mirror_zfs/cmd/zed/agents/zfs_mod.c
Brian Behlendorf b9aa32ff39 zed: Reduce log noise for large JBODs
For large JBODs the log message "zfs_iter_vdev: no match" can
account for the bulk of the log messages (over 70%).  Since this
message is purely informational and not that useful we remove it.

Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #15086
Closes #15094
2023-07-26 08:46:58 -07:00

1308 lines
38 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2016, 2017, Intel Corporation.
* Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
*/
/*
* ZFS syseventd module.
*
* file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c
*
* The purpose of this module is to identify when devices are added to the
* system, and appropriately online or replace the affected vdevs.
*
* When a device is added to the system:
*
* 1. Search for any vdevs whose devid matches that of the newly added
* device.
*
* 2. If no vdevs are found, then search for any vdevs whose udev path
* matches that of the new device.
*
* 3. If no vdevs match by either method, then ignore the event.
*
* 4. Attempt to online the device with a flag to indicate that it should
* be unspared when resilvering completes. If this succeeds, then the
* same device was inserted and we should continue normally.
*
* 5. If the pool does not have the 'autoreplace' property set, attempt to
* online the device again without the unspare flag, which will
* generate a FMA fault.
*
* 6. If the pool has the 'autoreplace' property set, and the matching vdev
* is a whole disk, then label the new disk and attempt a 'zpool
* replace'.
*
* The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK
* event indicates that a device failed to open during pool load, but the
* autoreplace property was set. In this case, we deferred the associated
* FMA fault until our module had a chance to process the autoreplace logic.
* If the device could not be replaced, then the second online attempt will
* trigger the FMA fault that we skipped earlier.
*
* On Linux udev provides a disk insert for both the disk and the partition.
*/
#include <ctype.h>
#include <fcntl.h>
#include <libnvpair.h>
#include <libzfs.h>
#include <libzutil.h>
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <sys/list.h>
#include <sys/sunddi.h>
#include <sys/sysevent/eventdefs.h>
#include <sys/sysevent/dev.h>
#include <thread_pool.h>
#include <pthread.h>
#include <unistd.h>
#include <errno.h>
#include "zfs_agents.h"
#include "../zed_log.h"
#define DEV_BYID_PATH "/dev/disk/by-id/"
#define DEV_BYPATH_PATH "/dev/disk/by-path/"
#define DEV_BYVDEV_PATH "/dev/disk/by-vdev/"
typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
libzfs_handle_t *g_zfshdl;
list_t g_pool_list; /* list of unavailable pools at initialization */
list_t g_device_list; /* list of disks with asynchronous label request */
tpool_t *g_tpool;
boolean_t g_enumeration_done;
pthread_t g_zfs_tid; /* zfs_enum_pools() thread */
typedef struct unavailpool {
zpool_handle_t *uap_zhp;
list_node_t uap_node;
} unavailpool_t;
typedef struct pendingdev {
char pd_physpath[128];
list_node_t pd_node;
} pendingdev_t;
static int
zfs_toplevel_state(zpool_handle_t *zhp)
{
nvlist_t *nvroot;
vdev_stat_t *vs;
unsigned int c;
verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c) == 0);
return (vs->vs_state);
}
static int
zfs_unavail_pool(zpool_handle_t *zhp, void *data)
{
zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)",
zpool_get_name(zhp), (int)zfs_toplevel_state(zhp));
if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
unavailpool_t *uap;
uap = malloc(sizeof (unavailpool_t));
if (uap == NULL) {
perror("malloc");
exit(EXIT_FAILURE);
}
uap->uap_zhp = zhp;
list_insert_tail((list_t *)data, uap);
} else {
zpool_close(zhp);
}
return (0);
}
/*
* Two stage replace on Linux
* since we get disk notifications
* we can wait for partitioned disk slice to show up!
*
* First stage tags the disk, initiates async partitioning, and returns
* Second stage finds the tag and proceeds to ZFS labeling/replace
*
* disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach
*
* 1. physical match with no fs, no partition
* tag it top, partition disk
*
* 2. physical match again, see partition and tag
*
*/
/*
* The device associated with the given vdev (either by devid or physical path)
* has been added to the system. If 'isdisk' is set, then we only attempt a
* replacement if it's a whole disk. This also implies that we should label the
* disk first.
