mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 19:19:32 +03:00
7dfc56d866
FreeBSD had this value tunable before the switch to the new OpenZFS. The tunable name has changed, breaking legacy compat. Restore legacy compat for this tunable, properly expose the tunable with the new name on all platforms, and document it in zfs-module-parameters(5). While here, clean up the documentation for zfetch_max_distance a bit. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ryan Moeller <ryan@iXsystems.com> Closes #11038
468 lines
14 KiB
C
468 lines
14 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_zfetch.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/kstat.h>
|
|
|
|
/*
|
|
* This tunable disables predictive prefetch. Note that it leaves "prescient"
|
|
* prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
|
|
* prescient prefetch never issues i/os that end up not being needed,
|
|
* so it can't hurt performance.
|
|
*/
|
|
|
|
int zfs_prefetch_disable = B_FALSE;
|
|
|
|
/* max # of streams per zfetch */
|
|
unsigned int zfetch_max_streams = 8;
|
|
/* min time before stream reclaim */
|
|
unsigned int zfetch_min_sec_reap = 2;
|
|
/* max bytes to prefetch per stream (default 8MB) */
|
|
unsigned int zfetch_max_distance = 8 * 1024 * 1024;
|
|
/* max bytes to prefetch indirects for per stream (default 64MB) */
|
|
unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
|
|
/* max number of bytes in an array_read in which we allow prefetching (1MB) */
|
|
unsigned long zfetch_array_rd_sz = 1024 * 1024;
|
|
|
|
typedef struct zfetch_stats {
|
|
kstat_named_t zfetchstat_hits;
|
|
kstat_named_t zfetchstat_misses;
|
|
kstat_named_t zfetchstat_max_streams;
|
|
kstat_named_t zfetchstat_max_completion_us;
|
|
kstat_named_t zfetchstat_last_completion_us;
|
|
kstat_named_t zfetchstat_io_issued;
|
|
} zfetch_stats_t;
|
|
|
|
static zfetch_stats_t zfetch_stats = {
|
|
{ "hits", KSTAT_DATA_UINT64 },
|
|
{ "misses", KSTAT_DATA_UINT64 },
|
|
{ "max_streams", KSTAT_DATA_UINT64 },
|
|
{ "max_completion_us", KSTAT_DATA_UINT64 },
|
|
{ "last_completion_us", KSTAT_DATA_UINT64 },
|
|
{ "io_issued", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
#define ZFETCHSTAT_BUMP(stat) \
|
|
atomic_inc_64(&zfetch_stats.stat.value.ui64)
|
|
#define ZFETCHSTAT_ADD(stat, val) \
|
|
atomic_add_64(&zfetch_stats.stat.value.ui64, val)
|
|
#define ZFETCHSTAT_SET(stat, val) \
|
|
zfetch_stats.stat.value.ui64 = val
|
|
#define ZFETCHSTAT_GET(stat) \
|
|
zfetch_stats.stat.value.ui64
|
|
|
|
|
|
kstat_t *zfetch_ksp;
|
|
|
|
void
|
|
zfetch_init(void)
|
|
{
|
|
zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
|
|
if (zfetch_ksp != NULL) {
|
|
zfetch_ksp->ks_data = &zfetch_stats;
|
|
kstat_install(zfetch_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
zfetch_fini(void)
|
|
{
|
|
if (zfetch_ksp != NULL) {
|
|
kstat_delete(zfetch_ksp);
|
|
zfetch_ksp = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This takes a pointer to a zfetch structure and a dnode. It performs the
|
|
* necessary setup for the zfetch structure, grokking data from the
|
|
* associated dnode.
