mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-17 10:01:01 +03:00
6955b40138
Object allocation performance can be improved for complex operations by providing an interface which returns the newly allocated dnode. This allows the caller to immediately use the dnode without incurring the expense of looking up the dnode by object number. The functions dmu_object_alloc_hold(), zap_create_hold(), and dmu_bonus_hold_by_dnode() were added for this purpose. The zap_create_* functions have been updated to take advantage of this new functionality. The dmu_bonus_hold_impl() function should really have never been included in sys/dmu.h and was removed. It's sole caller was converted to use dmu_bonus_hold_by_dnode(). The new symbols have been exported for use by Lustre. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed by: Matt Ahrens <mahrens@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8015
2897 lines
83 KiB
C
2897 lines
83 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
|
|
* Copyright 2014 HybridCluster. All rights reserved.
|
|
* Copyright 2016 RackTop Systems.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <zfs_fletcher.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/zfs_onexit.h>
|
|
#include <sys/dmu_recv.h>
|
|
#include <sys/dsl_destroy.h>
|
|
#include <sys/blkptr.h>
|
|
#include <sys/dsl_bookmark.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/bqueue.h>
|
|
#include <sys/zvol.h>
|
|
#include <sys/policy.h>
|
|
|
|
int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
|
|
|
|
static char *dmu_recv_tag = "dmu_recv_tag";
|
|
const char *recv_clone_name = "%recv";
|
|
|
|
static void byteswap_record(dmu_replay_record_t *drr);
|
|
|
|
typedef struct dmu_recv_begin_arg {
|
|
const char *drba_origin;
|
|
dmu_recv_cookie_t *drba_cookie;
|
|
cred_t *drba_cred;
|
|
dsl_crypto_params_t *drba_dcp;
|
|
uint64_t drba_snapobj;
|
|
} dmu_recv_begin_arg_t;
|
|
|
|
static int
|
|
recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
|
|
uint64_t fromguid, uint64_t featureflags)
|
|
{
|
|
uint64_t val;
|
|
int error;
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
|
|
boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
|
|
boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
|
|
|
|
/* temporary clone name must not exist */
|
|
error = zap_lookup(dp->dp_meta_objset,
|
|
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
|
|
8, 1, &val);
|
|
if (error != ENOENT)
|
|
return (error == 0 ? EBUSY : error);
|
|
|
|
/* new snapshot name must not exist */
|
|
error = zap_lookup(dp->dp_meta_objset,
|
|
dsl_dataset_phys(ds)->ds_snapnames_zapobj,
|
|
drba->drba_cookie->drc_tosnap, 8, 1, &val);
|
|
if (error != ENOENT)
|
|
return (error == 0 ? EEXIST : error);
|
|
|
|
/*
|
|
* Check snapshot limit before receiving. We'll recheck again at the
|
|
* end, but might as well abort before receiving if we're already over
|
|
* the limit.
|
|
*
|
|
* Note that we do not check the file system limit with
|
|
* dsl_dir_fscount_check because the temporary %clones don't count
|
|
* against that limit.
|
|
*/
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
|
|
NULL, drba->drba_cred);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (fromguid != 0) {
|
|
dsl_dataset_t *snap;
|
|
uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
|
|
|
/* Can't perform a raw receive on top of a non-raw receive */
|
|
if (!encrypted && raw)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Encryption is incompatible with embedded data */
|
|
if (encrypted && embed)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Find snapshot in this dir that matches fromguid. */
|
|
while (obj != 0) {
|
|
error = dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap);
|
|
if (error != 0)
|
|
return (SET_ERROR(ENODEV));
|
|
if (snap->ds_dir != ds->ds_dir) {
|
|
dsl_dataset_rele(snap, FTAG);
|
|
return (SET_ERROR(ENODEV));
|
|
}
|
|
if (dsl_dataset_phys(snap)->ds_guid == fromguid)
|
|
break;
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_dataset_rele(snap, FTAG);
|
|
}
|
|
if (obj == 0)
|
|
return (SET_ERROR(ENODEV));
|
|
|
|
if (drba->drba_cookie->drc_force) {
|
|
drba->drba_snapobj = obj;
|
|
} else {
|
|
/*
|
|
* If we are not forcing, there must be no
|
|
* changes since fromsnap.
|
|
*/
|
|
if (dsl_dataset_modified_since_snap(ds, snap)) {
|
|
dsl_dataset_rele(snap, FTAG);
|
|
return (SET_ERROR(ETXTBSY));
|
|
}
|
|
drba->drba_snapobj = ds->ds_prev->ds_object;
|
|
}
|
|
|
|
dsl_dataset_rele(snap, FTAG);
|
|
} else {
|
|
/* if full, then must be forced */
|
|
if (!drba->drba_cookie->drc_force)
|
|
return (SET_ERROR(EEXIST));
|
|
|
|
/*
|
|
* We don't support using zfs recv -F to blow away
|
|
* encrypted filesystems. This would require the
|
|
* dsl dir to point to the old encryption key and
|
|
* the new one at the same time during the receive.
|
|
*/
|
|
if ((!encrypted && raw) || encrypted)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* Perform the same encryption checks we would if
|
|
* we were creating a new dataset from scratch.
|
|
*/
|
|
if (!raw) {
|
|
boolean_t will_encrypt;
|
|
|
|
error = dmu_objset_create_crypt_check(
|
|
ds->ds_dir->dd_parent, drba->drba_dcp,
|
|
&will_encrypt);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (will_encrypt && embed)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
drba->drba_snapobj = 0;
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
static int
|
|
dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
|
uint64_t fromguid = drrb->drr_fromguid;
|
|
int flags = drrb->drr_flags;
|
|
ds_hold_flags_t dsflags = 0;
|
|
int error;
|
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
|
dsl_dataset_t *ds;
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
|
|
/* already checked */
|
|
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
|
ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
|
|
|
|
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
|
|
DMU_COMPOUNDSTREAM ||
|
|
drrb->drr_type >= DMU_OST_NUMTYPES ||
|
|
((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Verify pool version supports SA if SA_SPILL feature set */
|
|
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
|
|
spa_version(dp->dp_spa) < SPA_VERSION_SA)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (drba->drba_cookie->drc_resumable &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
|
|
* record to a plain WRITE record, so the pool must have the
|
|
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
|
|
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* The receiving code doesn't know how to translate large blocks
|
|
* to smaller ones, so the pool must have the LARGE_BLOCKS
|
|
* feature enabled if the stream has LARGE_BLOCKS. Same with
|
|
* large dnodes.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
/* raw receives require the encryption feature */
|
|
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/* embedded data is incompatible with encryption and raw recv */
|
|
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
|
|
return (SET_ERROR(EINVAL));
|
|
} else {
|
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
|
}
|
|
|
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
|
if (error == 0) {
|
|
/* target fs already exists; recv into temp clone */
|
|
|
|
/* Can't recv a clone into an existing fs */
|
|
if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
error = recv_begin_check_existing_impl(drba, ds, fromguid,
|
|
featureflags);
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
} else if (error == ENOENT) {
|
|
/* target fs does not exist; must be a full backup or clone */
|
|
char buf[ZFS_MAX_DATASET_NAME_LEN];
|
|
|
|
/*
|
|
* If it's a non-clone incremental, we are missing the
|
|
* target fs, so fail the recv.
|
|
*/
|
|
if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
|
|
drba->drba_origin))
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
/*
|
|
* If we're receiving a full send as a clone, and it doesn't
|
|
* contain all the necessary free records and freeobject
|
|
* records, reject it.
|
|
*/
|
|
if (fromguid == 0 && drba->drba_origin &&
|
|
!(flags & DRR_FLAG_FREERECORDS))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Open the parent of tofs */
|
|
ASSERT3U(strlen(tofs), <, sizeof (buf));
|
|
(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
|
|
error = dsl_dataset_hold_flags(dp, buf, dsflags, FTAG, &ds);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
|
|
drba->drba_origin == NULL) {
|
|
boolean_t will_encrypt;
|
|
|
|
/*
|
|
* Check that we aren't breaking any encryption rules
|
|
* and that we have all the parameters we need to
|
|
* create an encrypted dataset if necessary. If we are
|
|
* making an encrypted dataset the stream can't have
|
|
* embedded data.
|
|
*/
|
|
error = dmu_objset_create_crypt_check(ds->ds_dir,
|
|
drba->drba_dcp, &will_encrypt);
|
|
if (error != 0) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
if (will_encrypt &&
|
|
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check filesystem and snapshot limits before receiving. We'll
|
|
* recheck snapshot limits again at the end (we create the
|
|
* filesystems and increment those counts during begin_sync).
|
|
*/
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
|
|
ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
|
|
if (error != 0) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
|
|
ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
|
|
if (error != 0) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
if (drba->drba_origin != NULL) {
|
|
dsl_dataset_t *origin;
|
|
|
|
error = dsl_dataset_hold_flags(dp, drba->drba_origin,
|
|
dsflags, FTAG, &origin);
|
|
if (error != 0) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (error);
|
|
}
|
|
if (!origin->ds_is_snapshot) {
|
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
|
|
fromguid != 0) {
|
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(ENODEV));
|
|
}
|
|
if (origin->ds_dir->dd_crypto_obj != 0 &&
|
|
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
|
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
dsl_dataset_rele_flags(origin,
|
|
dsflags, FTAG);
|
|
}
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
error = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
|
dsl_dataset_t *ds, *newds;
|
|
objset_t *os;
|
|
uint64_t dsobj;
|
|
ds_hold_flags_t dsflags = 0;
|
|
int error;
|
|
uint64_t crflags = 0;
|
|
dsl_crypto_params_t dummy_dcp = { 0 };
|
|
dsl_crypto_params_t *dcp = drba->drba_dcp;
|
|
|
|
if (drrb->drr_flags & DRR_FLAG_CI_DATA)
|
|
crflags |= DS_FLAG_CI_DATASET;
|
|
|
|
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
|
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
|
|
|
/*
|
|
* Raw, non-incremental recvs always use a dummy dcp with
|
|
* the raw cmd set. Raw incremental recvs do not use a dcp
|
|
* since the encryption parameters are already set in stone.