*
* First, we attempt to online the device (making sure to undo any spare
* operation when finished). If this succeeds, then we're done. If it fails,
* and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
* but that the label was not what we expected. If the 'autoreplace' property
* is enabled, then we relabel the disk (if specified), and attempt a 'zpool
* replace'. If the online is successful, but the new state is something else
* (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
* race, and we should avoid attempting to relabel the disk.
*
* Also can arrive here from a ESC_ZFS_VDEV_CHECK event
*/
static void
zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
{
const char *path;
vdev_state_t newstate;
nvlist_t *nvroot, *newvd;
pendingdev_t *device;
uint64_t wholedisk = 0ULL;
uint64_t offline = 0ULL, faulted = 0ULL;
uint64_t guid = 0ULL;
uint64_t is_spare = 0;
const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL;
char rawpath[PATH_MAX], fullpath[PATH_MAX];
char devpath[PATH_MAX];
int ret;
int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE;
boolean_t is_sd = B_FALSE;
boolean_t is_mpath_wholedisk = B_FALSE;
uint_t c;
vdev_stat_t *vs;
if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
return;
/* Skip healthy disks */
verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c) == 0);
if (vs->vs_state == VDEV_STATE_HEALTHY) {
zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.",
__func__, path);
return;
}
(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
&enc_sysfs_path);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare);
/*
* Special case:
*
* We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH
* entry in their config. For example, on this force-faulted disk:
*
* children[0]:
* type: 'disk'
* id: 0
* guid: 14309659774640089719
* path: '/dev/disk/by-vdev/L28'
* whole_disk: 0
* DTL: 654
* create_txg: 4
* com.delphix:vdev_zap_leaf: 1161
* faulted: 1
* aux_state: 'external'
* children[1]:
* type: 'disk'
* id: 1
* guid: 16002508084177980912
* path: '/dev/disk/by-vdev/L29'
* devid: 'dm-uuid-mpath-35000c500a61d68a3'
* phys_path: 'L29'
* vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
* whole_disk: 0
* DTL: 1028
* create_txg: 4
* com.delphix:vdev_zap_leaf: 131
*
* If the disk's path is a /dev/disk/by-vdev/ path, then we can infer
* the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name.
*/
if (physpath == NULL && path != NULL) {
/* If path begins with "/dev/disk/by-vdev/" ... */
if (strncmp(path, DEV_BYVDEV_PATH,
strlen(DEV_BYVDEV_PATH)) == 0) {
/* Set physpath to the char after "/dev/disk/by-vdev" */
physpath = &path[strlen(DEV_BYVDEV_PATH)];
}
}
/*
* We don't want to autoreplace offlined disks. However, we do want to
* replace force-faulted disks (`zpool offline -f`). Force-faulted
* disks have both offline=1 and faulted=1 in the nvlist.
*/
if (offline && !faulted) {
zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace",
__func__, path);
return;
}
is_mpath_wholedisk = is_mpath_whole_disk(path);
zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'"
" %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', "
"(guid %llu)",
zpool_get_name(zhp), path,
physpath ? physpath : "NULL",
wholedisk ? "is" : "not",
is_mpath_wholedisk? "is" : "not",
labeled ? "is" : "not",
enc_sysfs_path,
(long long unsigned int)guid);
/*
* The VDEV guid is preferred for identification (gets passed in path)
*/
if (guid != 0) {
(void) snprintf(fullpath, sizeof (fullpath), "%llu",
(long long unsigned int)guid);
} else {
/*
* otherwise use path sans partition suffix for whole disks
*/
(void) strlcpy(fullpath, path, sizeof (fullpath));
if (wholedisk) {
char *spath = zfs_strip_partition(fullpath);
if (!spath) {
zed_log_msg(LOG_INFO, "%s: Can't alloc",
__func__);
return;
}
(void) strlcpy(fullpath, spath, sizeof (fullpath));
free(spath);
}
}
if (is_spare)
online_flag |= ZFS_ONLINE_SPARE;
/*
* Attempt to online the device.
