mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-06 00:00:49 +03:00
57f16600b9
When #4760 was merged tests were added to ensure that the new checksums were working properly. However, some of the functionality for sha2 functions were not ported over, resulting in some Coverity defects and code that would be unstable when needed in the future. This patch simply ports over the missing code and fixes the defects in the process. Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tom Caputi <tcaputi@datto.com> Issue #4760 Closes #5251
1410 lines
38 KiB
C
1410 lines
38 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/modctl.h>
|
|
#include <sys/crypto/common.h>
|
|
#include <sys/crypto/spi.h>
|
|
#include <sys/crypto/icp.h>
|
|
#define _SHA2_IMPL
|
|
#include <sys/sha2.h>
|
|
#include <sha2/sha2_impl.h>
|
|
|
|
/*
|
|
* The sha2 module is created with two modlinkages:
|
|
* - a modlmisc that allows consumers to directly call the entry points
|
|
* SHA2Init, SHA2Update, and SHA2Final.
|
|
* - a modlcrypto that allows the module to register with the Kernel
|
|
* Cryptographic Framework (KCF) as a software provider for the SHA2
|
|
* mechanisms.
|
|
*/
|
|
|
|
static struct modlcrypto modlcrypto = {
|
|
&mod_cryptoops,
|
|
"SHA2 Kernel SW Provider"
|
|
};
|
|
|
|
static struct modlinkage modlinkage = {
|
|
MODREV_1, {&modlcrypto, NULL}
|
|
};
|
|
|
|
/*
|
|
* Macros to access the SHA2 or SHA2-HMAC contexts from a context passed
|
|
* by KCF to one of the entry points.
|
|
*/
|
|
|
|
#define PROV_SHA2_CTX(ctx) ((sha2_ctx_t *)(ctx)->cc_provider_private)
|
|
#define PROV_SHA2_HMAC_CTX(ctx) ((sha2_hmac_ctx_t *)(ctx)->cc_provider_private)
|
|
|
|
/* to extract the digest length passed as mechanism parameter */
|
|
#define PROV_SHA2_GET_DIGEST_LEN(m, len) { \
|
|
if (IS_P2ALIGNED((m)->cm_param, sizeof (ulong_t))) \
|
|
(len) = (uint32_t)*((ulong_t *)(m)->cm_param); \
|
|
else { \
|
|
ulong_t tmp_ulong; \
|
|
bcopy((m)->cm_param, &tmp_ulong, sizeof (ulong_t)); \
|
|
(len) = (uint32_t)tmp_ulong; \
|
|
} \
|
|
}
|
|
|
|
#define PROV_SHA2_DIGEST_KEY(mech, ctx, key, len, digest) { \
|
|
SHA2Init(mech, ctx); \
|
|
SHA2Update(ctx, key, len); \
|
|
SHA2Final(digest, ctx); \
|
|
}
|
|
|
|
/*
|
|
* Mechanism info structure passed to KCF during registration.
|
|
*/
|
|
static crypto_mech_info_t sha2_mech_info_tab[] = {
|
|
/* SHA256 */
|
|
{SUN_CKM_SHA256, SHA256_MECH_INFO_TYPE,
|
|
CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
|
|
0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
|
|
/* SHA256-HMAC */
|
|
{SUN_CKM_SHA256_HMAC, SHA256_HMAC_MECH_INFO_TYPE,
|
|
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
|
|
SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
|
|
CRYPTO_KEYSIZE_UNIT_IN_BYTES},
|
|
/* SHA256-HMAC GENERAL */
|
|
{SUN_CKM_SHA256_HMAC_GENERAL, SHA256_HMAC_GEN_MECH_INFO_TYPE,
|
|
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
|
|
SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
|
|
CRYPTO_KEYSIZE_UNIT_IN_BYTES},
|
|
/* SHA384 */
|
|
{SUN_CKM_SHA384, SHA384_MECH_INFO_TYPE,
|
|
CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
|
|
0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
|
|
/* SHA384-HMAC */
|
|
{SUN_CKM_SHA384_HMAC, SHA384_HMAC_MECH_INFO_TYPE,
|
|
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
|
|
SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
|
|
CRYPTO_KEYSIZE_UNIT_IN_BYTES},
|
|
/* SHA384-HMAC GENERAL */
|
|
{SUN_CKM_SHA384_HMAC_GENERAL, SHA384_HMAC_GEN_MECH_INFO_TYPE,
|
|
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
|
|
SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
|
|
