size + data type + nelem
|
|
* where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
|
|
*/
|
|
uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
|
|
|
|
switch (type) {
|
|
case DATA_TYPE_BOOLEAN:
|
|
break;
|
|
|
|
case DATA_TYPE_BOOLEAN_VALUE:
|
|
case DATA_TYPE_BYTE:
|
|
case DATA_TYPE_INT8:
|
|
case DATA_TYPE_UINT8:
|
|
case DATA_TYPE_INT16:
|
|
case DATA_TYPE_UINT16:
|
|
case DATA_TYPE_INT32:
|
|
case DATA_TYPE_UINT32:
|
|
nvp_sz += 4; /* 4 is the minimum xdr unit */
|
|
break;
|
|
|
|
case DATA_TYPE_INT64:
|
|
case DATA_TYPE_UINT64:
|
|
case DATA_TYPE_HRTIME:
|
|
#if !defined(_KERNEL)
|
|
case DATA_TYPE_DOUBLE:
|
|
#endif
|
|
nvp_sz += 8;
|
|
break;
|
|
|
|
case DATA_TYPE_STRING:
|
|
nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
|
|
break;
|
|
|
|
case DATA_TYPE_BYTE_ARRAY:
|
|
nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
|
|
break;
|
|
|
|
case DATA_TYPE_BOOLEAN_ARRAY:
|
|
case DATA_TYPE_INT8_ARRAY:
|
|
case DATA_TYPE_UINT8_ARRAY:
|
|
case DATA_TYPE_INT16_ARRAY:
|
|
case DATA_TYPE_UINT16_ARRAY:
|
|
case DATA_TYPE_INT32_ARRAY:
|
|
case DATA_TYPE_UINT32_ARRAY:
|
|
nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
|
|
break;
|
|
|
|
case DATA_TYPE_INT64_ARRAY:
|
|
case DATA_TYPE_UINT64_ARRAY:
|
|
nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
|
|
break;
|
|
|
|
case DATA_TYPE_STRING_ARRAY: {
|
|
int i;
|
|
char **strs = (void *)NVP_VALUE(nvp);
|
|
|
|
for (i = 0; i < NVP_NELEM(nvp); i++)
|
|
nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
|
|
|
|
break;
|
|
}
|
|
|
|
case DATA_TYPE_NVLIST:
|
|
case DATA_TYPE_NVLIST_ARRAY: {
|
|
size_t nvsize = 0;
|
|
int old_nvs_op = nvs->nvs_op;
|
|
int err;
|
|
|
|
nvs->nvs_op = NVS_OP_GETSIZE;
|
|
if (type == DATA_TYPE_NVLIST)
|
|
err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
|
|
else
|
|
err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
|
|
nvs->nvs_op = old_nvs_op;
|
|
|
|
if (err != 0)
|
|
return (EINVAL);
|
|
|
|
nvp_sz += nvsize;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (nvp_sz > INT32_MAX)
|
|
return (EINVAL);
|
|
|
|
*size = nvp_sz;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
|
|
* the largest nvpair that could be encoded in the buffer.
|
|
*
|
|
* See comments above nvpair_xdr_op() for the format of xdr encoding.
|
|
* The size of a xdr packed nvpair without any data is 5 words.
|
|
*
|
|
* Using the size of the data directly as an estimate would be ok
|
|
* in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY
|
|
* then the actual nvpair has space for an array of pointers to index
|
|
* the strings. These pointers are not encoded into the packed xdr buffer.
|
|
*
|
|
* If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
|
|
* of length 0, then each string is encoded in xdr format as a single word.
|
|
* Therefore when expanded to an nvpair there will be 2.25 word used for
|
|
* each string. (a int64_t allocated for pointer usage, and a single char
|
|
* for the null termination.)
|
|
*
|
|
* This is the calculation performed by the NVS_XDR_MAX_LEN macro.
