mirror_zfs/include/os/freebsd/spl/sys/sysmacros.h
Warner Losh fbfc7e843a FreeBSD: make adjustments for the standalone environment
In FreeBSD, there are three compile environments that are supported:
user land, the kernel and the bootloader / standalone. Adjust the
headers to compile in the standalone environment. Limit kernel-only
items from view when _STANDALONE is defined.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Warner Losh <imp@FreeBSD.org>
Closes #10998
2020-10-16 13:04:41 -07:00

410 lines
12 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _SYS_SYSMACROS_H
#define _SYS_SYSMACROS_H
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/isa_defs.h>
#include <sys/libkern.h>
#include <sys/zone.h>
#include <sys/condvar.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Some macros for units conversion
*/
/*
* Disk blocks (sectors) and bytes.
*/
#define dtob(DD) ((DD) << DEV_BSHIFT)
#define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
#define btodt(BB) ((BB) >> DEV_BSHIFT)
#define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
/* common macros */
#ifndef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
#ifndef MAX
#define MAX(a, b) ((a) < (b) ? (b) : (a))
#endif
#ifndef ABS
#define ABS(a) ((a) < 0 ? -(a) : (a))
#endif
#ifndef SIGNOF
#define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0)
#endif
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(a) (sizeof (a) / sizeof (a[0]))
#endif
#ifndef DIV_ROUND_UP
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#endif
#ifdef _STANDALONE
#define boot_ncpus 1
#else /* _STANDALONE */
#define boot_ncpus mp_ncpus
#endif /* _STANDALONE */
#define kpreempt_disable() critical_enter()
#define kpreempt_enable() critical_exit()
#define CPU_SEQID curcpu
#define is_system_labeled() 0
/*
* Convert a single byte to/from binary-coded decimal (BCD).
*/
extern unsigned char byte_to_bcd[256];
extern unsigned char bcd_to_byte[256];
#define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff]
#define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff]
/*
* WARNING: The device number macros defined here should not be used by device
* drivers or user software. Device drivers should use the device functions
* defined in the DDI/DKI interface (see also ddi.h). Application software
* should make use of the library routines available in makedev(3). A set of
* new device macros are provided to operate on the expanded device number
* format supported in SVR4. Macro versions of the DDI device functions are
* provided for use by kernel proper routines only. Macro routines bmajor(),
* major(), minor(), emajor(), eminor(), and makedev() will be removed or
* their definitions changed at the next major release following SVR4.
*/
#define O_BITSMAJOR 7 /* # of SVR3 major device bits */
#define O_BITSMINOR 8 /* # of SVR3 minor device bits */
#define O_MAXMAJ 0x7f /* SVR3 max major value */
#define O_MAXMIN 0xff /* SVR3 max minor value */
#define L_BITSMAJOR32 14 /* # of SVR4 major device bits */
#define L_BITSMINOR32 18 /* # of SVR4 minor device bits */
#define L_MAXMAJ32 0x3fff /* SVR4 max major value */
#define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */
/* For 3b2 hardware devices the minor is */
/* restricted to 256 (0-255) */
#ifdef _LP64
#define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */
#define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */
#define L_MAXMAJ 0xfffffffful /* max major value */
#define L_MAXMIN 0xfffffffful /* max minor value */
#else
#define L_BITSMAJOR L_BITSMAJOR32
#define L_BITSMINOR L_BITSMINOR32
#define L_MAXMAJ L_MAXMAJ32
#define L_MAXMIN L_MAXMIN32
#endif
/*
* These are versions of the kernel routines for compressing and
* expanding long device numbers that don't return errors.
*/
#if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
#define DEVCMPL(x) (x)
#define DEVEXPL(x) (x)
#else
#define DEVCMPL(x) \
(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
#define DEVEXPL(x) \
(((x) == NODEV32) ? NODEV : \
makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
#endif /* L_BITSMAJOR32 ... */
/* convert to old (SVR3.2) dev format */
#define cmpdev(x) \
(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
/* convert to new (SVR4) dev format */
#define expdev(x) \
(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
((x) & O_MAXMIN))
/*
* Macro for checking power of 2 address alignment.
*/
#define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
/*
* Macros for counting and rounding.
*/
#define howmany(x, y) (((x)+((y)-1))/(y))
#define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
/*
* Macro to determine if value is a power of 2
*/
#define ISP2(x) (((x) & ((x) - 1)) == 0)
/*
* Macros for various sorts of alignment and rounding. The "align" must
* be a power of 2. Often times it is a block, sector, or page.
*/
/*
* return x rounded down to an align boundary
* eg, P2ALIGN(1200, 1024) == 1024 (1*align)
* eg, P2ALIGN(1024, 1024) == 1024 (1*align)
* eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
* eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
*/
#define P2ALIGN(x, align) ((x) & -(align))
/*
* return x % (mod) align
* eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
* eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
*/
#define P2PHASE(x, align) ((x) & ((align) - 1))
/*
* return how much space is left in this block (but if it's perfectly
* aligned, return 0).
* eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
* eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
*/
#define P2NPHASE(x, align) (-(x) & ((align) - 1))
/*
* return x rounded up to an align boundary
* eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
* eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
*/
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
/*
* return the ending address of the block that x is in
* eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
* eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
*/
#define P2END(x, align) (-(~(x) & -(align)))
/*
* return x rounded up to the next phase (offset) within align.