CRYPTO_KEYSIZE_UNIT_IN_BYTES},
|
|
/* SHA512 */
|
|
{SUN_CKM_SHA512, SHA512_MECH_INFO_TYPE,
|
|
CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
|
|
0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
|
|
/* SHA512-HMAC */
|
|
{SUN_CKM_SHA512_HMAC, SHA512_HMAC_MECH_INFO_TYPE,
|
|
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
|
|
SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
|
|
CRYPTO_KEYSIZE_UNIT_IN_BYTES},
|
|
/* SHA512-HMAC GENERAL */
|
|
{SUN_CKM_SHA512_HMAC_GENERAL, SHA512_HMAC_GEN_MECH_INFO_TYPE,
|
|
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
|
|
SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
|
|
CRYPTO_KEYSIZE_UNIT_IN_BYTES}
|
|
};
|
|
|
|
static void sha2_provider_status(crypto_provider_handle_t, uint_t *);
|
|
|
|
static crypto_control_ops_t sha2_control_ops = {
|
|
sha2_provider_status
|
|
};
|
|
|
|
static int sha2_digest_init(crypto_ctx_t *, crypto_mechanism_t *,
|
|
crypto_req_handle_t);
|
|
static int sha2_digest(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
|
|
crypto_req_handle_t);
|
|
static int sha2_digest_update(crypto_ctx_t *, crypto_data_t *,
|
|
crypto_req_handle_t);
|
|
static int sha2_digest_final(crypto_ctx_t *, crypto_data_t *,
|
|
crypto_req_handle_t);
|
|
static int sha2_digest_atomic(crypto_provider_handle_t, crypto_session_id_t,
|
|
crypto_mechanism_t *, crypto_data_t *, crypto_data_t *,
|
|
crypto_req_handle_t);
|
|
|
|
static crypto_digest_ops_t sha2_digest_ops = {
|
|
sha2_digest_init,
|
|
sha2_digest,
|
|
sha2_digest_update,
|
|
NULL,
|
|
sha2_digest_final,
|
|
sha2_digest_atomic
|
|
};
|
|
|
|
static int sha2_mac_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *,
|
|
crypto_spi_ctx_template_t, crypto_req_handle_t);
|
|
static int sha2_mac_update(crypto_ctx_t *, crypto_data_t *,
|
|
crypto_req_handle_t);
|
|
static int sha2_mac_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t);
|
|
static int sha2_mac_atomic(crypto_provider_handle_t, crypto_session_id_t,
|
|
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
|
|
crypto_spi_ctx_template_t, crypto_req_handle_t);
|
|
static int sha2_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t,
|
|
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
|
|
crypto_spi_ctx_template_t, crypto_req_handle_t);
|
|
|
|
static crypto_mac_ops_t sha2_mac_ops = {
|
|
sha2_mac_init,
|
|
NULL,
|
|
sha2_mac_update,
|
|
sha2_mac_final,
|
|
sha2_mac_atomic,
|
|
sha2_mac_verify_atomic
|
|
};
|
|
|
|
static int sha2_create_ctx_template(crypto_provider_handle_t,
|
|
crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *,
|
|
size_t *, crypto_req_handle_t);
|
|
static int sha2_free_context(crypto_ctx_t *);
|
|
|
|
static crypto_ctx_ops_t sha2_ctx_ops = {
|
|
sha2_create_ctx_template,
|
|
sha2_free_context
|
|
};
|
|
|
|
static crypto_ops_t sha2_crypto_ops = {{{{{
|
|
&sha2_control_ops,
|
|
&sha2_digest_ops,
|
|
NULL,
|
|
&sha2_mac_ops,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
&sha2_ctx_ops
|
|
}}}}};
|
|
|
|
static crypto_provider_info_t sha2_prov_info = {{{{
|
|
CRYPTO_SPI_VERSION_1,
|
|
"SHA2 Software Provider",
|
|
CRYPTO_SW_PROVIDER,
|
|
NULL,
|
|
&sha2_crypto_ops,
|
|
sizeof (sha2_mech_info_tab)/sizeof (crypto_mech_info_t),
|
|
sha2_mech_info_tab
|
|
}}}};
|
|
|
|
static crypto_kcf_provider_handle_t sha2_prov_handle = 0;
|
|
|
|
int
|
|
sha2_mod_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = mod_install(&modlinkage)) != 0)
|
|
return (ret);
|
|
|
|
/*
|
|
* Register with KCF. If the registration fails, log an
|
|
* error but do not uninstall the module, since the functionality
|
|
* provided by misc/sha2 should still be available.