|
|
*/
|
|
if (dcp == NULL && drba->drba_snapobj == 0 &&
|
|
drba->drba_origin == NULL) {
|
|
ASSERT3P(dcp, ==, NULL);
|
|
dcp = &dummy_dcp;
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW)
|
|
dcp->cp_cmd = DCP_CMD_RAW_RECV;
|
|
}
|
|
|
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
|
if (error == 0) {
|
|
/* create temporary clone */
|
|
dsl_dataset_t *snap = NULL;
|
|
|
|
if (drba->drba_snapobj != 0) {
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
drba->drba_snapobj, FTAG, &snap));
|
|
ASSERT3P(dcp, ==, NULL);
|
|
}
|
|
|
|
dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
|
|
snap, crflags, drba->drba_cred, dcp, tx);
|
|
if (drba->drba_snapobj != 0)
|
|
dsl_dataset_rele(snap, FTAG);
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
} else {
|
|
dsl_dir_t *dd;
|
|
const char *tail;
|
|
dsl_dataset_t *origin = NULL;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
|
|
|
|
if (drba->drba_origin != NULL) {
|
|
VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
|
|
FTAG, &origin));
|
|
ASSERT3P(dcp, ==, NULL);
|
|
}
|
|
|
|
/* Create new dataset. */
|
|
dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
|
|
origin, crflags, drba->drba_cred, dcp, tx);
|
|
if (origin != NULL)
|
|
dsl_dataset_rele(origin, FTAG);
|
|
dsl_dir_rele(dd, FTAG);
|
|
drba->drba_cookie->drc_newfs = B_TRUE;
|
|
}
|
|
|
|
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds));
|
|
VERIFY0(dmu_objset_from_ds(newds, &os));
|
|
|
|
if (drba->drba_cookie->drc_resumable) {
|
|
dsl_dataset_zapify(newds, tx);
|
|
if (drrb->drr_fromguid != 0) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
|
|
8, 1, &drrb->drr_fromguid, tx));
|
|
}
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
|
|
8, 1, &drrb->drr_toguid, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
|
|
1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
|
|
uint64_t one = 1;
|
|
uint64_t zero = 0;
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
|
|
8, 1, &one, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
|
|
8, 1, &zero, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
|
|
8, 1, &zero, tx));
|
|
if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
|
|
8, 1, &one, tx));
|
|
}
|
|
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
|
|
8, 1, &one, tx));
|
|
}
|
|
if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
|
|
8, 1, &one, tx));
|
|
}
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
|
|
8, 1, &one, tx));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Usually the os->os_encrypted value is tied to the presence of a
|
|
* DSL Crypto Key object in the dd. However, that will not be received
|
|
* until dmu_recv_stream(), so we set the value manually for now.
|
|
*/
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
os->os_encrypted = B_TRUE;
|
|
drba->drba_cookie->drc_raw = B_TRUE;
|
|
}
|
|
|
|
dmu_buf_will_dirty(newds->ds_dbuf, tx);
|
|
dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
|
|
|
|
/*
|
|
* If we actually created a non-clone, we need to create the objset
|
|
* in our new dataset. If this is a raw send we postpone this until
|
|
* dmu_recv_stream() so that we can allocate the metadnode with the
|
|
* properties from the DRR_BEGIN payload.
|
|
*/
|
|
rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
|
|
if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
|
|
(featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
|
|
(void) dmu_objset_create_impl(dp->dp_spa,
|
|
newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
|
|
}
|
|
rrw_exit(&newds->ds_bp_rwlock, FTAG);
|
|
|
|
drba->drba_cookie->drc_ds = newds;
|
|
|
|
spa_history_log_internal_ds(newds, "receive", tx, "");
|
|
}
|
|
|
|
static int
|
|
dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
|
int error;
|
|
ds_hold_flags_t dsflags = 0;
|
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
|
dsl_dataset_t *ds;
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
|
|
/* already checked */
|
|
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
|
ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
|
|
|
|
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
|
|
DMU_COMPOUNDSTREAM ||
|
|
drrb->drr_type >= DMU_OST_NUMTYPES)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Verify pool version supports SA if SA_SPILL feature set */
|
|
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
|
|
spa_version(dp->dp_spa) < SPA_VERSION_SA)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
|
|
* record to a plain WRITE record, so the pool must have the
|
|
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
|
|
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* The receiving code doesn't know how to translate large blocks
|
|
* to smaller ones, so the pool must have the LARGE_BLOCKS
|
|
* feature enabled if the stream has LARGE_BLOCKS. Same with
|
|
* large dnodes.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/* 6 extra bytes for /%recv */
|
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
|
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
|
|
tofs, recv_clone_name);
|
|
|
|
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
|
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
|
|
|
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
|
|
/* %recv does not exist; continue in tofs */
|
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
/* check that ds is marked inconsistent */
|
|
if (!DS_IS_INCONSISTENT(ds)) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/* check that there is resuming data, and that the toguid matches */
|
|
if (!dsl_dataset_is_zapified(ds)) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
uint64_t val;
|
|
error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
|
|
if (error != 0 || drrb->drr_toguid != val) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Check if the receive is still running. If so, it will be owned.
|
|
* Note that nothing else can own the dataset (e.g. after the receive
|
|
* fails) because it will be marked inconsistent.
|
|
*/
|
|
if (dsl_dataset_has_owner(ds)) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EBUSY));
|
|
}
|
|
|
|
/* There should not be any snapshots of this fs yet. */
|
|
if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Note: resume point will be checked when we process the first WRITE
|
|
* record.
|
|
*/
|
|
|
|
/* check that the origin matches */
|
|
val = 0;
|
|
(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
|
|
if (drrb->drr_fromguid != val) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
|
dsl_dataset_t *ds;
|
|
objset_t *os;
|
|
ds_hold_flags_t dsflags = 0;
|
|
uint64_t dsobj;
|
|
/* 6 extra bytes for /%recv */
|
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
|
|
|
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
|
|
tofs, recv_clone_name);
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
drba->drba_cookie->drc_raw = B_TRUE;
|
|
} else {
|
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
|
}
|
|
|
|
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
|
|
/* %recv does not exist; continue in tofs */
|
|
VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds));
|
|
drba->drba_cookie->drc_newfs = B_TRUE;
|
|
}
|
|
|
|
/* clear the inconsistent flag so that we can own it */
|
|
ASSERT(DS_IS_INCONSISTENT(ds));
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
|
|
dsobj = ds->ds_object;
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
|
|
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds));
|
|
VERIFY0(dmu_objset_from_ds(ds, &os));
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
|
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
|
|
drba->drba_cookie->drc_raw);
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
|
|
drba->drba_cookie->drc_ds = ds;
|
|
|
|
spa_history_log_internal_ds(ds, "resume receive", tx, "");
|
|
}
|
|
|
|
/*
|
|
* NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
|
|
* succeeds; otherwise we will leak the holds on the datasets.
|
|
*/
|
|
int
|
|
dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
|
|
boolean_t force, boolean_t resumable, nvlist_t *localprops,
|
|
nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc)
|
|
{
|
|
dmu_recv_begin_arg_t drba = { 0 };
|
|
|
|
bzero(drc, sizeof (dmu_recv_cookie_t));
|
|
drc->drc_drr_begin = drr_begin;
|
|
drc->drc_drrb = &drr_begin->drr_u.drr_begin;
|
|
drc->drc_tosnap = tosnap;
|
|
drc->drc_tofs = tofs;
|
|
drc->drc_force = force;
|
|
drc->drc_resumable = resumable;
|
|
drc->drc_cred = CRED();
|
|
drc->drc_clone = (origin != NULL);
|
|
|
|
if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
|
|
drc->drc_byteswap = B_TRUE;
|
|
(void) fletcher_4_incremental_byteswap(drr_begin,
|
|
sizeof (dmu_replay_record_t), &drc->drc_cksum);
|
|
byteswap_record(drr_begin);
|
|
} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
|
|
(void) fletcher_4_incremental_native(drr_begin,
|
|
sizeof (dmu_replay_record_t), &drc->drc_cksum);
|
|
} else {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
drba.drba_origin = origin;
|
|
drba.drba_cookie = drc;
|
|
drba.drba_cred = CRED();
|
|
|
|
if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
|
|
DMU_BACKUP_FEATURE_RESUMING) {
|
|
return (dsl_sync_task(tofs,
|
|
dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
|
|
&drba, 5, ZFS_SPACE_CHECK_NORMAL));
|
|
} else {
|
|
int err;
|
|
|
|
/*
|
|
* For non-raw, non-incremental, non-resuming receives the
|
|
* user can specify encryption parameters on the command line
|
|
* with "zfs recv -o". For these receives we create a dcp and
|
|
* pass it to the sync task. Creating the dcp will implicitly
|
|
* remove the encryption params from the localprops nvlist,
|
|
* which avoids errors when trying to set these normally
|
|
* read-only properties. Any other kind of receive that
|
|
* attempts to set these properties will fail as a result.
|
|
*/
|
|
if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
|
|
DMU_BACKUP_FEATURE_RAW) == 0 &&
|
|
origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
|
|
err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
|
|
localprops, hidden_args, &drba.drba_dcp);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
|
|
err = dsl_sync_task(tofs,
|
|
dmu_recv_begin_check, dmu_recv_begin_sync,
|
|
&drba, 5, ZFS_SPACE_CHECK_NORMAL);
|
|
dsl_crypto_params_free(drba.drba_dcp, !!err);
|
|
|
|
return (err);
|
|
}
|
|
}
|
|
|
|
struct receive_record_arg {
|
|
dmu_replay_record_t header;
|
|
void *payload; /* Pointer to a buffer containing the payload */
|
|
/*
|
|
* If the record is a write, pointer to the arc_buf_t containing the
|
|
* payload.
|
|
*/
|
|
arc_buf_t *arc_buf;
|
|
int payload_size;
|
|
uint64_t bytes_read; /* bytes read from stream when record created */
|
|
boolean_t eos_marker; /* Marks the end of the stream */
|
|
bqueue_node_t node;
|
|
};
|
|
|
|
struct receive_writer_arg {
|
|
objset_t *os;
|
|
boolean_t byteswap;
|
|
bqueue_t q;
|
|
|
|
/*
|
|
* These three args are used to signal to the main thread that we're
|
|
* done.
|
|
*/
|
|
kmutex_t mutex;
|
|
kcondvar_t cv;
|
|
boolean_t done;
|
|
|
|
int err;
|
|
/* A map from guid to dataset to help handle dedup'd streams. */
|
|
avl_tree_t *guid_to_ds_map;
|
|
boolean_t resumable;
|
|
boolean_t raw;
|
|
uint64_t last_object;
|
|
uint64_t last_offset;
|
|
uint64_t max_object; /* highest object ID referenced in stream */
|
|
uint64_t bytes_read; /* bytes read when current record created */
|
|
|
|
/* Encryption parameters for the last received DRR_OBJECT_RANGE */
|
|
boolean_t or_crypt_params_present;
|
|
uint64_t or_firstobj;
|
|
uint64_t or_numslots;
|
|
uint8_t or_salt[ZIO_DATA_SALT_LEN];
|
|
uint8_t or_iv[ZIO_DATA_IV_LEN];
|
|
uint8_t or_mac[ZIO_DATA_MAC_LEN];
|
|
boolean_t or_byteorder;
|
|
};
|
|
|
|
struct objlist {
|
|
list_t list; /* List of struct receive_objnode. */
|
|
/*
|
|
* Last object looked up. Used to assert that objects are being looked
|
|
* up in ascending order.