*/
if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 &&
(newstate == VDEV_STATE_HEALTHY ||
newstate == VDEV_STATE_DEGRADED)) {
zed_log_msg(LOG_INFO,
" zpool_vdev_online: vdev '%s' ('%s') is "
"%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ?
"HEALTHY" : "DEGRADED");
return;
}
/*
* vdev_id alias rule for using scsi_debug devices (FMA automated
* testing)
*/
if (physpath != NULL && strcmp("scsidebug", physpath) == 0)
is_sd = B_TRUE;
/*
* If the pool doesn't have the autoreplace property set, then use
* vdev online to trigger a FMA fault by posting an ereport.
*/
if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
!(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) {
(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
&newstate);
zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or "
"not a blank disk for '%s' ('%s')", fullpath,
physpath);
return;
}
/*
* Convert physical path into its current device node. Rawpath
* needs to be /dev/disk/by-vdev for a scsi_debug device since
* /dev/disk/by-path will not be present.
*/
(void) snprintf(rawpath, sizeof (rawpath), "%s%s",
is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath);
if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) {
zed_log_msg(LOG_INFO, " realpath: %s failed (%s)",
rawpath, strerror(errno));
(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
&newstate);
zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)",
fullpath, libzfs_error_description(g_zfshdl));
return;
}
/* Only autoreplace bad disks */
if ((vs->vs_state != VDEV_STATE_DEGRADED) &&
(vs->vs_state != VDEV_STATE_FAULTED) &&
(vs->vs_state != VDEV_STATE_CANT_OPEN)) {
zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in "
"a bad state (currently %llu)", vs->vs_state);
return;
}
nvlist_lookup_string(vdev, "new_devid", &new_devid);
if (is_mpath_wholedisk) {
/* Don't label device mapper or multipath disks. */
} else if (!labeled) {
/*
* we're auto-replacing a raw disk, so label it first
*/
char *leafname;
/*
* If this is a request to label a whole disk, then attempt to
* write out the label. Before we can label the disk, we need
* to map the physical string that was matched on to the under
* lying device node.
*
* If any part of this process fails, then do a force online
* to trigger a ZFS fault for the device (and any hot spare
* replacement).
*/
leafname = strrchr(devpath, '/') + 1;
/*
* If this is a request to label a whole disk, then attempt to
* write out the label.
*/
if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) {
zed_log_msg(LOG_INFO, " zpool_label_disk: could not "
"label '%s' (%s)", leafname,
libzfs_error_description(g_zfshdl));
(void) zpool_vdev_online(zhp, fullpath,
ZFS_ONLINE_FORCEFAULT, &newstate);
return;
}
/*
* The disk labeling is asynchronous on Linux. Just record
* this label request and return as there will be another
* disk add event for the partition after the labeling is
* completed.
*/
device = malloc(sizeof (pendingdev_t));
if (device == NULL) {
perror("malloc");
exit(EXIT_FAILURE);
}
(void) strlcpy(device->pd_physpath, physpath,
sizeof (device->pd_physpath));
list_insert_tail(&g_device_list, device);
zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)",
leafname, (u_longlong_t)guid);
return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */
} else /* labeled */ {
boolean_t found = B_FALSE;
/*
* match up with request above to label the disk
*/
for (device = list_head(&g_device_list); device != NULL;
device = list_next(&g_device_list, device)) {
if (strcmp(physpath, device->pd_physpath) == 0) {
list_remove(&g_device_list, device);
free(device);
found = B_TRUE;
break;
}
zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s",
physpath, device->pd_physpath);
}
if (!found) {
/* unexpected partition slice encountered */
zed_log_msg(LOG_INFO, "labeled disk %s unexpected here",
fullpath);
(void) zpool_vdev_online(zhp, fullpath,
ZFS_ONLINE_FORCEFAULT, &newstate);
return;
}
zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)",
physpath, (u_longlong_t)guid);
(void) snprintf(devpath, sizeof (devpath), "%s%s",
DEV_BYID_PATH, new_devid);
}
/*
* Construct the root vdev to pass to zpool_vdev_attach(). While adding
* the entire vdev structure is harmless, we construct a reduced set of
* path/physpath/wholedisk to keep it simple.