|
|
*/
|
|
if ((ret = crypto_register_provider(&sha2_prov_info,
|
|
&sha2_prov_handle)) != CRYPTO_SUCCESS)
|
|
cmn_err(CE_WARN, "sha2 _init: "
|
|
"crypto_register_provider() failed (0x%x)", ret);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sha2_mod_fini(void)
|
|
{
|
|
int ret;
|
|
|
|
if (sha2_prov_handle != 0) {
|
|
if ((ret = crypto_unregister_provider(sha2_prov_handle)) !=
|
|
CRYPTO_SUCCESS) {
|
|
cmn_err(CE_WARN,
|
|
"sha2 _fini: crypto_unregister_provider() "
|
|
"failed (0x%x)", ret);
|
|
return (EBUSY);
|
|
}
|
|
sha2_prov_handle = 0;
|
|
}
|
|
|
|
return (mod_remove(&modlinkage));
|
|
}
|
|
|
|
/*
|
|
* KCF software provider control entry points.
|
|
*/
|
|
/* ARGSUSED */
|
|
static void
|
|
sha2_provider_status(crypto_provider_handle_t provider, uint_t *status)
|
|
{
|
|
*status = CRYPTO_PROVIDER_READY;
|
|
}
|
|
|
|
/*
|
|
* KCF software provider digest entry points.
|
|
*/
|
|
|
|
static int
|
|
sha2_digest_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
|
|
crypto_req_handle_t req)
|
|
{
|
|
|
|
/*
|
|
* Allocate and initialize SHA2 context.
|
|
*/
|
|
ctx->cc_provider_private = kmem_alloc(sizeof (sha2_ctx_t),
|
|
crypto_kmflag(req));
|
|
if (ctx->cc_provider_private == NULL)
|
|
return (CRYPTO_HOST_MEMORY);
|
|
|
|
PROV_SHA2_CTX(ctx)->sc_mech_type = mechanism->cm_type;
|
|
SHA2Init(mechanism->cm_type, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx);
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Helper SHA2 digest update function for uio data.
|
|
*/
|
|
static int
|
|
sha2_digest_update_uio(SHA2_CTX *sha2_ctx, crypto_data_t *data)
|
|
{
|
|
off_t offset = data->cd_offset;
|
|
size_t length = data->cd_length;
|
|
uint_t vec_idx;
|
|
size_t cur_len;
|
|
|
|
/* we support only kernel buffer */
|
|
if (data->cd_uio->uio_segflg != UIO_SYSSPACE)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
/*
|
|
* Jump to the first iovec containing data to be
|
|
* digested.
|
|
*/
|
|
for (vec_idx = 0; vec_idx < data->cd_uio->uio_iovcnt &&
|
|
offset >= data->cd_uio->uio_iov[vec_idx].iov_len;
|
|
offset -= data->cd_uio->uio_iov[vec_idx++].iov_len)
|
|
;
|
|
if (vec_idx == data->cd_uio->uio_iovcnt) {
|
|
/*
|
|
* The caller specified an offset that is larger than the
|
|
* total size of the buffers it provided.
|
|
*/
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
/*
|
|
* Now do the digesting on the iovecs.
|
|
*/
|
|
while (vec_idx < data->cd_uio->uio_iovcnt && length > 0) {
|
|
cur_len = MIN(data->cd_uio->uio_iov[vec_idx].iov_len -
|
|
offset, length);
|
|
|
|
SHA2Update(sha2_ctx, (uint8_t *)data->cd_uio->
|
|
uio_iov[vec_idx].iov_base + offset, cur_len);
|
|
length -= cur_len;
|
|
vec_idx++;
|
|
offset = 0;
|
|
}
|
|
|
|
if (vec_idx == data->cd_uio->uio_iovcnt && length > 0) {
|
|
/*
|
|
* The end of the specified iovec's was reached but
|
|
* the length requested could not be processed, i.e.
|
|
* The caller requested to digest more data than it provided.
|
|
*/
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Helper SHA2 digest final function for uio data.
|
|
* digest_len is the length of the desired digest. If digest_len
|
|
* is smaller than the default SHA2 digest length, the caller
|
|
* must pass a scratch buffer, digest_scratch, which must
|
|
* be at least the algorithm's digest length bytes.
