mirror_zfs/cmd/zpool/os/linux/zpool_vdev_os.c
Tony Hutter ef3fea63eb GCC: Fixes for gcc 14 on Fedora 40
- Workaround dangling pointer in uu_list.c (#16124)
- Fix calloc() transposed arguments in zpool_vdev_os.c
- Make some temp variables unsigned to prevent triggering a
  '-Werror=alloc-size-larger-than' error.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes #16124
Closes #16125
2024-04-29 13:50:05 -07:00

674 lines
17 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2018 by Delphix. All rights reserved.
* Copyright (c) 2016, 2017 Intel Corporation.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
*/
/*
* Functions to convert between a list of vdevs and an nvlist representing the
* configuration. Each entry in the list can be one of:
*
* Device vdevs
* disk=(path=..., devid=...)
* file=(path=...)
*
* Group vdevs
* raidz[1|2]=(...)
* mirror=(...)
*
* Hot spares
*
* While the underlying implementation supports it, group vdevs cannot contain
* other group vdevs. All userland verification of devices is contained within
* this file. If successful, the nvlist returned can be passed directly to the
* kernel; we've done as much verification as possible in userland.
*
* Hot spares are a special case, and passed down as an array of disk vdevs, at
* the same level as the root of the vdev tree.
*
* The only function exported by this file is 'make_root_vdev'. The
* function performs several passes:
*
* 1. Construct the vdev specification. Performs syntax validation and
* makes sure each device is valid.
* 2. Check for devices in use. Using libblkid to make sure that no
* devices are also in use. Some can be overridden using the 'force'
* flag, others cannot.
* 3. Check for replication errors if the 'force' flag is not specified.
* validates that the replication level is consistent across the
* entire pool.
* 4. Call libzfs to label any whole disks with an EFI label.
*/
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <libintl.h>
#include <libnvpair.h>
#include <libzutil.h>
#include <limits.h>
#include <sys/spa.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "zpool_util.h"
#include <sys/zfs_context.h>
#include <scsi/scsi.h>
#include <scsi/sg.h>
#include <sys/efi_partition.h>
#include <sys/stat.h>
#include <sys/mntent.h>
#include <uuid/uuid.h>
#include <blkid/blkid.h>
typedef struct vdev_disk_db_entry
{
char id[24];
int sector_size;
} vdev_disk_db_entry_t;
/*
* Database of block devices that lie about physical sector sizes. The
* identification string must be precisely 24 characters to avoid false
* negatives
*/
static vdev_disk_db_entry_t vdev_disk_database[] = {
{"ATA ADATA SSD S396 3", 8192},
{"ATA APPLE SSD SM128E", 8192},
{"ATA APPLE SSD SM256E", 8192},
{"ATA APPLE SSD SM512E", 8192},
{"ATA APPLE SSD SM768E", 8192},
{"ATA C400-MTFDDAC064M", 8192},
{"ATA C400-MTFDDAC128M", 8192},
{"ATA C400-MTFDDAC256M", 8192},
{"ATA C400-MTFDDAC512M", 8192},
{"ATA Corsair Force 3 ", 8192},
{"ATA Corsair Force GS", 8192},
{"ATA INTEL SSDSA2CT04", 8192},
{"ATA INTEL SSDSA2BZ10", 8192},
{"ATA INTEL SSDSA2BZ20", 8192},