*/
if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) {
zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
return;
}
if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
nvlist_free(nvroot);
return;
}
if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 ||
(physpath != NULL && nvlist_add_string(newvd,
ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
(enc_sysfs_path != NULL && nvlist_add_string(newvd,
ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) ||
nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
(const nvlist_t **)&newvd, 1) != 0) {
zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs");
nvlist_free(newvd);
nvlist_free(nvroot);
return;
}
nvlist_free(newvd);
/*
* Wait for udev to verify the links exist, then auto-replace
* the leaf disk at same physical location.
*/
if (zpool_label_disk_wait(path, 3000) != 0) {
zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement "
"disk %s is missing", path);
nvlist_free(nvroot);
return;
}
/*
* Prefer sequential resilvering when supported (mirrors and dRAID),
* otherwise fallback to a traditional healing resilver.
*/
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE);
if (ret != 0) {
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot,
B_TRUE, B_FALSE);
}
zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)",
fullpath, path, (ret == 0) ? "no errors" :
libzfs_error_description(g_zfshdl));
nvlist_free(nvroot);
}
/*
* Utility functions to find a vdev matching given criteria.
*/
typedef struct dev_data {
const char *dd_compare;
const char *dd_prop;
zfs_process_func_t dd_func;
boolean_t dd_found;
boolean_t dd_islabeled;
uint64_t dd_pool_guid;
uint64_t dd_vdev_guid;
uint64_t dd_new_vdev_guid;
const char *dd_new_devid;
uint64_t dd_num_spares;
} dev_data_t;
static void
zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
{
dev_data_t *dp = data;
const char *path = NULL;
uint_t c, children;
nvlist_t **child;
uint64_t guid = 0;
uint64_t isspare = 0;
/*
* First iterate over any children.
*/
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0) {
for (c = 0; c < children; c++)
zfs_iter_vdev(zhp, child[c], data);
}
/*
* Iterate over any spares and cache devices
*/
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES,
&child, &children) == 0) {
for (c = 0; c < children; c++)
zfs_iter_vdev(zhp, child[c], data);
}
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE,
&child, &children) == 0) {
for (c = 0; c < children; c++)
zfs_iter_vdev(zhp, child[c], data);
}
/* once a vdev was matched and processed there is nothing left to do */
if (dp->dd_found && dp->dd_num_spares == 0)
return;
(void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid);
/*
* Match by GUID if available otherwise fallback to devid or physical
*/
if (dp->dd_vdev_guid != 0) {
if (guid != dp->dd_vdev_guid)
return;
zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid);
dp->dd_found = B_TRUE;
} else if (dp->dd_compare != NULL) {
/*
* NOTE: On Linux there is an event for partition, so unlike
* illumos, substring matching is not required to accommodate
* the partition suffix. An exact match will be present in
* the dp->dd_compare value.
* If the attached disk already contains a vdev GUID, it means
* the disk is not clean. In such a scenario, the physical path
* would be a match that makes the disk faulted when trying to
* online it. So, we would only want to proceed if either GUID
* matches with the last attached disk or the disk is in clean
* state.