* phase should be < align.
* eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
* eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
*/
#define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
/*
* return TRUE if adding len to off would cause it to cross an align
* boundary.
* eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
* eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
*/
#define P2BOUNDARY(off, len, align) \
(((off) ^ ((off) + (len) - 1)) > (align) - 1)
/*
* Return TRUE if they have the same highest bit set.
* eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
* eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
*/
#define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y)))
/*
* Typed version of the P2* macros. These macros should be used to ensure
* that the result is correctly calculated based on the data type of (x),
* which is passed in as the last argument, regardless of the data
* type of the alignment. For example, if (x) is of type uint64_t,
* and we want to round it up to a page boundary using "PAGESIZE" as
* the alignment, we can do either
* P2ROUNDUP(x, (uint64_t)PAGESIZE)
* or
* P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
*/
#define P2ALIGN_TYPED(x, align, type) \
((type)(x) & -(type)(align))
#define P2PHASE_TYPED(x, align, type) \
((type)(x) & ((type)(align) - 1))
#define P2NPHASE_TYPED(x, align, type) \
(-(type)(x) & ((type)(align) - 1))
#define P2ROUNDUP_TYPED(x, align, type) \
(-(-(type)(x) & -(type)(align)))
#define P2END_TYPED(x, align, type) \
(-(~(type)(x) & -(type)(align)))
#define P2PHASEUP_TYPED(x, align, phase, type) \
((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
#define P2CROSS_TYPED(x, y, align, type) \
(((type)(x) ^ (type)(y)) > (type)(align) - 1)
#define P2SAMEHIGHBIT_TYPED(x, y, type) \
(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
/*
* Macros to atomically increment/decrement a variable. mutex and var
* must be pointers.
*/
#define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
#define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
/*
* Macros to declare bitfields - the order in the parameter list is
* Low to High - that is, declare bit 0 first. We only support 8-bit bitfields
* because if a field crosses a byte boundary it's not likely to be meaningful
* without reassembly in its nonnative endianness.
*/
#if defined(_BIT_FIELDS_LTOH)
#define DECL_BITFIELD2(_a, _b) \
uint8_t _a, _b
#define DECL_BITFIELD3(_a, _b, _c) \
uint8_t _a, _b, _c
#define DECL_BITFIELD4(_a, _b, _c, _d) \
uint8_t _a, _b, _c, _d
#define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
uint8_t _a, _b, _c, _d, _e
#define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
uint8_t _a, _b, _c, _d, _e, _f
#define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
uint8_t _a, _b, _c, _d, _e, _f, _g
#define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
uint8_t _a, _b, _c, _d, _e, _f, _g, _h
#elif defined(_BIT_FIELDS_HTOL)
#define DECL_BITFIELD2(_a, _b) \
uint8_t _b, _a
#define DECL_BITFIELD3(_a, _b, _c) \
uint8_t _c, _b, _a
#define DECL_BITFIELD4(_a, _b, _c, _d) \
uint8_t _d, _c, _b, _a
#define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
uint8_t _e, _d, _c, _b, _a
#define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
uint8_t _f, _e, _d, _c, _b, _a
#define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
uint8_t _g, _f, _e, _d, _c, _b, _a
#define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
uint8_t _h, _g, _f, _e, _d, _c, _b, _a
#else
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
#endif /* _BIT_FIELDS_LTOH */
#if !defined(_KMEMUSER) && !defined(offsetof)
/* avoid any possibility of clashing with <stddef.h> version */
#define offsetof(type, field) __offsetof(type, field)
#endif
/*
* Find highest one bit set.
* Returns bit number + 1 of highest bit that is set, otherwise returns 0.
* High order bit is 31 (or 63 in _LP64 kernel).
*/
static __inline int
highbit(ulong_t i)
{
#if defined(HAVE_INLINE_FLSL)
return (flsl(i));
#else
int h = 1;
if (i == 0)
return (0);
#ifdef _LP64
if (i & 0xffffffff00000000ul) {
h += 32; i >>= 32;
}
#endif
if (i & 0xffff0000) {
h += 16; i >>= 16;
}
if (i & 0xff00) {
h += 8; i >>= 8;
}
if (i & 0xf0) {
h += 4; i >>= 4;
}
if (i & 0xc) {
h += 2; i >>= 2;
}
if (i & 0x2) {
h += 1;
}
return (h);
#endif
}
/*
* Find highest one bit set.
* Returns bit number + 1 of highest bit that is set, otherwise returns 0.
*/
static __inline int
highbit64(uint64_t i)
{
#if defined(HAVE_INLINE_FLSLL)
return (flsll(i));
#else
int h = 1;
if (i == 0)
return (0);
if (i & 0xffffffff00000000ULL) {
h += 32; i >>= 32;
}
if (i & 0xffff0000) {
h += 16; i >>= 16;
}
if (i & 0xff00) {
h += 8; i >>= 8;
}
if (i & 0xf0) {
h += 4; i >>= 4;
}
if (i & 0xc) {
h += 2; i >>= 2;
}
if (i & 0x2) {
h += 1;
}
return (h);
#endif
}
#ifdef __cplusplus
}
#endif
#endif /* _SYS_SYSMACROS_H */