|
|
*/
|
|
void
|
|
dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
|
|
{
|
|
if (zf == NULL)
|
|
return;
|
|
zf->zf_dnode = dno;
|
|
zf->zf_numstreams = 0;
|
|
|
|
list_create(&zf->zf_stream, sizeof (zstream_t),
|
|
offsetof(zstream_t, zs_node));
|
|
|
|
mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_fini(zstream_t *zs)
|
|
{
|
|
mutex_destroy(&zs->zs_lock);
|
|
kmem_free(zs, sizeof (*zs));
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
list_remove(&zf->zf_stream, zs);
|
|
dmu_zfetch_stream_fini(zs);
|
|
zf->zf_numstreams--;
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_orphan(zfetch_t *zf, zstream_t *zs)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
list_remove(&zf->zf_stream, zs);
|
|
zs->zs_fetch = NULL;
|
|
zf->zf_numstreams--;
|
|
}
|
|
|
|
/*
|
|
* Clean-up state associated with a zfetch structure (e.g. destroy the
|
|
* streams). This doesn't free the zfetch_t itself, that's left to the caller.
|
|
*/
|
|
void
|
|
dmu_zfetch_fini(zfetch_t *zf)
|
|
{
|
|
zstream_t *zs;
|
|
|
|
mutex_enter(&zf->zf_lock);
|
|
while ((zs = list_head(&zf->zf_stream)) != NULL)
|
|
dmu_zfetch_stream_orphan(zf, zs);
|
|
mutex_exit(&zf->zf_lock);
|
|
list_destroy(&zf->zf_stream);
|
|
mutex_destroy(&zf->zf_lock);
|
|
|
|
zf->zf_dnode = NULL;
|
|
}
|
|
|
|
/*
|
|
* If there aren't too many streams already, create a new stream.
|
|
* The "blkid" argument is the next block that we expect this stream to access.
|
|
* While we're here, clean up old streams (which haven't been
|
|
* accessed for at least zfetch_min_sec_reap seconds).
|
|
*/
|
|
static void
|
|
dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
|
|
{
|
|
zstream_t *zs_next;
|
|
hrtime_t now = gethrtime();
|
|
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
|
|
/*
|
|
* Clean up old streams.
|
|
*/
|
|
for (zstream_t *zs = list_head(&zf->zf_stream);
|
|
zs != NULL; zs = zs_next) {
|
|
zs_next = list_next(&zf->zf_stream, zs);
|
|
/*
|
|
* Skip gethrtime() call if there are still references
|
|
*/
|
|
if (zfs_refcount_count(&zs->zs_blocks) != 0)
|
|
continue;
|
|
if (((now - zs->zs_atime) / NANOSEC) >
|
|
zfetch_min_sec_reap)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
}
|
|
|
|
/*
|
|
* The maximum number of streams is normally zfetch_max_streams,
|
|
* but for small files we lower it such that it's at least possible
|
|
* for all the streams to be non-overlapping.
|
|
*
|
|
* If we are already at the maximum number of streams for this file,
|
|
* even after removing old streams, then don't create this stream.
|
|
*/
|
|
uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
|
|
zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
|
|
zfetch_max_distance));
|
|
if (zf->zf_numstreams >= max_streams) {
|
|
ZFETCHSTAT_BUMP(zfetchstat_max_streams);
|
|
return;
|
|
}
|
|
|
|
zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
|
|
zs->zs_blkid = blkid;
|
|
zs->zs_pf_blkid = blkid;
|
|
zs->zs_ipf_blkid = blkid;
|
|
zs->zs_atime = now;
|
|
zs->zs_fetch = zf;
|
|
zfs_refcount_create(&zs->zs_blocks);
|
|
mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
zf->zf_numstreams++;
|
|
list_insert_head(&zf->zf_stream, zs);
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_done(void *arg, boolean_t io_issued)
|
|
{
|
|
zstream_t *zs = arg;
|
|
|
|
if (zs->zs_start_time && io_issued) {
|
|
hrtime_t now = gethrtime();
|
|
hrtime_t delta = NSEC2USEC(now - zs->zs_start_time);
|
|
|
|
zs->zs_start_time = 0;
|
|
ZFETCHSTAT_SET(zfetchstat_last_completion_us, delta);
|
|
if (delta > ZFETCHSTAT_GET(zfetchstat_max_completion_us))
|
|
ZFETCHSTAT_SET(zfetchstat_max_completion_us, delta);
|
|
}
|
|
|
|
if (zfs_refcount_remove(&zs->zs_blocks, NULL) != 0)
|
|
return;
|
|
|
|
/*
|
|
* The parent fetch structure has gone away
|
|
*/
|
|
if (zs->zs_fetch == NULL)
|
|
dmu_zfetch_stream_fini(zs);
|
|
}
|
|
|
|
/*
|
|
* This is the predictive prefetch entry point. It associates dnode access
|
|
* specified with blkid and nblks arguments with prefetch stream, predicts
|
|
* further accesses based on that stats and initiates speculative prefetch.