|
|
*/
|
|
static int
|
|
sha2_digest_final_uio(SHA2_CTX *sha2_ctx, crypto_data_t *digest,
|
|
ulong_t digest_len, uchar_t *digest_scratch)
|
|
{
|
|
off_t offset = digest->cd_offset;
|
|
uint_t vec_idx;
|
|
|
|
/* we support only kernel buffer */
|
|
if (digest->cd_uio->uio_segflg != UIO_SYSSPACE)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
/*
|
|
* Jump to the first iovec containing ptr to the digest to
|
|
* be returned.
|
|
*/
|
|
for (vec_idx = 0; offset >= digest->cd_uio->uio_iov[vec_idx].iov_len &&
|
|
vec_idx < digest->cd_uio->uio_iovcnt;
|
|
offset -= digest->cd_uio->uio_iov[vec_idx++].iov_len)
|
|
;
|
|
if (vec_idx == digest->cd_uio->uio_iovcnt) {
|
|
/*
|
|
* The caller specified an offset that is
|
|
* larger than the total size of the buffers
|
|
* it provided.
|
|
*/
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
if (offset + digest_len <=
|
|
digest->cd_uio->uio_iov[vec_idx].iov_len) {
|
|
/*
|
|
* The computed SHA2 digest will fit in the current
|
|
* iovec.
|
|
*/
|
|
if (((sha2_ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) &&
|
|
(digest_len != SHA256_DIGEST_LENGTH)) ||
|
|
((sha2_ctx->algotype > SHA256_HMAC_GEN_MECH_INFO_TYPE) &&
|
|
(digest_len != SHA512_DIGEST_LENGTH))) {
|
|
/*
|
|
* The caller requested a short digest. Digest
|
|
* into a scratch buffer and return to
|
|
* the user only what was requested.
|
|
*/
|
|
SHA2Final(digest_scratch, sha2_ctx);
|
|
|
|
bcopy(digest_scratch, (uchar_t *)digest->
|
|
cd_uio->uio_iov[vec_idx].iov_base + offset,
|
|
digest_len);
|
|
} else {
|
|
SHA2Final((uchar_t *)digest->
|
|
cd_uio->uio_iov[vec_idx].iov_base + offset,
|
|
sha2_ctx);
|
|
|
|
}
|
|
} else {
|
|
/*
|
|
* The computed digest will be crossing one or more iovec's.
|
|
* This is bad performance-wise but we need to support it.
|
|
* Allocate a small scratch buffer on the stack and
|
|
* copy it piece meal to the specified digest iovec's.
|
|
*/
|
|
uchar_t digest_tmp[SHA512_DIGEST_LENGTH];
|
|
off_t scratch_offset = 0;
|
|
size_t length = digest_len;
|
|
size_t cur_len;
|
|
|
|
SHA2Final(digest_tmp, sha2_ctx);
|
|
|
|
while (vec_idx < digest->cd_uio->uio_iovcnt && length > 0) {
|
|
cur_len =
|
|
MIN(digest->cd_uio->uio_iov[vec_idx].iov_len -
|
|
offset, length);
|
|
bcopy(digest_tmp + scratch_offset,
|
|
digest->cd_uio->uio_iov[vec_idx].iov_base + offset,
|
|
cur_len);
|
|
|
|
length -= cur_len;
|
|
vec_idx++;
|
|
scratch_offset += cur_len;
|
|
offset = 0;
|
|
}
|
|
|
|
if (vec_idx == digest->cd_uio->uio_iovcnt && length > 0) {
|
|
/*
|
|
* The end of the specified iovec's was reached but
|
|
* the length requested could not be processed, i.e.
|
|
* The caller requested to digest more data than it
|
|
* provided.
|
|
*/
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
}
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_digest(crypto_ctx_t *ctx, crypto_data_t *data, crypto_data_t *digest,
|
|
crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
uint_t sha_digest_len;
|
|
|
|
ASSERT(ctx->cc_provider_private != NULL);
|
|
|
|
switch (PROV_SHA2_CTX(ctx)->sc_mech_type) {
|
|
case SHA256_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA256_DIGEST_LENGTH;
|
|
break;
|
|
case SHA384_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA384_DIGEST_LENGTH;
|
|
break;
|
|
case SHA512_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA512_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
return (CRYPTO_MECHANISM_INVALID);
|
|
}
|
|
|
|
/*
|
|
* We need to just return the length needed to store the output.
|
|
* We should not destroy the context for the following cases.