|
|
*/
|
|
uint64_t last_lookup;
|
|
};
|
|
|
|
struct receive_objnode {
|
|
list_node_t node;
|
|
uint64_t object;
|
|
};
|
|
|
|
struct receive_arg {
|
|
objset_t *os;
|
|
vnode_t *vp; /* The vnode to read the stream from */
|
|
uint64_t voff; /* The current offset in the stream */
|
|
uint64_t bytes_read;
|
|
/*
|
|
* A record that has had its payload read in, but hasn't yet been handed
|
|
* off to the worker thread.
|
|
*/
|
|
struct receive_record_arg *rrd;
|
|
/* A record that has had its header read in, but not its payload. */
|
|
struct receive_record_arg *next_rrd;
|
|
zio_cksum_t cksum;
|
|
zio_cksum_t prev_cksum;
|
|
int err;
|
|
boolean_t byteswap;
|
|
boolean_t raw;
|
|
uint64_t featureflags;
|
|
/* Sorted list of objects not to issue prefetches for. */
|
|
struct objlist ignore_objlist;
|
|
};
|
|
|
|
typedef struct guid_map_entry {
|
|
uint64_t guid;
|
|
boolean_t raw;
|
|
dsl_dataset_t *gme_ds;
|
|
avl_node_t avlnode;
|
|
} guid_map_entry_t;
|
|
|
|
static int
|
|
guid_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
|
|
const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
|
|
|
|
return (AVL_CMP(gmep1->guid, gmep2->guid));
|
|
}
|
|
|
|
static void
|
|
free_guid_map_onexit(void *arg)
|
|
{
|
|
avl_tree_t *ca = arg;
|
|
void *cookie = NULL;
|
|
guid_map_entry_t *gmep;
|
|
|
|
while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
|
|
ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT;
|
|
|
|
if (gmep->raw) {
|
|
gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE;
|
|
dsflags &= ~DS_HOLD_FLAG_DECRYPT;
|
|
}
|
|
|
|
dsl_dataset_disown(gmep->gme_ds, dsflags, gmep);
|
|
kmem_free(gmep, sizeof (guid_map_entry_t));
|
|
}
|
|
avl_destroy(ca);
|
|
kmem_free(ca, sizeof (avl_tree_t));
|
|
}
|
|
|
|
static int
|
|
receive_read(struct receive_arg *ra, int len, void *buf)
|
|
{
|
|
int done = 0;
|
|
|
|
/*
|
|
* The code doesn't rely on this (lengths being multiples of 8). See
|
|
* comment in dump_bytes.
|
|
*/
|
|
ASSERT(len % 8 == 0 ||
|
|
(ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
|
|
|
|
while (done < len) {
|
|
ssize_t resid;
|
|
|
|
ra->err = vn_rdwr(UIO_READ, ra->vp,
|
|
(char *)buf + done, len - done,
|
|
ra->voff, UIO_SYSSPACE, FAPPEND,
|
|
RLIM64_INFINITY, CRED(), &resid);
|
|
|
|
if (resid == len - done) {
|
|
/*
|
|
* Note: ECKSUM indicates that the receive
|
|
* was interrupted and can potentially be resumed.
|
|
*/
|
|
ra->err = SET_ERROR(ECKSUM);
|
|
}
|
|
ra->voff += len - done - resid;
|
|
done = len - resid;
|
|
if (ra->err != 0)
|
|
return (ra->err);
|
|
}
|
|
|
|
ra->bytes_read += len;
|
|
|
|
ASSERT3U(done, ==, len);
|
|
return (0);
|
|
}
|
|
|
|
noinline static void
|
|
byteswap_record(dmu_replay_record_t *drr)
|
|
{
|
|
#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
|
|
#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
|
|
drr->drr_type = BSWAP_32(drr->drr_type);
|
|
drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
|
|
|
|
switch (drr->drr_type) {
|
|
case DRR_BEGIN:
|
|
DO64(drr_begin.drr_magic);
|
|
DO64(drr_begin.drr_versioninfo);
|
|
DO64(drr_begin.drr_creation_time);
|
|
DO32(drr_begin.drr_type);
|
|
DO32(drr_begin.drr_flags);
|
|
DO64(drr_begin.drr_toguid);
|
|
DO64(drr_begin.drr_fromguid);
|
|
break;
|
|
case DRR_OBJECT:
|
|
DO64(drr_object.drr_object);
|
|
DO32(drr_object.drr_type);
|
|
DO32(drr_object.drr_bonustype);
|
|
DO32(drr_object.drr_blksz);
|
|
DO32(drr_object.drr_bonuslen);
|
|
DO32(drr_object.drr_raw_bonuslen);
|
|
DO64(drr_object.drr_toguid);
|
|
DO64(drr_object.drr_maxblkid);
|
|
break;
|
|
case DRR_FREEOBJECTS:
|
|
DO64(drr_freeobjects.drr_firstobj);
|
|
DO64(drr_freeobjects.drr_numobjs);
|
|
DO64(drr_freeobjects.drr_toguid);
|
|
break;
|
|
case DRR_WRITE:
|
|
DO64(drr_write.drr_object);
|
|
DO32(drr_write.drr_type);
|
|
DO64(drr_write.drr_offset);
|
|
DO64(drr_write.drr_logical_size);
|
|
DO64(drr_write.drr_toguid);
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
|
|
DO64(drr_write.drr_key.ddk_prop);
|
|
DO64(drr_write.drr_compressed_size);
|
|
break;
|
|
case DRR_WRITE_BYREF:
|
|
DO64(drr_write_byref.drr_object);
|
|
DO64(drr_write_byref.drr_offset);
|
|
DO64(drr_write_byref.drr_length);
|
|
DO64(drr_write_byref.drr_toguid);
|
|
DO64(drr_write_byref.drr_refguid);
|
|
DO64(drr_write_byref.drr_refobject);
|
|
DO64(drr_write_byref.drr_refoffset);
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
|
|
drr_key.ddk_cksum);
|
|
DO64(drr_write_byref.drr_key.ddk_prop);
|
|
break;
|
|
case DRR_WRITE_EMBEDDED:
|
|
DO64(drr_write_embedded.drr_object);
|
|
DO64(drr_write_embedded.drr_offset);
|
|
DO64(drr_write_embedded.drr_length);
|
|
DO64(drr_write_embedded.drr_toguid);
|
|
DO32(drr_write_embedded.drr_lsize);
|
|
DO32(drr_write_embedded.drr_psize);
|
|
break;
|
|
case DRR_FREE:
|
|
DO64(drr_free.drr_object);
|
|
DO64(drr_free.drr_offset);
|
|
DO64(drr_free.drr_length);
|
|
DO64(drr_free.drr_toguid);
|
|
break;
|
|
case DRR_SPILL:
|
|
DO64(drr_spill.drr_object);
|
|
DO64(drr_spill.drr_length);
|
|
DO64(drr_spill.drr_toguid);
|
|
DO64(drr_spill.drr_compressed_size);
|
|
DO32(drr_spill.drr_type);
|
|
break;
|
|
case DRR_OBJECT_RANGE:
|
|
DO64(drr_object_range.drr_firstobj);
|
|
DO64(drr_object_range.drr_numslots);
|
|
DO64(drr_object_range.drr_toguid);
|
|
break;
|
|
case DRR_END:
|
|
DO64(drr_end.drr_toguid);
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (drr->drr_type != DRR_BEGIN) {
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
|
|
}
|
|
|
|
#undef DO64
|
|
#undef DO32
|
|
}
|
|
|
|
static inline uint8_t
|
|
deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
|
|
{
|
|
if (bonus_type == DMU_OT_SA) {
|
|
return (1);
|
|
} else {
|
|
return (1 +
|
|
((DN_OLD_MAX_BONUSLEN -
|
|
MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
|
|
}
|
|
}
|
|
|
|
static void
|
|
save_resume_state(struct receive_writer_arg *rwa,
|
|
uint64_t object, uint64_t offset, dmu_tx_t *tx)
|
|
{
|
|
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
|
|
|
if (!rwa->resumable)
|
|
return;
|
|
|
|
/*
|
|
* We use ds_resume_bytes[] != 0 to indicate that we need to
|
|
* update this on disk, so it must not be 0.
|
|
*/
|
|
ASSERT(rwa->bytes_read != 0);
|
|
|
|
/*
|
|
* We only resume from write records, which have a valid
|
|
* (non-meta-dnode) object number.
|
|
*/
|
|
ASSERT(object != 0);
|
|
|
|
/*
|
|
* For resuming to work correctly, we must receive records in order,
|
|
* sorted by object,offset. This is checked by the callers, but
|
|
* assert it here for good measure.
|
|
*/
|
|
ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
|
|
ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
|
|
offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
|
|
ASSERT3U(rwa->bytes_read, >=,
|
|
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
|
|
|
|
rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
|
|
rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
|
|
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
|
|
}
|
|
|
|
noinline static int
|
|
receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
|
|
void *data)
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_tx_t *tx;
|
|
uint64_t object;
|
|
int err;
|
|
uint8_t dn_slots = drro->drr_dn_slots != 0 ?
|
|
drro->drr_dn_slots : DNODE_MIN_SLOTS;
|
|
|
|
if (drro->drr_type == DMU_OT_NONE ||
|
|
!DMU_OT_IS_VALID(drro->drr_type) ||
|
|
!DMU_OT_IS_VALID(drro->drr_bonustype) ||
|
|
drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
|
|
drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
|
|
P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
|
|
drro->drr_blksz < SPA_MINBLOCKSIZE ||
|
|
drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
|
|
drro->drr_bonuslen >
|
|
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
|
|
dn_slots >
|
|
(spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (rwa->raw) {
|
|
/*
|
|
* We should have received a DRR_OBJECT_RANGE record
|
|
* containing this block and stored it in rwa.
|
|
*/
|
|
if (drro->drr_object < rwa->or_firstobj ||
|
|
drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
|
|
drro->drr_raw_bonuslen < drro->drr_bonuslen ||
|
|
drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
|
|
drro->drr_nlevels > DN_MAX_LEVELS ||
|
|
drro->drr_nblkptr > DN_MAX_NBLKPTR ||
|
|
DN_SLOTS_TO_BONUSLEN(dn_slots) <
|
|
drro->drr_raw_bonuslen)
|
|
return (SET_ERROR(EINVAL));
|
|
} else {
|
|
if (drro->drr_flags != 0 || drro->drr_raw_bonuslen != 0 ||
|
|
drro->drr_indblkshift != 0 || drro->drr_nlevels != 0 ||
|
|
drro->drr_nblkptr != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
err = dmu_object_info(rwa->os, drro->drr_object, &doi);
|
|
if (err != 0 && err != ENOENT && err != EEXIST)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drro->drr_object > rwa->max_object)
|
|
rwa->max_object = drro->drr_object;
|
|
|
|
/*
|
|
* If we are losing blkptrs or changing the block size this must
|
|
* be a new file instance. We must clear out the previous file
|
|
* contents before we can change this type of metadata in the dnode.