|
|
* fetch_data argument specifies whether actual data blocks should be fetched:
|
|
* FALSE -- prefetch only indirect blocks for predicted data blocks;
|
|
* TRUE -- prefetch predicted data blocks plus following indirect blocks.
|
|
*/
|
|
void
|
|
dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
|
|
boolean_t have_lock)
|
|
{
|
|
zstream_t *zs;
|
|
int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
|
|
int64_t pf_ahead_blks, max_blks;
|
|
int epbs, max_dist_blks, pf_nblks, ipf_nblks, issued;
|
|
uint64_t end_of_access_blkid;
|
|
end_of_access_blkid = blkid + nblks;
|
|
spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
|
|
|
|
if (zfs_prefetch_disable)
|
|
return;
|
|
/*
|
|
* If we haven't yet loaded the indirect vdevs' mappings, we
|
|
* can only read from blocks that we carefully ensure are on
|
|
* concrete vdevs (or previously-loaded indirect vdevs). So we
|
|
* can't allow the predictive prefetcher to attempt reads of other
|
|
* blocks (e.g. of the MOS's dnode object).
|
|
*/
|
|
if (!spa_indirect_vdevs_loaded(spa))
|
|
return;
|
|
|
|
/*
|
|
* As a fast path for small (single-block) files, ignore access
|
|
* to the first block.
|
|
*/
|
|
if (!have_lock && blkid == 0)
|
|
return;
|
|
|
|
if (!have_lock)
|
|
rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
|
|
|
|
/*
|
|
* A fast path for small files for which no prefetch will
|
|
* happen.
|
|
*/
|
|
if (zf->zf_dnode->dn_maxblkid < 2) {
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return;
|
|
}
|
|
mutex_enter(&zf->zf_lock);
|
|
|
|
/*
|
|
* Find matching prefetch stream. Depending on whether the accesses
|
|
* are block-aligned, first block of the new access may either follow
|
|
* the last block of the previous access, or be equal to it.
|
|
*/
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
if (blkid == zs->zs_blkid || blkid + 1 == zs->zs_blkid) {
|
|
mutex_enter(&zs->zs_lock);
|
|
/*
|
|
* zs_blkid could have changed before we
|
|
* acquired zs_lock; re-check them here.
|
|
*/
|
|
if (blkid == zs->zs_blkid) {
|
|
break;
|
|
} else if (blkid + 1 == zs->zs_blkid) {
|
|
blkid++;
|
|
nblks--;
|
|
if (nblks == 0) {
|
|
/* Already prefetched this before. */
|
|
mutex_exit(&zs->zs_lock);
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock) {
|
|
rw_exit(&zf->zf_dnode->
|
|
dn_struct_rwlock);
|
|
}
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
mutex_exit(&zs->zs_lock);
|
|
}
|
|
}
|
|
|
|
if (zs == NULL) {
|
|
/*
|
|
* This access is not part of any existing stream. Create
|
|
* a new stream for it.