*/
if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
strcmp(dp->dd_compare, path) != 0) {
return;
}
if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) {
zed_log_msg(LOG_INFO, " %s: no match (GUID:%llu"
" != vdev GUID:%llu)", __func__,
dp->dd_new_vdev_guid, guid);
return;
}
zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s",
dp->dd_prop, path);
dp->dd_found = B_TRUE;
/* pass the new devid for use by replacing code */
if (dp->dd_new_devid != NULL) {
(void) nvlist_add_string(nvl, "new_devid",
dp->dd_new_devid);
}
}
if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl,
ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
dp->dd_num_spares++;
(dp->dd_func)(zhp, nvl, dp->dd_islabeled);
}
static void
zfs_enable_ds(void *arg)
{
unavailpool_t *pool = (unavailpool_t *)arg;
(void) zpool_enable_datasets(pool->uap_zhp, NULL, 0);
zpool_close(pool->uap_zhp);
free(pool);
}
static int
zfs_iter_pool(zpool_handle_t *zhp, void *data)
{
nvlist_t *config, *nvl;
dev_data_t *dp = data;
uint64_t pool_guid;
unavailpool_t *pool;
zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)",
zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop);
/*
* For each vdev in this pool, look for a match to apply dd_func
*/
if ((config = zpool_get_config(zhp, NULL)) != NULL) {
if (dp->dd_pool_guid == 0 ||
(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
(void) nvlist_lookup_nvlist(config,
ZPOOL_CONFIG_VDEV_TREE, &nvl);
zfs_iter_vdev(zhp, nvl, data);
}
} else {
zed_log_msg(LOG_INFO, "%s: no config\n", __func__);
}
/*
* if this pool was originally unavailable,
* then enable its datasets asynchronously
*/
if (g_enumeration_done) {
for (pool = list_head(&g_pool_list); pool != NULL;
pool = list_next(&g_pool_list, pool)) {
if (strcmp(zpool_get_name(zhp),
zpool_get_name(pool->uap_zhp)))
continue;
if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
list_remove(&g_pool_list, pool);
(void) tpool_dispatch(g_tpool, zfs_enable_ds,
pool);
break;
}
}
}
zpool_close(zhp);
/* cease iteration after a match */
return (dp->dd_found && dp->dd_num_spares == 0);
}
/*
* Given a physical device location, iterate over all
* (pool, vdev) pairs which correspond to that location.
*/
static boolean_t
devphys_iter(const char *physical, const char *devid, zfs_process_func_t func,
boolean_t is_slice, uint64_t new_vdev_guid)
{
dev_data_t data = { 0 };
data.dd_compare = physical;
data.dd_func = func;
data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
data.dd_found = B_FALSE;
data.dd_islabeled = is_slice;
data.dd_new_devid = devid; /* used by auto replace code */
data.dd_new_vdev_guid = new_vdev_guid;
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (data.dd_found);
}
/*
* Given a device identifier, find any vdevs with a matching by-vdev
* path. Normally we shouldn't need this as the comparison would be
* made earlier in the devphys_iter(). For example, if we were replacing
* /dev/disk/by-vdev/L28, normally devphys_iter() would match the
* ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28"
* of the new disk config. However, we've seen cases where
* ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's
* an example of a real 2-disk mirror pool where one disk was force
* faulted:
*
* com.delphix:vdev_zap_top: 129
* children[0]:
* type: 'disk'
* id: 0
* guid: 14309659774640089719
* path: '/dev/disk/by-vdev/L28'
* whole_disk: 0
* DTL: 654
* create_txg: 4
* com.delphix:vdev_zap_leaf: 1161
* faulted: 1
* aux_state: 'external'
* children[1]:
* type: 'disk'
* id: 1
* guid: 16002508084177980912
* path: '/dev/disk/by-vdev/L29'
* devid: 'dm-uuid-mpath-35000c500a61d68a3'
* phys_path: 'L29'
* vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
* whole_disk: 0
* DTL: 1028
* create_txg: 4
* com.delphix:vdev_zap_leaf: 131
*
* So in the case above, the only thing we could compare is the path.
*
* We can do this because we assume by-vdev paths are authoritative as physical
* paths. We could not assume this for normal paths like /dev/sda since the
* physical location /dev/sda points to could change over time.
*/
static boolean_t
by_vdev_path_iter(const char *by_vdev_path, const char *devid,
zfs_process_func_t func, boolean_t is_slice)
{
dev_data_t data = { 0 };
data.dd_compare = by_vdev_path;
data.dd_func = func;
data.dd_prop = ZPOOL_CONFIG_PATH;
data.dd_found = B_FALSE;
data.dd_islabeled = is_slice;
data.dd_new_devid = devid;
if (strncmp(by_vdev_path, DEV_BYVDEV_PATH,
strlen(DEV_BYVDEV_PATH)) != 0) {
/* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */
return (B_FALSE);
}
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (data.dd_found);
}
/*
* Given a device identifier, find any vdevs with a matching devid.