|
|
* Raw receives will also check that the indirect structure of the
|
|
* dnode hasn't changed.
|
|
*/
|
|
if (err == 0) {
|
|
uint32_t indblksz = drro->drr_indblkshift ?
|
|
1ULL << drro->drr_indblkshift : 0;
|
|
int nblkptr = deduce_nblkptr(drro->drr_bonustype,
|
|
drro->drr_bonuslen);
|
|
|
|
object = drro->drr_object;
|
|
|
|
/* nblkptr will be bounded by the bonus size and type */
|
|
if (rwa->raw && nblkptr != drro->drr_nblkptr)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drro->drr_blksz != doi.doi_data_block_size ||
|
|
nblkptr < doi.doi_nblkptr ||
|
|
dn_slots != doi.doi_dnodesize >> DNODE_SHIFT ||
|
|
(rwa->raw &&
|
|
(indblksz != doi.doi_metadata_block_size ||
|
|
drro->drr_nlevels < doi.doi_indirection))) {
|
|
err = dmu_free_long_range(rwa->os,
|
|
drro->drr_object, 0, DMU_OBJECT_END);
|
|
if (err != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* The dmu does not currently support decreasing nlevels
|
|
* on an object. For non-raw sends, this does not matter
|
|
* and the new object can just use the previous one's nlevels.
|
|
* For raw sends, however, the structure of the received dnode
|
|
* (including nlevels) must match that of the send side.
|
|
* Therefore, instead of using dmu_object_reclaim(), we must
|
|
* free the object completely and call dmu_object_claim_dnsize()
|
|
* instead.
|
|
*/
|
|
if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) ||
|
|
dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) {
|
|
err = dmu_free_long_object(rwa->os, drro->drr_object);
|
|
if (err != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
|
object = DMU_NEW_OBJECT;
|
|
}
|
|
} else if (err == EEXIST) {
|
|
/*
|
|
* The object requested is currently an interior slot of a
|
|
* multi-slot dnode. This will be resolved when the next txg
|
|
* is synced out, since the send stream will have told us
|
|
* to free this slot when we freed the associated dnode
|
|
* earlier in the stream.
|
|
*/
|
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
|
object = drro->drr_object;
|
|
} else {
|
|
/* object is free and we are about to allocate a new one */
|
|
object = DMU_NEW_OBJECT;
|
|
}
|
|
|
|
/*
|
|
* If this is a multi-slot dnode there is a chance that this
|
|
* object will expand into a slot that is already used by
|
|
* another object from the previous snapshot. We must free
|
|
* these objects before we attempt to allocate the new dnode.
|
|
*/
|
|
if (dn_slots > 1) {
|
|
boolean_t need_sync = B_FALSE;
|
|
|
|
for (uint64_t slot = drro->drr_object + 1;
|
|
slot < drro->drr_object + dn_slots;
|
|
slot++) {
|
|
dmu_object_info_t slot_doi;
|
|
|
|
err = dmu_object_info(rwa->os, slot, &slot_doi);
|
|
if (err == ENOENT || err == EEXIST)
|
|
continue;
|
|
else if (err != 0)
|
|
return (err);
|
|
|
|
err = dmu_free_long_object(rwa->os, slot);
|
|
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
need_sync = B_TRUE;
|
|
}
|
|
|
|
if (need_sync)
|
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
|
}
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
dmu_tx_hold_bonus(tx, object);
|
|
dmu_tx_hold_write(tx, object, 0, 0);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
if (object == DMU_NEW_OBJECT) {
|
|
/* currently free, want to be allocated */
|
|
err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
|
|
drro->drr_type, drro->drr_blksz,
|
|
drro->drr_bonustype, drro->drr_bonuslen,
|
|
dn_slots << DNODE_SHIFT, tx);
|
|
} else if (drro->drr_type != doi.doi_type ||
|
|
drro->drr_blksz != doi.doi_data_block_size ||
|
|
drro->drr_bonustype != doi.doi_bonus_type ||
|
|
drro->drr_bonuslen != doi.doi_bonus_size) {
|
|
/* currently allocated, but with different properties */
|
|
err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
|
|
drro->drr_type, drro->drr_blksz,
|
|
drro->drr_bonustype, drro->drr_bonuslen,
|
|
dn_slots << DNODE_SHIFT, tx);
|
|
}
|
|
if (err != 0) {
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (rwa->or_crypt_params_present) {
|
|
/*
|
|
* Set the crypt params for the buffer associated with this
|
|
* range of dnodes. This causes the blkptr_t to have the
|
|
* same crypt params (byteorder, salt, iv, mac) as on the
|
|
* sending side.
|
|
*
|
|
* Since we are committing this tx now, it is possible for
|
|
* the dnode block to end up on-disk with the incorrect MAC,
|
|
* if subsequent objects in this block are received in a
|
|
* different txg. However, since the dataset is marked as
|
|
* inconsistent, no code paths will do a non-raw read (or
|
|
* decrypt the block / verify the MAC). The receive code and
|
|
* scrub code can safely do raw reads and verify the
|
|
* checksum. They don't need to verify the MAC.
|
|
*/
|
|
dmu_buf_t *db = NULL;
|
|
uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
|
|
|
|
err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
|
|
offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
|
|
if (err != 0) {
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
dmu_buf_set_crypt_params(db, rwa->or_byteorder,
|
|
rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
rwa->or_crypt_params_present = B_FALSE;
|
|
}
|
|
|
|
dmu_object_set_checksum(rwa->os, drro->drr_object,
|
|
drro->drr_checksumtype, tx);
|
|
dmu_object_set_compress(rwa->os, drro->drr_object,
|
|
drro->drr_compress, tx);
|
|
|
|
/* handle more restrictive dnode structuring for raw recvs */
|
|
if (rwa->raw) {
|
|
/*
|
|
* Set the indirect block shift and nlevels. This will not fail
|
|
* because we ensured all of the blocks were free earlier if
|
|
* this is a new object.
|
|
*/
|
|
VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
|
|
drro->drr_blksz, drro->drr_indblkshift, tx));
|
|
VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
|
|
drro->drr_nlevels, tx));
|
|
VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
|
|
drro->drr_maxblkid, tx));
|
|
}
|
|
|
|
if (data != NULL) {
|
|
dmu_buf_t *db;
|
|
dnode_t *dn;
|
|
uint32_t flags = DMU_READ_NO_PREFETCH;
|
|
|
|
if (rwa->raw)
|
|
flags |= DMU_READ_NO_DECRYPT;
|
|
|
|
VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
|
|
VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
|
|
bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
|
|
|
|
/*
|
|
* Raw bonus buffers have their byteorder determined by the
|
|
* DRR_OBJECT_RANGE record.
|
|
*/
|
|
if (rwa->byteswap && !rwa->raw) {
|
|
dmu_object_byteswap_t byteswap =
|
|
DMU_OT_BYTESWAP(drro->drr_bonustype);
|
|
dmu_ot_byteswap[byteswap].ob_func(db->db_data,
|
|
DRR_OBJECT_PAYLOAD_SIZE(drro));
|
|
}
|
|
dmu_buf_rele(db, FTAG);
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
noinline static int
|
|
receive_freeobjects(struct receive_writer_arg *rwa,
|
|
struct drr_freeobjects *drrfo)
|
|
{
|
|
uint64_t obj;
|
|
int next_err = 0;
|
|
|
|
if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
|
|
obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
|
|
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
|
|
dmu_object_info_t doi;
|
|
int err;
|
|
|
|
err = dmu_object_info(rwa->os, obj, &doi);
|
|
if (err == ENOENT)
|
|
continue;
|
|
else if (err != 0)
|
|
return (err);
|
|
|
|
err = dmu_free_long_object(rwa->os, obj);
|
|
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
if (obj > rwa->max_object)
|
|
rwa->max_object = obj;
|
|
}
|
|
if (next_err != ESRCH)
|
|
return (next_err);
|
|
return (0);
|
|
}
|
|
|
|
noinline static int
|
|
receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
|
|
arc_buf_t *abuf)
|
|
{
|
|
int err;
|
|
dmu_tx_t *tx;
|
|
dnode_t *dn;
|
|
|
|
if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
|
|
!DMU_OT_IS_VALID(drrw->drr_type))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* For resuming to work, records must be in increasing order
|
|
* by (object, offset).
|
|
*/
|
|
if (drrw->drr_object < rwa->last_object ||
|
|
(drrw->drr_object == rwa->last_object &&
|
|
drrw->drr_offset < rwa->last_offset)) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
rwa->last_object = drrw->drr_object;
|
|
rwa->last_offset = drrw->drr_offset;
|
|
|
|
if (rwa->last_object > rwa->max_object)
|
|
rwa->max_object = rwa->last_object;
|
|
|
|
if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
dmu_tx_hold_write(tx, drrw->drr_object,
|
|
drrw->drr_offset, drrw->drr_logical_size);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
if (rwa->byteswap && !arc_is_encrypted(abuf) &&
|
|
arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
|
|
dmu_object_byteswap_t byteswap =
|
|
DMU_OT_BYTESWAP(drrw->drr_type);
|
|
dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
|
|
DRR_WRITE_PAYLOAD_SIZE(drrw));
|
|
}
|
|
|
|
VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn));
|
|
dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
/*
|
|
* Note: If the receive fails, we want the resume stream to start
|
|
* with the same record that we last successfully received (as opposed
|
|
* to the next record), so that we can verify that we are
|
|
* resuming from the correct location.
|
|
*/
|
|
save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
|
|
* streams to refer to a copy of the data that is already on the
|
|
* system because it came in earlier in the stream. This function
|
|
* finds the earlier copy of the data, and uses that copy instead of
|
|
* data from the stream to fulfill this write.
|
|
*/
|
|
static int
|
|
receive_write_byref(struct receive_writer_arg *rwa,
|
|
struct drr_write_byref *drrwbr)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int err;
|
|
guid_map_entry_t gmesrch;
|
|
guid_map_entry_t *gmep;
|
|
avl_index_t where;
|
|
objset_t *ref_os = NULL;
|
|
int flags = DMU_READ_PREFETCH;
|
|
dmu_buf_t *dbp;
|
|
|
|
if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* If the GUID of the referenced dataset is different from the
|
|
* GUID of the target dataset, find the referenced dataset.