{"ATA INTEL SSDSA2BZ30", 8192},
{"ATA INTEL SSDSA2CW04", 8192},
{"ATA INTEL SSDSA2CW08", 8192},
{"ATA INTEL SSDSA2CW12", 8192},
{"ATA INTEL SSDSA2CW16", 8192},
{"ATA INTEL SSDSA2CW30", 8192},
{"ATA INTEL SSDSA2CW60", 8192},
{"ATA INTEL SSDSC2CT06", 8192},
{"ATA INTEL SSDSC2CT12", 8192},
{"ATA INTEL SSDSC2CT18", 8192},
{"ATA INTEL SSDSC2CT24", 8192},
{"ATA INTEL SSDSC2CW06", 8192},
{"ATA INTEL SSDSC2CW12", 8192},
{"ATA INTEL SSDSC2CW18", 8192},
{"ATA INTEL SSDSC2CW24", 8192},
{"ATA INTEL SSDSC2CW48", 8192},
{"ATA KINGSTON SH100S3", 8192},
{"ATA KINGSTON SH103S3", 8192},
{"ATA M4-CT064M4SSD2 ", 8192},
{"ATA M4-CT128M4SSD2 ", 8192},
{"ATA M4-CT256M4SSD2 ", 8192},
{"ATA M4-CT512M4SSD2 ", 8192},
{"ATA OCZ-AGILITY2 ", 8192},
{"ATA OCZ-AGILITY3 ", 8192},
{"ATA OCZ-VERTEX2 3.5 ", 8192},
{"ATA OCZ-VERTEX3 ", 8192},
{"ATA OCZ-VERTEX3 LT ", 8192},
{"ATA OCZ-VERTEX3 MI ", 8192},
{"ATA OCZ-VERTEX4 ", 8192},
{"ATA SAMSUNG MZ7WD120", 8192},
{"ATA SAMSUNG MZ7WD240", 8192},
{"ATA SAMSUNG MZ7WD480", 8192},
{"ATA SAMSUNG MZ7WD960", 8192},
{"ATA SAMSUNG SSD 830 ", 8192},
{"ATA Samsung SSD 840 ", 8192},
{"ATA SanDisk SSD U100", 8192},
{"ATA TOSHIBA THNSNH06", 8192},
{"ATA TOSHIBA THNSNH12", 8192},
{"ATA TOSHIBA THNSNH25", 8192},
{"ATA TOSHIBA THNSNH51", 8192},
{"ATA APPLE SSD TS064C", 4096},
{"ATA APPLE SSD TS128C", 4096},
{"ATA APPLE SSD TS256C", 4096},
{"ATA APPLE SSD TS512C", 4096},
{"ATA INTEL SSDSA2M040", 4096},
{"ATA INTEL SSDSA2M080", 4096},
{"ATA INTEL SSDSA2M160", 4096},
{"ATA INTEL SSDSC2MH12", 4096},
{"ATA INTEL SSDSC2MH25", 4096},
{"ATA OCZ CORE_SSD ", 4096},
{"ATA OCZ-VERTEX ", 4096},
{"ATA SAMSUNG MCCOE32G", 4096},
{"ATA SAMSUNG MCCOE64G", 4096},
{"ATA SAMSUNG SSD PM80", 4096},
/* Flash drives optimized for 4KB IOs on larger pages */
{"ATA INTEL SSDSC2BA10", 4096},
{"ATA INTEL SSDSC2BA20", 4096},
{"ATA INTEL SSDSC2BA40", 4096},
{"ATA INTEL SSDSC2BA80", 4096},
{"ATA INTEL SSDSC2BB08", 4096},
{"ATA INTEL SSDSC2BB12", 4096},
{"ATA INTEL SSDSC2BB16", 4096},
{"ATA INTEL SSDSC2BB24", 4096},
{"ATA INTEL SSDSC2BB30", 4096},
{"ATA INTEL SSDSC2BB40", 4096},
{"ATA INTEL SSDSC2BB48", 4096},
{"ATA INTEL SSDSC2BB60", 4096},
{"ATA INTEL SSDSC2BB80", 4096},
{"ATA INTEL SSDSC2BW24", 4096},
{"ATA INTEL SSDSC2BW48", 4096},
{"ATA INTEL SSDSC2BP24", 4096},
{"ATA INTEL SSDSC2BP48", 4096},
{"NA SmrtStorSDLKAE9W", 4096},
{"NVMe Amazon EC2 NVMe ", 4096},
/* Imported from Open Solaris */
{"ATA MARVELL SD88SA02", 4096},
/* Advanced format Hard drives */
{"ATA Hitachi HDS5C303", 4096},
{"ATA SAMSUNG HD204UI ", 4096},
{"ATA ST2000DL004 HD20", 4096},
{"ATA WDC WD10EARS-00M", 4096},
{"ATA WDC WD10EARS-00S", 4096},
{"ATA WDC WD10EARS-00Z", 4096},
{"ATA WDC WD15EARS-00M", 4096},
{"ATA WDC WD15EARS-00S", 4096},
{"ATA WDC WD15EARS-00Z", 4096},
{"ATA WDC WD20EARS-00M", 4096},
{"ATA WDC WD20EARS-00S", 4096},
{"ATA WDC WD20EARS-00Z", 4096},
{"ATA WDC WD1600BEVT-0", 4096},
{"ATA WDC WD2500BEVT-0", 4096},
{"ATA WDC WD3200BEVT-0", 4096},
{"ATA WDC WD5000BEVT-0", 4096},
};
#define INQ_REPLY_LEN 96
#define INQ_CMD_LEN 6
static const int vdev_disk_database_size =