* On Linux we can match devid directly which is always a whole disk.
*/
static boolean_t
devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice)
{
dev_data_t data = { 0 };
data.dd_compare = devid;
data.dd_func = func;
data.dd_prop = ZPOOL_CONFIG_DEVID;
data.dd_found = B_FALSE;
data.dd_islabeled = is_slice;
data.dd_new_devid = devid;
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (data.dd_found);
}
/*
* Given a device guid, find any vdevs with a matching guid.
*/
static boolean_t
guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid,
zfs_process_func_t func, boolean_t is_slice)
{
dev_data_t data = { 0 };
data.dd_func = func;
data.dd_found = B_FALSE;
data.dd_pool_guid = pool_guid;
data.dd_vdev_guid = vdev_guid;
data.dd_islabeled = is_slice;
data.dd_new_devid = devid;
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (data.dd_found);
}
/*
* Handle a EC_DEV_ADD.ESC_DISK event.
*
* illumos
* Expects: DEV_PHYS_PATH string in schema
* Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
*
* path: '/dev/dsk/c0t1d0s0' (persistent)
* devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a'
* phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a'
*
* linux
* provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema
* Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
*
* path: '/dev/sdc1' (not persistent)
* devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1'
* phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0'
*/
static int
zfs_deliver_add(nvlist_t *nvl)
{
const char *devpath = NULL, *devid = NULL;
uint64_t pool_guid = 0, vdev_guid = 0;
boolean_t is_slice;
/*
* Expecting a devid string and an optional physical location and guid
*/
if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) {
zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__);
return (-1);
}
(void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath);
(void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid);
(void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid);
is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0);
zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)",
devid, devpath ? devpath : "NULL", is_slice);
/*
* Iterate over all vdevs looking for a match in the following order:
* 1. ZPOOL_CONFIG_DEVID (identifies the unique disk)
* 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location).
* 3. ZPOOL_CONFIG_GUID (identifies unique vdev).
* 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since
* by-vdev paths represent physical paths).
*/
if (devid_iter(devid, zfs_process_add, is_slice))
return (0);
if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add,
is_slice, vdev_guid))
return (0);
if (vdev_guid != 0)
(void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add,
is_slice);
if (devpath != NULL) {
/* Can we match a /dev/disk/by-vdev/ path? */
char by_vdev_path[MAXPATHLEN];
snprintf(by_vdev_path, sizeof (by_vdev_path),
"/dev/disk/by-vdev/%s", devpath);
if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add,
is_slice))
return (0);
}
return (0);
}
/*
* Called when we receive a VDEV_CHECK event, which indicates a device could not
* be opened during initial pool open, but the autoreplace property was set on
* the pool. In this case, we treat it as if it were an add event.
*/
static int
zfs_deliver_check(nvlist_t *nvl)
{
dev_data_t data = { 0 };
if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
&data.dd_pool_guid) != 0 ||
nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
&data.dd_vdev_guid) != 0 ||
data.dd_vdev_guid == 0)
return (0);
zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu",
data.dd_pool_guid, data.dd_vdev_guid);
data.dd_func = zfs_process_add;
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (0);
}
/*
* Given a path to a vdev, lookup the vdev's physical size from its
* config nvlist.
*
* Returns the vdev's physical size in bytes on success, 0 on error.
*/
static uint64_t
vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path)
{
nvlist_t *nvl = NULL;
boolean_t avail_spare, l2cache, log;
vdev_stat_t *vs = NULL;
uint_t c;
nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
if (!nvl)
return (0);
verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c) == 0);
if (!vs) {
zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__,
vdev_path);
return (0);
}
return (vs->vs_pspace);
}
/*
* Given a path to a vdev, lookup if the vdev is a "whole disk" in the
* config nvlist. "whole disk" means that ZFS was passed a whole disk
* at pool creation time, which it partitioned up and has full control over.
* Thus a partition with wholedisk=1 set tells us that zfs created the
* partition at creation time. A partition without whole disk set would have
* been created by externally (like with fdisk) and passed to ZFS.
*
* Returns the whole disk value (either 0 or 1).