|
|
*/
|
|
if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
|
|
gmesrch.guid = drrwbr->drr_refguid;
|
|
if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
|
|
&where)) == NULL) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
|
|
return (SET_ERROR(EINVAL));
|
|
} else {
|
|
ref_os = rwa->os;
|
|
}
|
|
|
|
if (drrwbr->drr_object > rwa->max_object)
|
|
rwa->max_object = drrwbr->drr_object;
|
|
|
|
if (rwa->raw)
|
|
flags |= DMU_READ_NO_DECRYPT;
|
|
|
|
/* may return either a regular db or an encrypted one */
|
|
err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
|
|
drrwbr->drr_refoffset, FTAG, &dbp, flags);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_write(tx, drrwbr->drr_object,
|
|
drrwbr->drr_offset, drrwbr->drr_length);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
if (rwa->raw) {
|
|
dmu_copy_from_buf(rwa->os, drrwbr->drr_object,
|
|
drrwbr->drr_offset, dbp, tx);
|
|
} else {
|
|
dmu_write(rwa->os, drrwbr->drr_object,
|
|
drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
|
|
}
|
|
dmu_buf_rele(dbp, FTAG);
|
|
|
|
/* See comment in restore_write. */
|
|
save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
receive_write_embedded(struct receive_writer_arg *rwa,
|
|
struct drr_write_embedded *drrwe, void *data)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int err;
|
|
|
|
if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
|
|
return (SET_ERROR(EINVAL));
|
|
if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
|
|
return (SET_ERROR(EINVAL));
|
|
if (rwa->raw)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrwe->drr_object > rwa->max_object)
|
|
rwa->max_object = drrwe->drr_object;
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_write(tx, drrwe->drr_object,
|
|
drrwe->drr_offset, drrwe->drr_length);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
dmu_write_embedded(rwa->os, drrwe->drr_object,
|
|
drrwe->drr_offset, data, drrwe->drr_etype,
|
|
drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
|
|
rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
|
|
|
|
/* See comment in restore_write. */
|
|
save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
|
|
arc_buf_t *abuf)
|
|
{
|
|
dmu_tx_t *tx;
|
|
dmu_buf_t *db, *db_spill;
|
|
int err;
|
|
uint32_t flags = 0;
|
|
|
|
if (drrs->drr_length < SPA_MINBLOCKSIZE ||
|
|
drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (rwa->raw) {
|
|
if (!DMU_OT_IS_VALID(drrs->drr_type) ||
|
|
drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
|
|
drrs->drr_compressed_size == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
flags |= DMU_READ_NO_DECRYPT;
|
|
}
|
|
|
|
if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrs->drr_object > rwa->max_object)
|
|
rwa->max_object = drrs->drr_object;
|
|
|
|
VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
|
|
if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
|
|
&db_spill)) != 0) {
|
|
dmu_buf_rele(db, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_spill(tx, db->db_object);
|
|
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_buf_rele(db, FTAG);
|
|
dmu_buf_rele(db_spill, FTAG);
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
if (db_spill->db_size < drrs->drr_length)
|
|
VERIFY(0 == dbuf_spill_set_blksz(db_spill,
|
|
drrs->drr_length, tx));
|
|
|
|
if (rwa->byteswap && !arc_is_encrypted(abuf) &&
|
|
arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
|
|
dmu_object_byteswap_t byteswap =
|
|
DMU_OT_BYTESWAP(drrs->drr_type);
|
|
dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
|
|
DRR_SPILL_PAYLOAD_SIZE(drrs));
|
|
}
|
|
|
|
dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
dmu_buf_rele(db_spill, FTAG);
|
|
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
noinline static int
|
|
receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
|
|
{
|
|
int err;
|
|
|
|
if (drrf->drr_length != DMU_OBJECT_END &&
|
|
drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrf->drr_object > rwa->max_object)
|
|
rwa->max_object = drrf->drr_object;
|
|
|
|
err = dmu_free_long_range(rwa->os, drrf->drr_object,
|
|
drrf->drr_offset, drrf->drr_length);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
receive_object_range(struct receive_writer_arg *rwa,
|
|
struct drr_object_range *drror)
|
|
{
|
|
/*
|
|
* By default, we assume this block is in our native format
|
|
* (ZFS_HOST_BYTEORDER). We then take into account whether
|
|
* the send stream is byteswapped (rwa->byteswap). Finally,
|
|
* we need to byteswap again if this particular block was
|
|
* in non-native format on the send side.
|
|
*/
|
|
boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
|
|
!!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
|
|
|
|
/*
|
|
* Since dnode block sizes are constant, we should not need to worry
|
|
* about making sure that the dnode block size is the same on the
|
|
* sending and receiving sides for the time being. For non-raw sends,
|
|
* this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
|
|
* record at all). Raw sends require this record type because the
|
|
* encryption parameters are used to protect an entire block of bonus
|
|
* buffers. If the size of dnode blocks ever becomes variable,
|
|
* handling will need to be added to ensure that dnode block sizes
|
|
* match on the sending and receiving side.
|
|
*/
|
|
if (drror->drr_numslots != DNODES_PER_BLOCK ||
|
|
P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
|
|
!rwa->raw)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drror->drr_firstobj > rwa->max_object)
|
|
rwa->max_object = drror->drr_firstobj;
|
|
|
|
/*
|
|
* The DRR_OBJECT_RANGE handling must be deferred to receive_object()
|
|
* so that the block of dnodes is not written out when it's empty,
|
|
* and converted to a HOLE BP.
|
|
*/
|
|
rwa->or_crypt_params_present = B_TRUE;
|
|
rwa->or_firstobj = drror->drr_firstobj;
|
|
rwa->or_numslots = drror->drr_numslots;
|
|
bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
|
|
bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
|
|
bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
|
|
rwa->or_byteorder = byteorder;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* used to destroy the drc_ds on error */
|
|
static void
|
|
dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
|
|
{
|
|
dsl_dataset_t *ds = drc->drc_ds;
|
|
ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
|
|
|
|
/*
|
|
* Wait for the txg sync before cleaning up the receive. For
|
|
* resumable receives, this ensures that our resume state has
|
|
* been written out to disk. For raw receives, this ensures
|
|
* that the user accounting code will not attempt to do anything
|
|
* after we stopped receiving the dataset.
|
|
*/
|
|
txg_wait_synced(ds->ds_dir->dd_pool, 0);
|
|
ds->ds_objset->os_raw_receive = B_FALSE;
|
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
|
|
} else {
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
dsl_dataset_name(ds, name);
|
|
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
|
|
(void) dsl_destroy_head(name);
|
|
}
|
|
}
|
|
|
|
static void
|
|
receive_cksum(struct receive_arg *ra, int len, void *buf)
|
|
{
|
|
if (ra->byteswap) {
|
|
(void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
|
|
} else {
|
|
(void) fletcher_4_incremental_native(buf, len, &ra->cksum);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read the payload into a buffer of size len, and update the current record's
|
|
* payload field.
|
|
* Allocate ra->next_rrd and read the next record's header into
|
|
* ra->next_rrd->header.
|
|
* Verify checksum of payload and next record.
|
|
*/
|
|
static int
|
|
receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
|
|
{
|
|
int err;
|
|
zio_cksum_t cksum_orig;
|
|
zio_cksum_t *cksump;
|
|
|
|
if (len != 0) {
|
|
ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
|
|
err = receive_read(ra, len, buf);
|
|
if (err != 0)
|
|
return (err);
|
|
receive_cksum(ra, len, buf);
|
|
|
|
/* note: rrd is NULL when reading the begin record's payload */
|
|
if (ra->rrd != NULL) {
|
|
ra->rrd->payload = buf;
|
|
ra->rrd->payload_size = len;
|
|
ra->rrd->bytes_read = ra->bytes_read;
|
|
}
|
|
}
|
|
|
|
ra->prev_cksum = ra->cksum;
|
|
|
|
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
|
|
err = receive_read(ra, sizeof (ra->next_rrd->header),
|
|
&ra->next_rrd->header);
|
|
ra->next_rrd->bytes_read = ra->bytes_read;
|
|
|
|
if (err != 0) {
|
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
|
ra->next_rrd = NULL;
|
|
return (err);
|
|
}
|
|
if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
|
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
|
ra->next_rrd = NULL;
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Note: checksum is of everything up to but not including the
|
|
* checksum itself.
|
|
*/
|
|
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
|
|
receive_cksum(ra,
|
|
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
&ra->next_rrd->header);
|
|
|
|
cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
|
|
cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
|
|
|
|
if (ra->byteswap)
|
|
byteswap_record(&ra->next_rrd->header);
|
|
|
|
if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
|
|
!ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
|
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
|
ra->next_rrd = NULL;
|
|
return (SET_ERROR(ECKSUM));
|
|
}
|
|
|
|
receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
objlist_create(struct objlist *list)
|
|
{
|
|
list_create(&list->list, sizeof (struct receive_objnode),
|
|
offsetof(struct receive_objnode, node));
|
|
list->last_lookup = 0;
|
|
}
|
|
|
|
static void
|
|
objlist_destroy(struct objlist *list)
|
|
{
|
|
for (struct receive_objnode *n = list_remove_head(&list->list);
|
|
n != NULL; n = list_remove_head(&list->list)) {
|
|
kmem_free(n, sizeof (*n));
|
|
}
|
|
list_destroy(&list->list);
|
|
}
|
|
|
|
/*
|
|
* This function looks through the objlist to see if the specified object number
|
|
* is contained in the objlist. In the process, it will remove all object
|
|
* numbers in the list that are smaller than the specified object number. Thus,
|
|
* any lookup of an object number smaller than a previously looked up object
|
|
* number will always return false; therefore, all lookups should be done in
|
|
* ascending order.
|
|
*/
|
|
static boolean_t
|
|
objlist_exists(struct objlist *list, uint64_t object)
|
|
{
|
|
struct receive_objnode *node = list_head(&list->list);
|
|
ASSERT3U(object, >=, list->last_lookup);
|
|
list->last_lookup = object;
|
|
while (node != NULL && node->object < object) {
|
|
VERIFY3P(node, ==, list_remove_head(&list->list));
|
|
kmem_free(node, sizeof (*node));
|
|
node = list_head(&list->list);
|
|
}
|
|
return (node != NULL && node->object == object);
|
|
}
|
|
|
|
/*
|
|
* The objlist is a list of object numbers stored in ascending order. However,
|
|
* the insertion of new object numbers does not seek out the correct location to
|
|
* store a new object number; instead, it appends it to the list for simplicity.
|
|
* Thus, any users must take care to only insert new object numbers in ascending
|
|
* order.
|
|
*/
|
|
static void
|
|
objlist_insert(struct objlist *list, uint64_t object)
|
|
{
|
|
struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
|
|
node->object = object;
|
|
#ifdef ZFS_DEBUG
|
|
{
|
|
struct receive_objnode *last_object = list_tail(&list->list);
|
|
uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
|
|
ASSERT3U(node->object, >, last_objnum);
|
|
}
|
|
#endif
|
|
list_insert_tail(&list->list, node);
|
|
}
|
|
|
|
/*
|
|
* Issue the prefetch reads for any necessary indirect blocks.