|
|
*/
|
|
#define NVS_XDR_HDR_LEN ((size_t)(5 * 4))
|
|
#define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
|
|
0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
|
|
#define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \
|
|
(NVS_XDR_DATA_LEN(x) * 2) + \
|
|
NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
|
|
|
|
static int
|
|
nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
|
|
{
|
|
XDR *xdr = nvs->nvs_private;
|
|
int32_t encode_len, decode_len;
|
|
|
|
switch (nvs->nvs_op) {
|
|
case NVS_OP_ENCODE: {
|
|
size_t nvsize;
|
|
|
|
if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
|
|
return (EFAULT);
|
|
|
|
decode_len = nvp->nvp_size;
|
|
encode_len = nvsize;
|
|
if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
|
|
return (EFAULT);
|
|
|
|
return (nvs_xdr_nvp_op(nvs, nvp));
|
|
}
|
|
case NVS_OP_DECODE: {
|
|
struct xdr_bytesrec bytesrec;
|
|
|
|
/* get the encode and decode size */
|
|
if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
|
|
return (EFAULT);
|
|
*size = decode_len;
|
|
|
|
/* are we at the end of the stream? */
|
|
if (*size == 0)
|
|
return (0);
|
|
|
|
/* sanity check the size parameter */
|
|
if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
|
|
return (EFAULT);
|
|
|
|
if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
|
|
return (EFAULT);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static const struct nvs_ops nvs_xdr_ops = {
|
|
.nvs_nvlist = nvs_xdr_nvlist,
|
|
.nvs_nvpair = nvs_xdr_nvpair,
|
|
.nvs_nvp_op = nvs_xdr_nvp_op,
|
|
.nvs_nvp_size = nvs_xdr_nvp_size,
|
|
.nvs_nvl_fini = nvs_xdr_nvl_fini
|
|
};
|
|
|
|
static int
|
|
nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
|
|
{
|
|
XDR xdr;
|
|
int err;
|
|
|
|
nvs->nvs_ops = &nvs_xdr_ops;
|
|
|
|
if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
|
|
*buflen - sizeof (nvs_header_t))) != 0)
|
|
return (err);
|
|
|
|
err = nvs_operation(nvs, nvl, buflen);
|
|
|
|
nvs_xdr_destroy(nvs);
|
|
|
|
return (err);
|
|
}
|
|
|
|
EXPORT_SYMBOL(nv_alloc_init);
|
|
EXPORT_SYMBOL(nv_alloc_reset);
|
|
EXPORT_SYMBOL(nv_alloc_fini);
|
|
|
|
/* list management */
|
|
EXPORT_SYMBOL(nvlist_alloc);
|
|
EXPORT_SYMBOL(nvlist_free);
|
|
EXPORT_SYMBOL(nvlist_size);
|
|
EXPORT_SYMBOL(nvlist_pack);
|
|
EXPORT_SYMBOL(nvlist_unpack);
|
|
EXPORT_SYMBOL(nvlist_dup);
|
|
EXPORT_SYMBOL(nvlist_merge);
|
|
|
|
EXPORT_SYMBOL(nvlist_xalloc);
|
|
EXPORT_SYMBOL(nvlist_xpack);
|
|
EXPORT_SYMBOL(nvlist_xunpack);
|
|
EXPORT_SYMBOL(nvlist_xdup);
|
|
EXPORT_SYMBOL(nvlist_lookup_nv_alloc);
|
|
|
|
EXPORT_SYMBOL(nvlist_add_nvpair);
|
|
EXPORT_SYMBOL(nvlist_add_boolean);
|
|
EXPORT_SYMBOL(nvlist_add_boolean_value);
|
|
EXPORT_SYMBOL(nvlist_add_byte);
|
|
EXPORT_SYMBOL(nvlist_add_int8);
|
|
EXPORT_SYMBOL(nvlist_add_uint8);
|
|
EXPORT_SYMBOL(nvlist_add_int16);
|
|
EXPORT_SYMBOL(nvlist_add_uint16);
|
|
EXPORT_SYMBOL(nvlist_add_int32);
|
|
EXPORT_SYMBOL(nvlist_add_uint32);
|
|
EXPORT_SYMBOL(nvlist_add_int64);
|
|
EXPORT_SYMBOL(nvlist_add_uint64);
|
|
EXPORT_SYMBOL(nvlist_add_string);
|
|
EXPORT_SYMBOL(nvlist_add_nvlist);
|
|
EXPORT_SYMBOL(nvlist_add_boolean_array);
|
|
EXPORT_SYMBOL(nvlist_add_byte_array);
|
|
EXPORT_SYMBOL(nvlist_add_int8_array);
|
|