*/
static uint64_t
vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path)
{
nvlist_t *nvl = NULL;
boolean_t avail_spare, l2cache, log;
uint64_t wholedisk = 0;
nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
if (!nvl)
return (0);
(void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
return (wholedisk);
}
/*
* If the device size grew more than 1% then return true.
*/
#define DEVICE_GREW(oldsize, newsize) \
((newsize > oldsize) && \
((newsize / (newsize - oldsize)) <= 100))
static int
zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
{
boolean_t avail_spare, l2cache;
nvlist_t *udev_nvl = data;
nvlist_t *tgt;
int error;
const char *tmp_devname;
char devname[MAXPATHLEN] = "";
uint64_t guid;
if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
sprintf(devname, "%llu", (u_longlong_t)guid);
} else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH,
&tmp_devname) == 0) {
strlcpy(devname, tmp_devname, MAXPATHLEN);
zfs_append_partition(devname, MAXPATHLEN);
} else {
zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__);
}
zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'",
devname, zpool_get_name(zhp));
if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
&avail_spare, &l2cache, NULL)) != NULL) {
const char *path;
char fullpath[MAXPATHLEN];
uint64_t wholedisk = 0;
error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path);
if (error) {
zpool_close(zhp);
return (0);
}
(void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
&wholedisk);
if (wholedisk) {
char *tmp;
path = strrchr(path, '/');
if (path != NULL) {
tmp = zfs_strip_partition(path + 1);
if (tmp == NULL) {
zpool_close(zhp);
return (0);
}
} else {
zpool_close(zhp);
return (0);
}
(void) strlcpy(fullpath, tmp, sizeof (fullpath));
free(tmp);
/*
* We need to reopen the pool associated with this
* device so that the kernel can update the size of
* the expanded device. When expanding there is no
* need to restart the scrub from the beginning.
*/
boolean_t scrub_restart = B_FALSE;
(void) zpool_reopen_one(zhp, &scrub_restart);
} else {
(void) strlcpy(fullpath, path, sizeof (fullpath));
}
if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
vdev_state_t newstate;
if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) {
/*
* If this disk size has not changed, then
* there's no need to do an autoexpand. To
* check we look at the disk's size in its
* config, and compare it to the disk size
* that udev is reporting.
*/
uint64_t udev_size = 0, conf_size = 0,
wholedisk = 0, udev_parent_size = 0;
/*
* Get the size of our disk that udev is
* reporting.
*/
if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE,
&udev_size) != 0) {
udev_size = 0;
}
/*
* Get the size of our disk's parent device
* from udev (where sda1's parent is sda).
*/
if (nvlist_lookup_uint64(udev_nvl,
DEV_PARENT_SIZE, &udev_parent_size) != 0) {
udev_parent_size = 0;
}
conf_size = vdev_size_from_config(zhp,
fullpath);
wholedisk = vdev_whole_disk_from_config(zhp,
fullpath);
/*
* Only attempt an autoexpand if the vdev size
* changed. There are two different cases
* to consider.
*
* 1. wholedisk=1
* If you do a 'zpool create' on a whole disk
* (like /dev/sda), then zfs will create
* partitions on the disk (like /dev/sda1). In
* that case, wholedisk=1 will be set in the
* partition's nvlist config. So zed will need
* to see if your parent device (/dev/sda)
* expanded in size, and if so, then attempt
* the autoexpand.
*
* 2. wholedisk=0
* If you do a 'zpool create' on an existing
* partition, or a device that doesn't allow
* partitions, then wholedisk=0, and you will
* simply need to check if the device itself
* expanded in size.
*/
if (DEVICE_GREW(conf_size, udev_size) ||
(wholedisk && DEVICE_GREW(conf_size,
udev_parent_size))) {
error = zpool_vdev_online(zhp, fullpath,
0, &newstate);
zed_log_msg(LOG_INFO,
"%s: autoexpanding '%s' from %llu"
" to %llu bytes in pool '%s': %d",
__func__, fullpath, conf_size,
MAX(udev_size, udev_parent_size),
zpool_get_name(zhp), error);
}
}
}
zpool_close(zhp);
return (1);
}
zpool_close(zhp);
return (0);
}
/*
* This function handles the ESC_DEV_DLE device change event. Use the
* provided vdev guid when looking up a disk or partition, when the guid
* is not present assume the entire disk is owned by ZFS and append the
* expected -part1 partition information then lookup by physical path.