|
|
*
|
|
* We use the object ignore list to tell us whether or not to issue prefetches
|
|
* for a given object. We do this for both correctness (in case the blocksize
|
|
* of an object has changed) and performance (if the object doesn't exist, don't
|
|
* needlessly try to issue prefetches). We also trim the list as we go through
|
|
* the stream to prevent it from growing to an unbounded size.
|
|
*
|
|
* The object numbers within will always be in sorted order, and any write
|
|
* records we see will also be in sorted order, but they're not sorted with
|
|
* respect to each other (i.e. we can get several object records before
|
|
* receiving each object's write records). As a result, once we've reached a
|
|
* given object number, we can safely remove any reference to lower object
|
|
* numbers in the ignore list. In practice, we receive up to 32 object records
|
|
* before receiving write records, so the list can have up to 32 nodes in it.
|
|
*/
|
|
/* ARGSUSED */
|
|
static void
|
|
receive_read_prefetch(struct receive_arg *ra,
|
|
uint64_t object, uint64_t offset, uint64_t length)
|
|
{
|
|
if (!objlist_exists(&ra->ignore_objlist, object)) {
|
|
dmu_prefetch(ra->os, object, 1, offset, length,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read records off the stream, issuing any necessary prefetches.
|
|
*/
|
|
static int
|
|
receive_read_record(struct receive_arg *ra)
|
|
{
|
|
int err;
|
|
|
|
switch (ra->rrd->header.drr_type) {
|
|
case DRR_OBJECT:
|
|
{
|
|
struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
|
|
uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
|
|
void *buf = kmem_zalloc(size, KM_SLEEP);
|
|
dmu_object_info_t doi;
|
|
|
|
err = receive_read_payload_and_next_header(ra, size, buf);
|
|
if (err != 0) {
|
|
kmem_free(buf, size);
|
|
return (err);
|
|
}
|
|
err = dmu_object_info(ra->os, drro->drr_object, &doi);
|
|
/*
|
|
* See receive_read_prefetch for an explanation why we're
|
|
* storing this object in the ignore_obj_list.
|
|
*/
|
|
if (err == ENOENT || err == EEXIST ||
|
|
(err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
|
|
objlist_insert(&ra->ignore_objlist, drro->drr_object);
|
|
err = 0;
|
|
}
|
|
return (err);
|
|
}
|
|
case DRR_FREEOBJECTS:
|
|
{
|
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
|
return (err);
|
|
}
|
|
case DRR_WRITE:
|
|
{
|
|
struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
|
|
arc_buf_t *abuf;
|
|
boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
|
|
|
|
if (ra->raw) {
|
|
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
|
|
!!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
|
|
ra->byteswap;
|
|
|
|
abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
|
|
drrw->drr_object, byteorder, drrw->drr_salt,
|
|
drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
|
|
drrw->drr_compressed_size, drrw->drr_logical_size,
|
|
drrw->drr_compressiontype);
|
|
} else if (DRR_WRITE_COMPRESSED(drrw)) {
|
|
ASSERT3U(drrw->drr_compressed_size, >, 0);
|
|
ASSERT3U(drrw->drr_logical_size, >=,
|
|
drrw->drr_compressed_size);
|
|
ASSERT(!is_meta);
|
|
abuf = arc_loan_compressed_buf(
|
|
dmu_objset_spa(ra->os),
|
|
drrw->drr_compressed_size, drrw->drr_logical_size,
|
|
drrw->drr_compressiontype);
|
|
} else {
|
|
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
|
|
is_meta, drrw->drr_logical_size);
|
|
}
|
|
|
|
err = receive_read_payload_and_next_header(ra,
|
|
DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
|
|
if (err != 0) {
|
|
dmu_return_arcbuf(abuf);
|
|
return (err);
|
|
}
|
|
ra->rrd->arc_buf = abuf;
|
|
receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
|
|
drrw->drr_logical_size);
|
|
return (err);
|
|
}
|
|
case DRR_WRITE_BYREF:
|
|
{
|
|
struct drr_write_byref *drrwb =
|
|
&ra->rrd->header.drr_u.drr_write_byref;
|
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
|
receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
|
|
drrwb->drr_length);
|
|
return (err);
|
|
}
|
|
case DRR_WRITE_EMBEDDED:
|
|
{
|
|
struct drr_write_embedded *drrwe =
|
|
&ra->rrd->header.drr_u.drr_write_embedded;
|
|
uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
|
|
void *buf = kmem_zalloc(size, KM_SLEEP);
|
|
|
|
err = receive_read_payload_and_next_header(ra, size, buf);
|
|
if (err != 0) {
|
|
kmem_free(buf, size);
|
|
return (err);
|
|
}
|
|
|
|
receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
|
|
drrwe->drr_length);
|
|
return (err);
|
|
}
|
|
case DRR_FREE:
|
|
{
|
|
/*
|
|
* It might be beneficial to prefetch indirect blocks here, but
|
|
* we don't really have the data to decide for sure.
|
|
*/
|
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
|
return (err);
|
|
}
|
|
case DRR_END:
|
|
{
|
|
struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
|
|
if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
|
|
return (SET_ERROR(ECKSUM));
|
|
return (0);
|
|
}
|
|
case DRR_SPILL:
|
|
{
|
|
struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
|
|
arc_buf_t *abuf;
|
|
int len = DRR_SPILL_PAYLOAD_SIZE(drrs);
|
|
|
|
/* DRR_SPILL records are either raw or uncompressed */
|
|
if (ra->raw) {
|
|
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
|
|
!!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
|
|
ra->byteswap;
|
|
|
|
abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
|
|
dmu_objset_id(ra->os), byteorder, drrs->drr_salt,
|
|
drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
|
|
drrs->drr_compressed_size, drrs->drr_length,
|
|
drrs->drr_compressiontype);
|
|
} else {
|
|
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
|
|
DMU_OT_IS_METADATA(drrs->drr_type),
|
|
drrs->drr_length);
|
|
}
|
|
|
|
err = receive_read_payload_and_next_header(ra, len,
|
|
abuf->b_data);
|
|
if (err != 0) {
|
|
dmu_return_arcbuf(abuf);
|
|
return (err);
|
|
}
|
|
ra->rrd->arc_buf = abuf;
|
|
return (err);
|
|
}
|
|
case DRR_OBJECT_RANGE:
|
|
{
|
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
|
return (err);
|
|
}
|
|
default:
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
static void
|
|
dprintf_drr(struct receive_record_arg *rrd, int err)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
switch (rrd->header.drr_type) {
|
|
case DRR_OBJECT:
|
|
{
|
|
struct drr_object *drro = &rrd->header.drr_u.drr_object;
|
|
dprintf("drr_type = OBJECT obj = %llu type = %u "
|
|
"bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
|
|
"compress = %u dn_slots = %u err = %d\n",
|
|
drro->drr_object, drro->drr_type, drro->drr_bonustype,
|
|
drro->drr_blksz, drro->drr_bonuslen,
|
|
drro->drr_checksumtype, drro->drr_compress,
|
|
drro->drr_dn_slots, err);
|
|
break;
|
|
}
|
|
case DRR_FREEOBJECTS:
|
|
{
|
|
struct drr_freeobjects *drrfo =
|
|
&rrd->header.drr_u.drr_freeobjects;
|
|
dprintf("drr_type = FREEOBJECTS firstobj = %llu "
|
|
"numobjs = %llu err = %d\n",
|
|
drrfo->drr_firstobj, drrfo->drr_numobjs, err);
|
|
break;
|
|
}
|
|
case DRR_WRITE:
|
|
{
|
|
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
|
|
dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
|
|
"lsize = %llu cksumtype = %u cksumflags = %u "
|
|
"compress = %u psize = %llu err = %d\n",
|
|
drrw->drr_object, drrw->drr_type, drrw->drr_offset,
|
|
drrw->drr_logical_size, drrw->drr_checksumtype,
|
|
drrw->drr_flags, drrw->drr_compressiontype,
|
|
drrw->drr_compressed_size, err);
|
|
break;
|
|
}
|
|
case DRR_WRITE_BYREF:
|
|
{
|
|
struct drr_write_byref *drrwbr =
|
|
&rrd->header.drr_u.drr_write_byref;
|
|
dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
|
|
"length = %llu toguid = %llx refguid = %llx "
|
|
"refobject = %llu refoffset = %llu cksumtype = %u "
|
|
"cksumflags = %u err = %d\n",
|
|
drrwbr->drr_object, drrwbr->drr_offset,
|
|
drrwbr->drr_length, drrwbr->drr_toguid,
|
|
drrwbr->drr_refguid, drrwbr->drr_refobject,
|
|
drrwbr->drr_refoffset, drrwbr->drr_checksumtype,
|
|
drrwbr->drr_flags, err);
|
|
break;
|
|
}
|
|
case DRR_WRITE_EMBEDDED:
|
|
{
|
|
struct drr_write_embedded *drrwe =
|
|
&rrd->header.drr_u.drr_write_embedded;
|
|
dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
|
|
"length = %llu compress = %u etype = %u lsize = %u "
|
|
"psize = %u err = %d\n",
|
|
drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length,
|
|
drrwe->drr_compression, drrwe->drr_etype,
|
|
drrwe->drr_lsize, drrwe->drr_psize, err);
|
|
break;
|
|
}
|
|
case DRR_FREE:
|
|
{
|
|
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
|
|
dprintf("drr_type = FREE obj = %llu offset = %llu "
|
|
"length = %lld err = %d\n",
|
|
drrf->drr_object, drrf->drr_offset, drrf->drr_length,
|
|
err);
|
|
break;
|
|
}
|
|
case DRR_SPILL:
|
|
{
|
|
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
|
|
dprintf("drr_type = SPILL obj = %llu length = %llu "
|
|
"err = %d\n", drrs->drr_object, drrs->drr_length, err);
|
|
break;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Commit the records to the pool.