|
|
*/
|
|
if ((digest->cd_length == 0) ||
|
|
(digest->cd_length < sha_digest_len)) {
|
|
digest->cd_length = sha_digest_len;
|
|
return (CRYPTO_BUFFER_TOO_SMALL);
|
|
}
|
|
|
|
/*
|
|
* Do the SHA2 update on the specified input data.
|
|
*/
|
|
switch (data->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
SHA2Update(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
|
|
(uint8_t *)data->cd_raw.iov_base + data->cd_offset,
|
|
data->cd_length);
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_update_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
|
|
data);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
if (ret != CRYPTO_SUCCESS) {
|
|
/* the update failed, free context and bail */
|
|
kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t));
|
|
ctx->cc_provider_private = NULL;
|
|
digest->cd_length = 0;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Do a SHA2 final, must be done separately since the digest
|
|
* type can be different than the input data type.
|
|
*/
|
|
switch (digest->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
SHA2Final((unsigned char *)digest->cd_raw.iov_base +
|
|
digest->cd_offset, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx);
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_final_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
|
|
digest, sha_digest_len, NULL);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
/* all done, free context and return */
|
|
|
|
if (ret == CRYPTO_SUCCESS)
|
|
digest->cd_length = sha_digest_len;
|
|
else
|
|
digest->cd_length = 0;
|
|
|
|
kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t));
|
|
ctx->cc_provider_private = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_digest_update(crypto_ctx_t *ctx, crypto_data_t *data,
|
|
crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
|
|
ASSERT(ctx->cc_provider_private != NULL);
|
|
|
|
/*
|
|
* Do the SHA2 update on the specified input data.
|
|
*/
|
|
switch (data->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
SHA2Update(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
|
|
(uint8_t *)data->cd_raw.iov_base + data->cd_offset,
|
|
data->cd_length);
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_update_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
|
|
data);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_digest_final(crypto_ctx_t *ctx, crypto_data_t *digest,
|
|
crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
uint_t sha_digest_len;
|
|
|
|
ASSERT(ctx->cc_provider_private != NULL);
|
|
|
|
switch (PROV_SHA2_CTX(ctx)->sc_mech_type) {
|
|
case SHA256_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA256_DIGEST_LENGTH;
|
|
break;
|
|
case SHA384_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA384_DIGEST_LENGTH;
|
|
break;
|
|
case SHA512_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA512_DIGEST_LENGTH;
|
|
break;
|
|
default:
|
|
return (CRYPTO_MECHANISM_INVALID);
|
|
}
|
|
|
|
/*
|
|
* We need to just return the length needed to store the output.
|
|
* We should not destroy the context for the following cases.
|
|
*/
|
|
if ((digest->cd_length == 0) ||
|
|
(digest->cd_length < sha_digest_len)) {
|
|
digest->cd_length = sha_digest_len;
|
|
return (CRYPTO_BUFFER_TOO_SMALL);
|
|
}
|
|
|
|
/*
|
|
* Do a SHA2 final.
|
|
*/
|
|
switch (digest->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
SHA2Final((unsigned char *)digest->cd_raw.iov_base +
|
|
digest->cd_offset, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx);
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_final_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
|
|
digest, sha_digest_len, NULL);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
/* all done, free context and return */
|
|
|
|
if (ret == CRYPTO_SUCCESS)
|
|
digest->cd_length = sha_digest_len;
|
|
else
|
|
digest->cd_length = 0;
|
|
|
|
kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t));
|
|
ctx->cc_provider_private = NULL;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_digest_atomic(crypto_provider_handle_t provider,
|
|
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
|
|
crypto_data_t *data, crypto_data_t *digest,
|
|
crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
SHA2_CTX sha2_ctx;
|
|
uint32_t sha_digest_len;
|
|
|
|
/*
|
|
* Do the SHA inits.
|
|
*/
|
|
|
|
SHA2Init(mechanism->cm_type, &sha2_ctx);
|
|
|
|
switch (data->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
SHA2Update(&sha2_ctx, (uint8_t *)data->
|
|
cd_raw.iov_base + data->cd_offset, data->cd_length);
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_update_uio(&sha2_ctx, data);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
/*
|
|
* Do the SHA updates on the specified input data.
|
|
*/
|
|
|
|
if (ret != CRYPTO_SUCCESS) {
|
|
/* the update failed, bail */
|
|
digest->cd_length = 0;
|
|
return (ret);
|
|
}
|
|
|
|
if (mechanism->cm_type <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
|
|
sha_digest_len = SHA256_DIGEST_LENGTH;
|
|
else
|
|
sha_digest_len = SHA512_DIGEST_LENGTH;
|
|
|
|
/*
|
|
* Do a SHA2 final, must be done separately since the digest
|
|
* type can be different than the input data type.