*/
static int
zfs_deliver_dle(nvlist_t *nvl)
{
const char *devname;
char name[MAXPATHLEN];
uint64_t guid;
if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
sprintf(name, "%llu", (u_longlong_t)guid);
} else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) {
strlcpy(name, devname, MAXPATHLEN);
zfs_append_partition(name, MAXPATHLEN);
} else {
sprintf(name, "unknown");
zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath");
}
if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) {
zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not "
"found", name);
return (1);
}
return (0);
}
/*
* syseventd daemon module event handler
*
* Handles syseventd daemon zfs device related events:
*
* EC_DEV_ADD.ESC_DISK
* EC_DEV_STATUS.ESC_DEV_DLE
* EC_ZFS.ESC_ZFS_VDEV_CHECK
*
* Note: assumes only one thread active at a time (not thread safe)
*/
static int
zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl)
{
int ret;
boolean_t is_check = B_FALSE, is_dle = B_FALSE;
if (strcmp(class, EC_DEV_ADD) == 0) {
/*
* We're mainly interested in disk additions, but we also listen
* for new loop devices, to allow for simplified testing.
*/
if (strcmp(subclass, ESC_DISK) != 0 &&
strcmp(subclass, ESC_LOFI) != 0)
return (0);
is_check = B_FALSE;
} else if (strcmp(class, EC_ZFS) == 0 &&
strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
/*
* This event signifies that a device failed to open
* during pool load, but the 'autoreplace' property was
* set, so we should pretend it's just been added.
*/
is_check = B_TRUE;
} else if (strcmp(class, EC_DEV_STATUS) == 0 &&
strcmp(subclass, ESC_DEV_DLE) == 0) {
is_dle = B_TRUE;
} else {
return (0);
}
if (is_dle)
ret = zfs_deliver_dle(nvl);
else if (is_check)
ret = zfs_deliver_check(nvl);
else
ret = zfs_deliver_add(nvl);
return (ret);
}
static void *
zfs_enum_pools(void *arg)
{
(void) arg;
(void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
/*
* Linux - instead of using a thread pool, each list entry
* will spawn a thread when an unavailable pool transitions
* to available. zfs_slm_fini will wait for these threads.
*/
g_enumeration_done = B_TRUE;
return (NULL);
}
/*
* called from zed daemon at startup
*
* sent messages from zevents or udev monitor
*
* For now, each agent has its own libzfs instance
*/
int
zfs_slm_init(void)
{
if ((g_zfshdl = libzfs_init()) == NULL)
return (-1);
/*
* collect a list of unavailable pools (asynchronously,
* since this can take a while)
*/
list_create(&g_pool_list, sizeof (struct unavailpool),
offsetof(struct unavailpool, uap_node));
if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) {
list_destroy(&g_pool_list);
libzfs_fini(g_zfshdl);
return (-1);
}
pthread_setname_np(g_zfs_tid, "enum-pools");
list_create(&g_device_list, sizeof (struct pendingdev),
offsetof(struct pendingdev, pd_node));
return (0);
}
void
zfs_slm_fini(void)
{
unavailpool_t *pool;
pendingdev_t *device;
/* wait for zfs_enum_pools thread to complete */
(void) pthread_join(g_zfs_tid, NULL);
/* destroy the thread pool */
if (g_tpool != NULL) {
tpool_wait(g_tpool);
tpool_destroy(g_tpool);
}
while ((pool = list_remove_head(&g_pool_list)) != NULL) {
zpool_close(pool->uap_zhp);
free(pool);
}
list_destroy(&g_pool_list);
while ((device = list_remove_head(&g_device_list)) != NULL)
free(device);
list_destroy(&g_device_list);
libzfs_fini(g_zfshdl);
}
void
zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl)
{
zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass);
(void) zfs_slm_deliver_event(class, subclass, nvl);
}