sizeof (vdev_disk_database) / sizeof (vdev_disk_database[0]);
boolean_t
check_sector_size_database(char *path, int *sector_size)
{
unsigned char inq_buff[INQ_REPLY_LEN];
unsigned char sense_buffer[32];
unsigned char inq_cmd_blk[INQ_CMD_LEN] =
{INQUIRY, 0, 0, 0, INQ_REPLY_LEN, 0};
sg_io_hdr_t io_hdr;
int error;
int fd;
int i;
/* Prepare INQUIRY command */
memset(&io_hdr, 0, sizeof (sg_io_hdr_t));
io_hdr.interface_id = 'S';
io_hdr.cmd_len = sizeof (inq_cmd_blk);
io_hdr.mx_sb_len = sizeof (sense_buffer);
io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
io_hdr.dxfer_len = INQ_REPLY_LEN;
io_hdr.dxferp = inq_buff;
io_hdr.cmdp = inq_cmd_blk;
io_hdr.sbp = sense_buffer;
io_hdr.timeout = 10; /* 10 milliseconds is ample time */
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
return (B_FALSE);
error = ioctl(fd, SG_IO, (unsigned long) &io_hdr);
(void) close(fd);
if (error < 0)
return (B_FALSE);
if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
return (B_FALSE);
for (i = 0; i < vdev_disk_database_size; i++) {
if (memcmp(inq_buff + 8, vdev_disk_database[i].id, 24))
continue;
*sector_size = vdev_disk_database[i].sector_size;
return (B_TRUE);
}
return (B_FALSE);
}
static int
check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
{
int err;
char *value;
/* No valid type detected device is safe to use */
value = blkid_get_tag_value(cache, "TYPE", path);
if (value == NULL)
return (0);
/*
* If libblkid detects a ZFS device, we check the device
* using check_file() to see if it's safe. The one safe
* case is a spare device shared between multiple pools.
*/
if (strcmp(value, "zfs_member") == 0) {
err = check_file(path, force, isspare);
} else {
if (force) {
err = 0;
} else {
err = -1;
vdev_error(gettext("%s contains a filesystem of "
"type '%s'\n"), path, value);
}
}
free(value);
return (err);
}
/*
* Validate that a disk including all partitions are safe to use.
*
* For EFI labeled disks this can done relatively easily with the libefi
* library. The partition numbers are extracted from the label and used
* to generate the expected /dev/ paths. Each partition can then be
* checked for conflicts.
*
* For non-EFI labeled disks (MBR/EBR/etc) the same process is possible
* but due to the lack of a readily available libraries this scanning is
* not implemented. Instead only the device path as given is checked.
*/
static int
check_disk(const char *path, blkid_cache cache, int force,
boolean_t isspare, boolean_t iswholedisk)
{
struct dk_gpt *vtoc;
char slice_path[MAXPATHLEN];
int err = 0;
int fd, i;
int flags = O_RDONLY|O_DIRECT;
if (!iswholedisk)
return (check_slice(path, cache, force, isspare));
/* only spares can be shared, other devices require exclusive access */
if (!isspare)
flags |= O_EXCL;
if ((fd = open(path, flags)) < 0) {
char *value = blkid_get_tag_value(cache, "TYPE", path);
(void) fprintf(stderr, gettext("%s is in use and contains "
"a %s filesystem.\n"), path, value ? value : "unknown");
free(value);
return (-1);
}
/*
* Expected to fail for non-EFI labeled disks. Just check the device
* as given and do not attempt to detect and scan partitions.