|
|
*/
|
|
switch (digest->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
SHA2Final((unsigned char *)digest->cd_raw.iov_base +
|
|
digest->cd_offset, &sha2_ctx);
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_final_uio(&sha2_ctx, digest,
|
|
sha_digest_len, NULL);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
if (ret == CRYPTO_SUCCESS)
|
|
digest->cd_length = sha_digest_len;
|
|
else
|
|
digest->cd_length = 0;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* KCF software provider mac entry points.
|
|
*
|
|
* SHA2 HMAC is: SHA2(key XOR opad, SHA2(key XOR ipad, text))
|
|
*
|
|
* Init:
|
|
* The initialization routine initializes what we denote
|
|
* as the inner and outer contexts by doing
|
|
* - for inner context: SHA2(key XOR ipad)
|
|
* - for outer context: SHA2(key XOR opad)
|
|
*
|
|
* Update:
|
|
* Each subsequent SHA2 HMAC update will result in an
|
|
* update of the inner context with the specified data.
|
|
*
|
|
* Final:
|
|
* The SHA2 HMAC final will do a SHA2 final operation on the
|
|
* inner context, and the resulting digest will be used
|
|
* as the data for an update on the outer context. Last
|
|
* but not least, a SHA2 final on the outer context will
|
|
* be performed to obtain the SHA2 HMAC digest to return
|
|
* to the user.
|
|
*/
|
|
|
|
/*
|
|
* Initialize a SHA2-HMAC context.
|
|
*/
|
|
static void
|
|
sha2_mac_init_ctx(sha2_hmac_ctx_t *ctx, void *keyval, uint_t length_in_bytes)
|
|
{
|
|
uint64_t ipad[SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t)];
|
|
uint64_t opad[SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t)];
|
|
int i, block_size, blocks_per_int64;
|
|
|
|
/* Determine the block size */
|
|
if (ctx->hc_mech_type <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
|
|
block_size = SHA256_HMAC_BLOCK_SIZE;
|
|
blocks_per_int64 = SHA256_HMAC_BLOCK_SIZE / sizeof (uint64_t);
|
|
} else {
|
|
block_size = SHA512_HMAC_BLOCK_SIZE;
|
|
blocks_per_int64 = SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t);
|
|
}
|
|
|
|
(void) bzero(ipad, block_size);
|
|
(void) bzero(opad, block_size);
|
|
(void) bcopy(keyval, ipad, length_in_bytes);
|
|
(void) bcopy(keyval, opad, length_in_bytes);
|
|
|
|
/* XOR key with ipad (0x36) and opad (0x5c) */
|
|
for (i = 0; i < blocks_per_int64; i ++) {
|
|
ipad[i] ^= 0x3636363636363636;
|
|
opad[i] ^= 0x5c5c5c5c5c5c5c5c;
|
|
}
|
|
|
|
/* perform SHA2 on ipad */
|
|
SHA2Init(ctx->hc_mech_type, &ctx->hc_icontext);
|
|
SHA2Update(&ctx->hc_icontext, (uint8_t *)ipad, block_size);
|
|
|
|
/* perform SHA2 on opad */
|
|
SHA2Init(ctx->hc_mech_type, &ctx->hc_ocontext);
|
|
SHA2Update(&ctx->hc_ocontext, (uint8_t *)opad, block_size);
|
|
|
|
}
|
|
|
|
/*
|
|
*/
|
|
static int
|
|
sha2_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
|
|
crypto_key_t *key, crypto_spi_ctx_template_t ctx_template,
|
|
crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
|
|
uint_t sha_digest_len, sha_hmac_block_size;
|
|
|
|
/*
|
|
* Set the digest length and block size to values appropriate to the
|
|
* mechanism
|
|
*/
|
|
switch (mechanism->cm_type) {
|
|
case SHA256_HMAC_MECH_INFO_TYPE:
|
|
case SHA256_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA256_DIGEST_LENGTH;
|
|
sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE;
|
|
break;
|
|
case SHA384_HMAC_MECH_INFO_TYPE:
|
|
case SHA384_HMAC_GEN_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA512_DIGEST_LENGTH;
|
|
sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE;
|
|
break;
|
|
default:
|
|
return (CRYPTO_MECHANISM_INVALID);
|
|
}
|
|
|
|
if (key->ck_format != CRYPTO_KEY_RAW)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
ctx->cc_provider_private = kmem_alloc(sizeof (sha2_hmac_ctx_t),
|
|
crypto_kmflag(req));
|
|
if (ctx->cc_provider_private == NULL)
|
|
return (CRYPTO_HOST_MEMORY);
|
|
|
|
PROV_SHA2_HMAC_CTX(ctx)->hc_mech_type = mechanism->cm_type;
|
|
if (ctx_template != NULL) {
|
|
/* reuse context template */
|
|
bcopy(ctx_template, PROV_SHA2_HMAC_CTX(ctx),
|
|
sizeof (sha2_hmac_ctx_t));
|
|
} else {
|
|
/* no context template, compute context */
|
|
if (keylen_in_bytes > sha_hmac_block_size) {
|
|
uchar_t digested_key[SHA512_DIGEST_LENGTH];
|
|
sha2_hmac_ctx_t *hmac_ctx = ctx->cc_provider_private;
|
|
|
|
/*
|
|
* Hash the passed-in key to get a smaller key.