|
|
*/
|
|
ZFETCHSTAT_BUMP(zfetchstat_misses);
|
|
|
|
dmu_zfetch_stream_create(zf, end_of_access_blkid);
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This access was to a block that we issued a prefetch for on
|
|
* behalf of this stream. Issue further prefetches for this stream.
|
|
*
|
|
* Normally, we start prefetching where we stopped
|
|
* prefetching last (zs_pf_blkid). But when we get our first
|
|
* hit on this stream, zs_pf_blkid == zs_blkid, we don't
|
|
* want to prefetch the block we just accessed. In this case,
|
|
* start just after the block we just accessed.
|
|
*/
|
|
pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
|
|
|
|
/*
|
|
* Double our amount of prefetched data, but don't let the
|
|
* prefetch get further ahead than zfetch_max_distance.
|
|
*/
|
|
if (fetch_data) {
|
|
max_dist_blks =
|
|
zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
|
|
/*
|
|
* Previously, we were (zs_pf_blkid - blkid) ahead. We
|
|
* want to now be double that, so read that amount again,
|
|
* plus the amount we are catching up by (i.e. the amount
|
|
* read just now).
|
|
*/
|
|
pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
|
|
max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
|
|
pf_nblks = MIN(pf_ahead_blks, max_blks);
|
|
} else {
|
|
pf_nblks = 0;
|
|
}
|
|
|
|
zs->zs_pf_blkid = pf_start + pf_nblks;
|
|
|
|
/*
|
|
* Do the same for indirects, starting from where we stopped last,
|
|
* or where we will stop reading data blocks (and the indirects
|
|
* that point to them).
|
|
*/
|
|
ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
|
|
max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
|
|
/*
|
|
* We want to double our distance ahead of the data prefetch
|
|
* (or reader, if we are not prefetching data). Previously, we
|
|
* were (zs_ipf_blkid - blkid) ahead. To double that, we read
|
|
* that amount again, plus the amount we are catching up by
|
|
* (i.e. the amount read now + the amount of data prefetched now).
|
|
*/
|
|
pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
|
|
max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
|
|
ipf_nblks = MIN(pf_ahead_blks, max_blks);
|
|
zs->zs_ipf_blkid = ipf_start + ipf_nblks;
|
|
|
|
epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
|
|
ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
|
|
|
|
zs->zs_atime = gethrtime();
|
|
/* no prior reads in progress */
|
|
if (zfs_refcount_count(&zs->zs_blocks) == 0)
|
|
zs->zs_start_time = zs->zs_atime;
|
|
zs->zs_blkid = end_of_access_blkid;
|
|
zfs_refcount_add_many(&zs->zs_blocks, pf_nblks + ipf_iend - ipf_istart,
|
|
NULL);
|
|
mutex_exit(&zs->zs_lock);
|
|
mutex_exit(&zf->zf_lock);
|
|
issued = 0;
|
|
|
|
/*
|
|
* dbuf_prefetch() is asynchronous (even when it needs to read
|
|
* indirect blocks), but we still prefer to drop our locks before
|
|
* calling it to reduce the time we hold them.
|
|
*/
|
|
|
|
for (int i = 0; i < pf_nblks; i++) {
|
|
issued += dbuf_prefetch_impl(zf->zf_dnode, 0, pf_start + i,
|
|
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
|
|
dmu_zfetch_stream_done, zs);
|
|
}
|
|
for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
|
|
issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
|
|
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
|
|
dmu_zfetch_stream_done, zs);
|
|
}
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
ZFETCHSTAT_BUMP(zfetchstat_hits);
|
|
|
|
if (issued)
|
|
ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
|
|
"Disable all ZFS prefetching");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
|
|
"Max number of streams per zfetch");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
|
|
"Min time before stream reclaim");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
|
|
"Max bytes to prefetch per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
|
|
"Max bytes to prefetch indirects for per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, array_rd_sz, ULONG, ZMOD_RW,
|
|
"Number of bytes in a array_read");
|
|
/* END CSTYLED */
|