|
|
*/
|
|
static int
|
|
receive_process_record(struct receive_writer_arg *rwa,
|
|
struct receive_record_arg *rrd)
|
|
{
|
|
int err;
|
|
|
|
/* Processing in order, therefore bytes_read should be increasing. */
|
|
ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
|
|
rwa->bytes_read = rrd->bytes_read;
|
|
|
|
switch (rrd->header.drr_type) {
|
|
case DRR_OBJECT:
|
|
{
|
|
struct drr_object *drro = &rrd->header.drr_u.drr_object;
|
|
err = receive_object(rwa, drro, rrd->payload);
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
break;
|
|
}
|
|
case DRR_FREEOBJECTS:
|
|
{
|
|
struct drr_freeobjects *drrfo =
|
|
&rrd->header.drr_u.drr_freeobjects;
|
|
err = receive_freeobjects(rwa, drrfo);
|
|
break;
|
|
}
|
|
case DRR_WRITE:
|
|
{
|
|
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
|
|
err = receive_write(rwa, drrw, rrd->arc_buf);
|
|
/* if receive_write() is successful, it consumes the arc_buf */
|
|
if (err != 0)
|
|
dmu_return_arcbuf(rrd->arc_buf);
|
|
rrd->arc_buf = NULL;
|
|
rrd->payload = NULL;
|
|
break;
|
|
}
|
|
case DRR_WRITE_BYREF:
|
|
{
|
|
struct drr_write_byref *drrwbr =
|
|
&rrd->header.drr_u.drr_write_byref;
|
|
err = receive_write_byref(rwa, drrwbr);
|
|
break;
|
|
}
|
|
case DRR_WRITE_EMBEDDED:
|
|
{
|
|
struct drr_write_embedded *drrwe =
|
|
&rrd->header.drr_u.drr_write_embedded;
|
|
err = receive_write_embedded(rwa, drrwe, rrd->payload);
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
break;
|
|
}
|
|
case DRR_FREE:
|
|
{
|
|
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
|
|
err = receive_free(rwa, drrf);
|
|
break;
|
|
}
|
|
case DRR_SPILL:
|
|
{
|
|
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
|
|
err = receive_spill(rwa, drrs, rrd->arc_buf);
|
|
/* if receive_spill() is successful, it consumes the arc_buf */
|
|
if (err != 0)
|
|
dmu_return_arcbuf(rrd->arc_buf);
|
|
rrd->arc_buf = NULL;
|
|
rrd->payload = NULL;
|
|
break;
|
|
}
|
|
case DRR_OBJECT_RANGE:
|
|
{
|
|
struct drr_object_range *drror =
|
|
&rrd->header.drr_u.drr_object_range;
|
|
return (receive_object_range(rwa, drror));
|
|
}
|
|
default:
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (err != 0)
|
|
dprintf_drr(rrd, err);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* dmu_recv_stream's worker thread; pull records off the queue, and then call
|
|
* receive_process_record When we're done, signal the main thread and exit.
|
|
*/
|
|
static void
|
|
receive_writer_thread(void *arg)
|
|
{
|
|
struct receive_writer_arg *rwa = arg;
|
|
struct receive_record_arg *rrd;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
|
|
rrd = bqueue_dequeue(&rwa->q)) {
|
|
/*
|
|
* If there's an error, the main thread will stop putting things
|
|
* on the queue, but we need to clear everything in it before we
|
|
* can exit.
|
|
*/
|
|
if (rwa->err == 0) {
|
|
rwa->err = receive_process_record(rwa, rrd);
|
|
} else if (rrd->arc_buf != NULL) {
|
|
dmu_return_arcbuf(rrd->arc_buf);
|
|
rrd->arc_buf = NULL;
|
|
rrd->payload = NULL;
|
|
} else if (rrd->payload != NULL) {
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
}
|
|
kmem_free(rrd, sizeof (*rrd));
|
|
}
|
|
kmem_free(rrd, sizeof (*rrd));
|
|
mutex_enter(&rwa->mutex);
|
|
rwa->done = B_TRUE;
|
|
cv_signal(&rwa->cv);
|
|
mutex_exit(&rwa->mutex);
|
|
spl_fstrans_unmark(cookie);
|
|
thread_exit();
|
|
}
|
|
|
|
static int
|
|
resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
|
|
{
|
|
uint64_t val;
|
|
objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
|
|
uint64_t dsobj = dmu_objset_id(ra->os);
|
|
uint64_t resume_obj, resume_off;
|
|
|
|
if (nvlist_lookup_uint64(begin_nvl,
|
|
"resume_object", &resume_obj) != 0 ||
|
|
nvlist_lookup_uint64(begin_nvl,
|
|
"resume_offset", &resume_off) != 0) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
VERIFY0(zap_lookup(mos, dsobj,
|
|
DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
|
|
if (resume_obj != val)
|
|
return (SET_ERROR(EINVAL));
|
|
VERIFY0(zap_lookup(mos, dsobj,
|
|
DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
|
|
if (resume_off != val)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read in the stream's records, one by one, and apply them to the pool. There
|
|
* are two threads involved; the thread that calls this function will spin up a
|
|
* worker thread, read the records off the stream one by one, and issue
|
|
* prefetches for any necessary indirect blocks. It will then push the records
|
|
* onto an internal blocking queue. The worker thread will pull the records off
|
|
* the queue, and actually write the data into the DMU. This way, the worker
|
|
* thread doesn't have to wait for reads to complete, since everything it needs
|
|
* (the indirect blocks) will be prefetched.
|
|
*
|
|
* NB: callers *must* call dmu_recv_end() if this succeeds.
|
|
*/
|
|
int
|
|
dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
|
|
int cleanup_fd, uint64_t *action_handlep)
|
|
{
|
|
int err = 0;
|
|
struct receive_arg *ra;
|
|
struct receive_writer_arg *rwa;
|
|
int featureflags;
|
|
uint32_t payloadlen;
|
|
void *payload;
|
|
nvlist_t *begin_nvl = NULL;
|
|
|
|
ra = kmem_zalloc(sizeof (*ra), KM_SLEEP);
|
|
rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
|
|
|
|
ra->byteswap = drc->drc_byteswap;
|
|
ra->raw = drc->drc_raw;
|
|
ra->cksum = drc->drc_cksum;
|
|
ra->vp = vp;
|
|
ra->voff = *voffp;
|
|
|
|
if (dsl_dataset_is_zapified(drc->drc_ds)) {
|
|
(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
|
|
drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
|
|
sizeof (ra->bytes_read), 1, &ra->bytes_read);
|
|
}
|
|
|
|
objlist_create(&ra->ignore_objlist);
|
|
|
|
/* these were verified in dmu_recv_begin */
|
|
ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
|
|
DMU_SUBSTREAM);
|
|
ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
|
|
|
|
/*
|
|
* Open the objset we are modifying.
|
|
*/
|
|
VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os));
|
|
|
|
ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
|
|
|
|
featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
|
|
ra->featureflags = featureflags;
|
|
|
|
ASSERT0(ra->os->os_encrypted &&
|
|
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
|
|
|
|
/* if this stream is dedup'ed, set up the avl tree for guid mapping */
|
|
if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
|
|
minor_t minor;
|
|
|
|
if (cleanup_fd == -1) {
|
|
err = SET_ERROR(EBADF);
|
|
goto out;
|
|
}
|
|
err = zfs_onexit_fd_hold(cleanup_fd, &minor);
|
|
if (err != 0) {
|
|
cleanup_fd = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (*action_handlep == 0) {
|
|
rwa->guid_to_ds_map =
|
|
kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
|
|
avl_create(rwa->guid_to_ds_map, guid_compare,
|
|
sizeof (guid_map_entry_t),
|
|
offsetof(guid_map_entry_t, avlnode));
|
|
err = zfs_onexit_add_cb(minor,
|
|
free_guid_map_onexit, rwa->guid_to_ds_map,
|
|
action_handlep);
|
|
if (err != 0)
|
|
goto out;
|
|
} else {
|
|
err = zfs_onexit_cb_data(minor, *action_handlep,
|
|
(void **)&rwa->guid_to_ds_map);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
drc->drc_guid_to_ds_map = rwa->guid_to_ds_map;
|
|
}
|
|
|
|
payloadlen = drc->drc_drr_begin->drr_payloadlen;
|
|
payload = NULL;
|
|
if (payloadlen != 0)
|
|
payload = kmem_alloc(payloadlen, KM_SLEEP);
|
|
|
|
err = receive_read_payload_and_next_header(ra, payloadlen, payload);
|
|
if (err != 0) {
|
|
if (payloadlen != 0)
|
|
kmem_free(payload, payloadlen);
|
|
goto out;
|
|
}
|
|
if (payloadlen != 0) {
|
|
err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
|
|
kmem_free(payload, payloadlen);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
/* handle DSL encryption key payload */
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
nvlist_t *keynvl = NULL;
|
|
|
|
ASSERT(ra->os->os_encrypted);
|
|
ASSERT(drc->drc_raw);
|
|
|
|
err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl);
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* If this is a new dataset we set the key immediately.
|
|
* Otherwise we don't want to change the key until we
|
|
* are sure the rest of the receive succeeded so we stash
|
|
* the keynvl away until then.
|
|
*/
|
|
err = dsl_crypto_recv_raw(spa_name(ra->os->os_spa),
|
|
drc->drc_ds->ds_object, drc->drc_drrb->drr_type,
|
|
keynvl, drc->drc_newfs);
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
if (!drc->drc_newfs)
|
|
drc->drc_keynvl = fnvlist_dup(keynvl);
|
|
}
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
|
|
err = resume_check(ra, begin_nvl);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
(void) bqueue_init(&rwa->q,
|
|
MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
|
|
offsetof(struct receive_record_arg, node));
|
|
cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
|
|
mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
|
|
rwa->os = ra->os;
|
|
rwa->byteswap = drc->drc_byteswap;
|
|
rwa->resumable = drc->drc_resumable;
|
|
rwa->raw = drc->drc_raw;
|
|
rwa->os->os_raw_receive = drc->drc_raw;
|
|
|
|
(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
|
|
TS_RUN, minclsyspri);
|
|
/*
|
|
* We're reading rwa->err without locks, which is safe since we are the
|
|
* only reader, and the worker thread is the only writer. It's ok if we
|
|
* miss a write for an iteration or two of the loop, since the writer
|
|
* thread will keep freeing records we send it until we send it an eos
|
|
* marker.
|
|
*
|
|
* We can leave this loop in 3 ways: First, if rwa->err is
|
|
* non-zero. In that case, the writer thread will free the rrd we just
|
|
* pushed. Second, if we're interrupted; in that case, either it's the
|
|
* first loop and ra->rrd was never allocated, or it's later and ra->rrd
|
|
* has been handed off to the writer thread who will free it. Finally,
|
|
* if receive_read_record fails or we're at the end of the stream, then
|
|
* we free ra->rrd and exit.