*/
err = efi_alloc_and_read(fd, &vtoc);
if (err) {
(void) close(fd);
return (check_slice(path, cache, force, isspare));
}
/*
* The primary efi partition label is damaged however the secondary
* label at the end of the device is intact. Rather than use this
* label we should play it safe and treat this as a non efi device.
*/
if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
efi_free(vtoc);
(void) close(fd);
if (force) {
/* Partitions will now be created using the backup */
return (0);
} else {
vdev_error(gettext("%s contains a corrupt primary "
"EFI label.\n"), path);
return (-1);
}
}
for (i = 0; i < vtoc->efi_nparts; i++) {
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
continue;
if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
(void) snprintf(slice_path, sizeof (slice_path),
"%s%s%d", path, "-part", i+1);
else
(void) snprintf(slice_path, sizeof (slice_path),
"%s%s%d", path, isdigit(path[strlen(path)-1]) ?
"p" : "", i+1);
err = check_slice(slice_path, cache, force, isspare);
if (err)
break;
}
efi_free(vtoc);
(void) close(fd);
return (err);
}
int
check_device(const char *path, boolean_t force,
boolean_t isspare, boolean_t iswholedisk)
{
blkid_cache cache;
int error;
error = blkid_get_cache(&cache, NULL);
if (error != 0) {
(void) fprintf(stderr, gettext("unable to access the blkid "
"cache.\n"));
return (-1);
}
error = check_disk(path, cache, force, isspare, iswholedisk);
blkid_put_cache(cache);
return (error);
}
void
after_zpool_upgrade(zpool_handle_t *zhp)
{
(void) zhp;
}
int
check_file(const char *file, boolean_t force, boolean_t isspare)
{
return (check_file_generic(file, force, isspare));
}
/*
* Read from a sysfs file and return an allocated string. Removes
* the newline from the end of the string if there is one.
*
* Returns a string on success (which must be freed), or NULL on error.
*/
static char *zpool_sysfs_gets(char *path)
{
int fd;
struct stat statbuf;
char *buf = NULL;
ssize_t count = 0;
fd = open(path, O_RDONLY);
if (fd < 0)
return (NULL);
if (fstat(fd, &statbuf) != 0) {
close(fd);
return (NULL);
}
buf = calloc(statbuf.st_size + 1, sizeof (*buf));
if (buf == NULL) {
close(fd);
return (NULL);
}
/*
* Note, we can read less bytes than st_size, and that's ok. Sysfs
* files will report their size is 4k even if they only return a small
* string.
*/
count = read(fd, buf, statbuf.st_size);
if (count < 0) {
/* Error doing read() or we overran the buffer */
close(fd);
free(buf);
return (NULL);
}
/* Remove trailing newline */
if (count > 0 && buf[count - 1] == '\n')
buf[count - 1] = 0;
close(fd);
return (buf);
}
/*
* Write a string to a sysfs file.
*
* Returns 0 on success, non-zero otherwise.
*/
static int zpool_sysfs_puts(char *path, char *str)
{
FILE *file;
file = fopen(path, "w");
if (!file) {
return (-1);
}
if (fputs(str, file) < 0) {
fclose(file);
return (-2);
}
fclose(file);
return (0);
}
/* Given a vdev nvlist_t, rescan its enclosure sysfs path */
static void
rescan_vdev_config_dev_sysfs_path(nvlist_t *vdev_nv)
{
update_vdev_config_dev_sysfs_path(vdev_nv,
fnvlist_lookup_string(vdev_nv, ZPOOL_CONFIG_PATH),
ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
}
/*
* Given a power string: "on", "off", "1", or "0", return 0 if it's an
* off value, 1 if it's an on value, and -1 if the value is unrecognized.
*/
static int zpool_power_parse_value(char *str)
{
if ((strcmp(str, "off") == 0) || (strcmp(str, "0") == 0))
return (0);
if ((strcmp(str, "on") == 0) || (strcmp(str, "1") == 0))
return (1);
return (-1);
}
/*
* Given a vdev string return an allocated string containing the sysfs path to
* its power control file. Also do a check if the power control file really
* exists and has correct permissions.