EXPORT_SYMBOL(nvlist_add_uint8_array);
|
|
EXPORT_SYMBOL(nvlist_add_int16_array);
|
|
EXPORT_SYMBOL(nvlist_add_uint16_array);
|
|
EXPORT_SYMBOL(nvlist_add_int32_array);
|
|
EXPORT_SYMBOL(nvlist_add_uint32_array);
|
|
EXPORT_SYMBOL(nvlist_add_int64_array);
|
|
EXPORT_SYMBOL(nvlist_add_uint64_array);
|
|
EXPORT_SYMBOL(nvlist_add_string_array);
|
|
EXPORT_SYMBOL(nvlist_add_nvlist_array);
|
|
EXPORT_SYMBOL(nvlist_next_nvpair);
|
|
EXPORT_SYMBOL(nvlist_prev_nvpair);
|
|
EXPORT_SYMBOL(nvlist_empty);
|
|
EXPORT_SYMBOL(nvlist_add_hrtime);
|
|
|
|
EXPORT_SYMBOL(nvlist_remove);
|
|
EXPORT_SYMBOL(nvlist_remove_nvpair);
|
|
EXPORT_SYMBOL(nvlist_remove_all);
|
|
|
|
EXPORT_SYMBOL(nvlist_lookup_boolean);
|
|
EXPORT_SYMBOL(nvlist_lookup_boolean_value);
|
|
EXPORT_SYMBOL(nvlist_lookup_byte);
|
|
EXPORT_SYMBOL(nvlist_lookup_int8);
|
|
EXPORT_SYMBOL(nvlist_lookup_uint8);
|
|
EXPORT_SYMBOL(nvlist_lookup_int16);
|
|
EXPORT_SYMBOL(nvlist_lookup_uint16);
|
|
EXPORT_SYMBOL(nvlist_lookup_int32);
|
|
EXPORT_SYMBOL(nvlist_lookup_uint32);
|
|
EXPORT_SYMBOL(nvlist_lookup_int64);
|
|
EXPORT_SYMBOL(nvlist_lookup_uint64);
|
|
EXPORT_SYMBOL(nvlist_lookup_string);
|
|
EXPORT_SYMBOL(nvlist_lookup_nvlist);
|
|
EXPORT_SYMBOL(nvlist_lookup_boolean_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_byte_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_int8_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_uint8_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_int16_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_uint16_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_int32_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_uint32_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_int64_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_uint64_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_string_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_nvlist_array);
|
|
EXPORT_SYMBOL(nvlist_lookup_hrtime);
|
|
EXPORT_SYMBOL(nvlist_lookup_pairs);
|
|
|
|
EXPORT_SYMBOL(nvlist_lookup_nvpair);
|
|
EXPORT_SYMBOL(nvlist_exists);
|
|
|
|
/* processing nvpair */
|
|
EXPORT_SYMBOL(nvpair_name);
|
|
EXPORT_SYMBOL(nvpair_type);
|
|
EXPORT_SYMBOL(nvpair_value_boolean_value);
|
|
EXPORT_SYMBOL(nvpair_value_byte);
|
|
EXPORT_SYMBOL(nvpair_value_int8);
|
|
EXPORT_SYMBOL(nvpair_value_uint8);
|
|
EXPORT_SYMBOL(nvpair_value_int16);
|
|
EXPORT_SYMBOL(nvpair_value_uint16);
|
|
EXPORT_SYMBOL(nvpair_value_int32);
|
|
EXPORT_SYMBOL(nvpair_value_uint32);
|
|
EXPORT_SYMBOL(nvpair_value_int64);
|
|
EXPORT_SYMBOL(nvpair_value_uint64);
|
|
EXPORT_SYMBOL(nvpair_value_string);
|
|
EXPORT_SYMBOL(nvpair_value_nvlist);
|
|
EXPORT_SYMBOL(nvpair_value_boolean_array);
|
|
EXPORT_SYMBOL(nvpair_value_byte_array);
|
|
EXPORT_SYMBOL(nvpair_value_int8_array);
|
|
EXPORT_SYMBOL(nvpair_value_uint8_array);
|
|
EXPORT_SYMBOL(nvpair_value_int16_array);
|
|
EXPORT_SYMBOL(nvpair_value_uint16_array);
|
|
EXPORT_SYMBOL(nvpair_value_int32_array);
|
|
EXPORT_SYMBOL(nvpair_value_uint32_array);
|
|
EXPORT_SYMBOL(nvpair_value_int64_array);
|
|
EXPORT_SYMBOL(nvpair_value_uint64_array);
|
|
EXPORT_SYMBOL(nvpair_value_string_array);
|
|
EXPORT_SYMBOL(nvpair_value_nvlist_array);
|
|
EXPORT_SYMBOL(nvpair_value_hrtime);
|