|
|
* The inner context is used since it hasn't been
|
|
* initialized yet.
|
|
*/
|
|
PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3,
|
|
&hmac_ctx->hc_icontext,
|
|
key->ck_data, keylen_in_bytes, digested_key);
|
|
sha2_mac_init_ctx(PROV_SHA2_HMAC_CTX(ctx),
|
|
digested_key, sha_digest_len);
|
|
} else {
|
|
sha2_mac_init_ctx(PROV_SHA2_HMAC_CTX(ctx),
|
|
key->ck_data, keylen_in_bytes);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the mechanism parameters, if applicable.
|
|
*/
|
|
if (mechanism->cm_type % 3 == 2) {
|
|
if (mechanism->cm_param == NULL ||
|
|
mechanism->cm_param_len != sizeof (ulong_t))
|
|
ret = CRYPTO_MECHANISM_PARAM_INVALID;
|
|
PROV_SHA2_GET_DIGEST_LEN(mechanism,
|
|
PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len);
|
|
if (PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len > sha_digest_len)
|
|
ret = CRYPTO_MECHANISM_PARAM_INVALID;
|
|
}
|
|
|
|
if (ret != CRYPTO_SUCCESS) {
|
|
bzero(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t));
|
|
kmem_free(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t));
|
|
ctx->cc_provider_private = NULL;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_mac_update(crypto_ctx_t *ctx, crypto_data_t *data,
|
|
crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
|
|
ASSERT(ctx->cc_provider_private != NULL);
|
|
|
|
/*
|
|
* Do a SHA2 update of the inner context using the specified
|
|
* data.
|
|
*/
|
|
switch (data->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
SHA2Update(&PROV_SHA2_HMAC_CTX(ctx)->hc_icontext,
|
|
(uint8_t *)data->cd_raw.iov_base + data->cd_offset,
|
|
data->cd_length);
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_update_uio(
|
|
&PROV_SHA2_HMAC_CTX(ctx)->hc_icontext, data);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
uchar_t digest[SHA512_DIGEST_LENGTH];
|
|
uint32_t digest_len, sha_digest_len;
|
|
|
|
ASSERT(ctx->cc_provider_private != NULL);
|
|
|
|
/* Set the digest lengths to values appropriate to the mechanism */
|
|
switch (PROV_SHA2_HMAC_CTX(ctx)->hc_mech_type) {
|
|
case SHA256_HMAC_MECH_INFO_TYPE:
|
|
sha_digest_len = digest_len = SHA256_DIGEST_LENGTH;
|
|
break;
|
|
case SHA384_HMAC_MECH_INFO_TYPE:
|
|
sha_digest_len = digest_len = SHA384_DIGEST_LENGTH;
|
|
break;
|
|
case SHA512_HMAC_MECH_INFO_TYPE:
|
|
sha_digest_len = digest_len = SHA512_DIGEST_LENGTH;
|
|
break;
|
|
case SHA256_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA256_DIGEST_LENGTH;
|
|
digest_len = PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len;
|
|
break;
|
|
case SHA384_HMAC_GEN_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA512_DIGEST_LENGTH;
|
|
digest_len = PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len;
|
|
break;
|
|
default:
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
}
|
|
|
|
/*
|
|
* We need to just return the length needed to store the output.
|
|
* We should not destroy the context for the following cases.