|
|
*/
|
|
while (rwa->err == 0) {
|
|
if (issig(JUSTLOOKING) && issig(FORREAL)) {
|
|
err = SET_ERROR(EINTR);
|
|
break;
|
|
}
|
|
|
|
ASSERT3P(ra->rrd, ==, NULL);
|
|
ra->rrd = ra->next_rrd;
|
|
ra->next_rrd = NULL;
|
|
/* Allocates and loads header into ra->next_rrd */
|
|
err = receive_read_record(ra);
|
|
|
|
if (ra->rrd->header.drr_type == DRR_END || err != 0) {
|
|
kmem_free(ra->rrd, sizeof (*ra->rrd));
|
|
ra->rrd = NULL;
|
|
break;
|
|
}
|
|
|
|
bqueue_enqueue(&rwa->q, ra->rrd,
|
|
sizeof (struct receive_record_arg) + ra->rrd->payload_size);
|
|
ra->rrd = NULL;
|
|
}
|
|
if (ra->next_rrd == NULL)
|
|
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
|
|
ra->next_rrd->eos_marker = B_TRUE;
|
|
bqueue_enqueue(&rwa->q, ra->next_rrd, 1);
|
|
|
|
mutex_enter(&rwa->mutex);
|
|
while (!rwa->done) {
|
|
cv_wait(&rwa->cv, &rwa->mutex);
|
|
}
|
|
mutex_exit(&rwa->mutex);
|
|
|
|
/*
|
|
* If we are receiving a full stream as a clone, all object IDs which
|
|
* are greater than the maximum ID referenced in the stream are
|
|
* by definition unused and must be freed.
|
|
*/
|
|
if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
|
|
uint64_t obj = rwa->max_object + 1;
|
|
int free_err = 0;
|
|
int next_err = 0;
|
|
|
|
while (next_err == 0) {
|
|
free_err = dmu_free_long_object(rwa->os, obj);
|
|
if (free_err != 0 && free_err != ENOENT)
|
|
break;
|
|
|
|
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
|
|
}
|
|
|
|
if (err == 0) {
|
|
if (free_err != 0 && free_err != ENOENT)
|
|
err = free_err;
|
|
else if (next_err != ESRCH)
|
|
err = next_err;
|
|
}
|
|
}
|
|
|
|
cv_destroy(&rwa->cv);
|
|
mutex_destroy(&rwa->mutex);
|
|
bqueue_destroy(&rwa->q);
|
|
if (err == 0)
|
|
err = rwa->err;
|
|
|
|
out:
|
|
nvlist_free(begin_nvl);
|
|
if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
|
|
zfs_onexit_fd_rele(cleanup_fd);
|
|
|
|
if (err != 0) {
|
|
/*
|
|
* Clean up references. If receive is not resumable,
|
|
* destroy what we created, so we don't leave it in
|
|
* the inconsistent state.
|
|
*/
|
|
dmu_recv_cleanup_ds(drc);
|
|
nvlist_free(drc->drc_keynvl);
|
|
}
|
|
|
|
*voffp = ra->voff;
|
|
objlist_destroy(&ra->ignore_objlist);
|
|
kmem_free(ra, sizeof (*ra));
|
|
kmem_free(rwa, sizeof (*rwa));
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dmu_recv_end_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_cookie_t *drc = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
int error;
|
|
|
|
ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
|
|
|
|
if (!drc->drc_newfs) {
|
|
dsl_dataset_t *origin_head;
|
|
|
|
error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
|
|
if (error != 0)
|
|
return (error);
|
|
if (drc->drc_force) {
|
|
/*
|
|
* We will destroy any snapshots in tofs (i.e. before
|
|
* origin_head) that are after the origin (which is
|
|
* the snap before drc_ds, because drc_ds can not
|
|
* have any snaps of its own).
|
|
*/
|
|
uint64_t obj;
|
|
|
|
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
while (obj !=
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
|
|
dsl_dataset_t *snap;
|
|
error = dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap);
|
|
if (error != 0)
|
|
break;
|
|
if (snap->ds_dir != origin_head->ds_dir)
|
|
error = SET_ERROR(EINVAL);
|
|
if (error == 0) {
|
|
error = dsl_destroy_snapshot_check_impl(
|
|
snap, B_FALSE);
|
|
}
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_dataset_rele(snap, FTAG);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
if (error != 0) {
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
return (error);
|
|
}
|
|
}
|
|
if (drc->drc_keynvl != NULL) {
|
|
error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
|
|
drc->drc_keynvl, tx);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
|
|
origin_head, drc->drc_force, drc->drc_owner, tx);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
return (error);
|
|
}
|
|
error = dsl_dataset_snapshot_check_impl(origin_head,
|
|
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
|
|
} else {
|
|
error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
|
|
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_cookie_t *drc = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
|
|
|
|
spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
|
|
tx, "snap=%s", drc->drc_tosnap);
|
|
drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
|
|
|
|
if (!drc->drc_newfs) {
|
|
dsl_dataset_t *origin_head;
|
|
|
|
VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
|
|
&origin_head));
|
|
|
|
if (drc->drc_force) {
|
|
/*
|
|
* Destroy any snapshots of drc_tofs (origin_head)
|
|
* after the origin (the snap before drc_ds).
|
|
*/
|
|
uint64_t obj;
|
|
|
|
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
while (obj !=
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
|
|
dsl_dataset_t *snap;
|
|
VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap));
|
|
ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_destroy_snapshot_sync_impl(snap,
|
|
B_FALSE, tx);
|
|
dsl_dataset_rele(snap, FTAG);
|
|
}
|
|
}
|
|
if (drc->drc_keynvl != NULL) {
|
|
dsl_crypto_recv_raw_key_sync(drc->drc_ds,
|
|
drc->drc_keynvl, tx);
|
|
nvlist_free(drc->drc_keynvl);
|
|
drc->drc_keynvl = NULL;
|
|
}
|
|
|
|
VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev);
|
|
|
|
dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
|
|
origin_head, tx);
|
|
dsl_dataset_snapshot_sync_impl(origin_head,
|
|
drc->drc_tosnap, tx);
|
|
|
|
/* set snapshot's creation time and guid */
|
|
dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
|
|
drc->drc_drrb->drr_creation_time;
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
|
|
drc->drc_drrb->drr_toguid;
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
|
|
dsl_dataset_phys(origin_head)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
drc->drc_newsnapobj =
|
|
dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
dsl_destroy_head_sync_impl(drc->drc_ds, tx);
|
|
|
|
if (drc->drc_owner != NULL)
|
|
VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
|
|
} else {
|
|
dsl_dataset_t *ds = drc->drc_ds;
|
|
|
|
dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
|
|
|
|
/* set snapshot's creation time and guid */
|
|
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
|
|
drc->drc_drrb->drr_creation_time;
|
|
dsl_dataset_phys(ds->ds_prev)->ds_guid =
|
|
drc->drc_drrb->drr_toguid;
|
|
dsl_dataset_phys(ds->ds_prev)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
|
|
if (dsl_dataset_has_resume_receive_state(ds)) {
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_FROMGUID, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_OBJECT, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_OFFSET, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_BYTES, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TOGUID, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TONAME, tx);
|
|
}
|
|
drc->drc_newsnapobj =
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
|
|
}
|
|
zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE);
|
|
|
|
/*
|
|
* Release the hold from dmu_recv_begin. This must be done before
|
|
* we return to open context, so that when we free the dataset's dnode
|
|
* we can evict its bonus buffer. Since the dataset may be destroyed
|
|
* at this point (and therefore won't have a valid pointer to the spa)
|
|
* we release the key mapping manually here while we do have a valid
|
|
* pointer, if it exists.
|
|
*/
|
|
if (!drc->drc_raw && encrypted) {
|
|
(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
|
|
drc->drc_ds->ds_object, drc->drc_ds);
|
|
}
|
|
dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
|
|
drc->drc_ds = NULL;
|
|
}
|
|
|
|
static int
|
|
add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj,
|
|
boolean_t raw)
|
|
{
|
|
dsl_pool_t *dp;
|
|
dsl_dataset_t *snapds;
|
|
guid_map_entry_t *gmep;
|
|
objset_t *os;
|
|
ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
|
|
int err;
|
|
|
|
ASSERT(guid_map != NULL);
|
|
|
|
err = dsl_pool_hold(name, FTAG, &dp);
|
|
if (err != 0)
|
|
return (err);
|
|
gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
|
|
err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds);
|
|
if (err == 0) {
|
|
/*
|
|
* If this is a deduplicated raw send stream, we need
|
|
* to make sure that we can still read raw blocks from
|
|
* earlier datasets in the stream, so we set the
|
|
* os_raw_receive flag now.
|
|
*/
|
|
if (raw) {
|
|
err = dmu_objset_from_ds(snapds, &os);
|
|
if (err != 0) {
|
|
dsl_dataset_disown(snapds, dsflags, FTAG);
|
|
dsl_pool_rele(dp, FTAG);
|
|
kmem_free(gmep, sizeof (*gmep));
|
|
return (err);
|
|
}
|
|
os->os_raw_receive = B_TRUE;
|
|
}
|
|
|
|
gmep->raw = raw;
|
|
gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
|
|
gmep->gme_ds = snapds;
|
|
avl_add(guid_map, gmep);
|
|
} else {
|
|
kmem_free(gmep, sizeof (*gmep));
|
|
}
|
|
|
|
dsl_pool_rele(dp, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
static int dmu_recv_end_modified_blocks = 3;
|
|
|
|
static int
|
|
dmu_recv_existing_end(dmu_recv_cookie_t *drc)
|
|
{
|
|
#ifdef _KERNEL
|
|
/*
|
|
* We will be destroying the ds; make sure its origin is unmounted if
|
|
* necessary.
|
|
*/
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
dsl_dataset_name(drc->drc_ds, name);
|
|
zfs_destroy_unmount_origin(name);
|
|
#endif
|
|
|
|
return (dsl_sync_task(drc->drc_tofs,
|
|
dmu_recv_end_check, dmu_recv_end_sync, drc,
|
|
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
|
|
}
|
|
|
|
static int
|
|
dmu_recv_new_end(dmu_recv_cookie_t *drc)
|
|
{
|
|
return (dsl_sync_task(drc->drc_tofs,
|
|
dmu_recv_end_check, dmu_recv_end_sync, drc,
|
|
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
|
|
}
|
|
|
|
int
|
|
dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
|
|
{
|
|
int error;
|
|
|
|
drc->drc_owner = owner;
|
|
|
|
if (drc->drc_newfs)
|
|
error = dmu_recv_new_end(drc);
|
|
else
|
|
error = dmu_recv_existing_end(drc);
|
|
|
|
if (error != 0) {
|
|
dmu_recv_cleanup_ds(drc);
|
|
nvlist_free(drc->drc_keynvl);
|
|
} else if (drc->drc_guid_to_ds_map != NULL) {
|
|
(void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map,
|
|
drc->drc_newsnapobj, drc->drc_raw);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return TRUE if this objset is currently being received into.
|
|
*/
|
|
boolean_t
|
|
dmu_objset_is_receiving(objset_t *os)
|
|
{
|
|
return (os->os_dsl_dataset != NULL &&
|
|
os->os_dsl_dataset->ds_owner == dmu_recv_tag);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
module_param(zfs_recv_queue_length, int, 0644);
|
|
MODULE_PARM_DESC(zfs_recv_queue_length, "Maximum receive queue length");
|
|
#endif
|