*
* Example returned strings:
*
* /sys/class/enclosure/0:0:122:0/10/power_status
* /sys/bus/pci/slots/10/power
*
* Returns allocated string on success (which must be freed), NULL on failure.
*/
static char *
zpool_power_sysfs_path(zpool_handle_t *zhp, char *vdev)
{
const char *enc_sysfs_dir = NULL;
char *path = NULL;
nvlist_t *vdev_nv = zpool_find_vdev(zhp, vdev, NULL, NULL, NULL);
if (vdev_nv == NULL) {
return (NULL);
}
/* Make sure we're getting the updated enclosure sysfs path */
rescan_vdev_config_dev_sysfs_path(vdev_nv);
if (nvlist_lookup_string(vdev_nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
&enc_sysfs_dir) != 0) {
return (NULL);
}
if (asprintf(&path, "%s/power_status", enc_sysfs_dir) == -1)
return (NULL);
if (access(path, W_OK) != 0) {
free(path);
path = NULL;
/* No HDD 'power_control' file, maybe it's NVMe? */
if (asprintf(&path, "%s/power", enc_sysfs_dir) == -1) {
return (NULL);
}
if (access(path, R_OK | W_OK) != 0) {
/* Not NVMe either */
free(path);
return (NULL);
}
}
return (path);
}
/*
* Given a path to a sysfs power control file, return B_TRUE if you should use
* "on/off" words to control it, or B_FALSE otherwise ("0/1" to control).
*/
static boolean_t
zpool_power_use_word(char *sysfs_path)
{
if (strcmp(&sysfs_path[strlen(sysfs_path) - strlen("power_status")],
"power_status") == 0) {
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Check the sysfs power control value for a vdev.
*
* Returns:
* 0 - Power is off
* 1 - Power is on
* -1 - Error or unsupported
*/
int
zpool_power_current_state(zpool_handle_t *zhp, char *vdev)
{
char *val;
int rc;
char *path = zpool_power_sysfs_path(zhp, vdev);
if (path == NULL)
return (-1);
val = zpool_sysfs_gets(path);
if (val == NULL) {
free(path);
return (-1);
}
rc = zpool_power_parse_value(val);
free(val);
free(path);
return (rc);
}
/*
* Turn on or off the slot to a device
*
* Device path is the full path to the device (like /dev/sda or /dev/sda1).
*
* Return code:
* 0: Success
* ENOTSUP: Power control not supported for OS
* EBADSLT: Couldn't read current power state
* ENOENT: No sysfs path to power control
* EIO: Couldn't write sysfs power value
* EBADE: Sysfs power value didn't change
*/
int
zpool_power(zpool_handle_t *zhp, char *vdev, boolean_t turn_on)
{
char *sysfs_path;
const char *val;
int rc;
int timeout_ms;
rc = zpool_power_current_state(zhp, vdev);
if (rc == -1) {
return (EBADSLT);
}
/* Already correct value? */
if (rc == (int)turn_on)
return (0);
sysfs_path = zpool_power_sysfs_path(zhp, vdev);
if (sysfs_path == NULL)
return (ENOENT);
if (zpool_power_use_word(sysfs_path)) {
val = turn_on ? "on" : "off";
} else {
val = turn_on ? "1" : "0";
}
rc = zpool_sysfs_puts(sysfs_path, (char *)val);
free(sysfs_path);
if (rc != 0) {
return (EIO);
}
/*
* Wait up to 30 seconds for sysfs power value to change after
* writing it.
*/
timeout_ms = zpool_getenv_int("ZPOOL_POWER_ON_SLOT_TIMEOUT_MS", 30000);
for (int i = 0; i < MAX(1, timeout_ms / 200); i++) {
rc = zpool_power_current_state(zhp, vdev);
if (rc == (int)turn_on)
return (0); /* success */
fsleep(0.200); /* 200ms */
}
/* sysfs value never changed */
return (EBADE);
}