|
|
*/
|
|
if ((mac->cd_length == 0) || (mac->cd_length < digest_len)) {
|
|
mac->cd_length = digest_len;
|
|
return (CRYPTO_BUFFER_TOO_SMALL);
|
|
}
|
|
|
|
/*
|
|
* Do a SHA2 final on the inner context.
|
|
*/
|
|
SHA2Final(digest, &PROV_SHA2_HMAC_CTX(ctx)->hc_icontext);
|
|
|
|
/*
|
|
* Do a SHA2 update on the outer context, feeding the inner
|
|
* digest as data.
|
|
*/
|
|
SHA2Update(&PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, digest,
|
|
sha_digest_len);
|
|
|
|
/*
|
|
* Do a SHA2 final on the outer context, storing the computing
|
|
* digest in the users buffer.
|
|
*/
|
|
switch (mac->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
if (digest_len != sha_digest_len) {
|
|
/*
|
|
* The caller requested a short digest. Digest
|
|
* into a scratch buffer and return to
|
|
* the user only what was requested.
|
|
*/
|
|
SHA2Final(digest,
|
|
&PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext);
|
|
bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
|
|
mac->cd_offset, digest_len);
|
|
} else {
|
|
SHA2Final((unsigned char *)mac->cd_raw.iov_base +
|
|
mac->cd_offset,
|
|
&PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext);
|
|
}
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_final_uio(
|
|
&PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, mac,
|
|
digest_len, digest);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
if (ret == CRYPTO_SUCCESS)
|
|
mac->cd_length = digest_len;
|
|
else
|
|
mac->cd_length = 0;
|
|
|
|
bzero(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t));
|
|
kmem_free(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t));
|
|
ctx->cc_provider_private = NULL;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
#define SHA2_MAC_UPDATE(data, ctx, ret) { \
|
|
switch (data->cd_format) { \
|
|
case CRYPTO_DATA_RAW: \
|
|
SHA2Update(&(ctx).hc_icontext, \
|
|
(uint8_t *)data->cd_raw.iov_base + \
|
|
data->cd_offset, data->cd_length); \
|
|
break; \
|
|
case CRYPTO_DATA_UIO: \
|
|
ret = sha2_digest_update_uio(&(ctx).hc_icontext, data); \
|
|
break; \
|
|
default: \
|
|
ret = CRYPTO_ARGUMENTS_BAD; \
|
|
} \
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_mac_atomic(crypto_provider_handle_t provider,
|
|
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
|
|
crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
|
|
crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
uchar_t digest[SHA512_DIGEST_LENGTH];
|
|
sha2_hmac_ctx_t sha2_hmac_ctx;
|
|
uint32_t sha_digest_len, digest_len, sha_hmac_block_size;
|
|
uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
|
|
|
|
/*
|
|
* Set the digest length and block size to values appropriate to the
|
|
* mechanism
|
|
*/
|
|
switch (mechanism->cm_type) {
|
|
case SHA256_HMAC_MECH_INFO_TYPE:
|
|
case SHA256_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = digest_len = SHA256_DIGEST_LENGTH;
|
|
sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE;
|
|
break;
|
|
case SHA384_HMAC_MECH_INFO_TYPE:
|
|
case SHA384_HMAC_GEN_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = digest_len = SHA512_DIGEST_LENGTH;
|
|
sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE;
|
|
break;
|
|
default:
|
|
return (CRYPTO_MECHANISM_INVALID);
|
|
}
|
|
|
|
/* Add support for key by attributes (RFE 4706552) */
|
|
if (key->ck_format != CRYPTO_KEY_RAW)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
if (ctx_template != NULL) {
|
|
/* reuse context template */
|
|
bcopy(ctx_template, &sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t));
|
|
} else {
|
|
sha2_hmac_ctx.hc_mech_type = mechanism->cm_type;
|
|
/* no context template, initialize context */
|
|
if (keylen_in_bytes > sha_hmac_block_size) {
|
|
/*
|
|
* Hash the passed-in key to get a smaller key.
|
|
* The inner context is used since it hasn't been
|
|
* initialized yet.
|
|
*/
|
|
PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3,
|
|
&sha2_hmac_ctx.hc_icontext,
|
|
key->ck_data, keylen_in_bytes, digest);
|
|
sha2_mac_init_ctx(&sha2_hmac_ctx, digest,
|
|
sha_digest_len);
|
|
} else {
|
|
sha2_mac_init_ctx(&sha2_hmac_ctx, key->ck_data,
|
|
keylen_in_bytes);
|
|
}
|
|
}
|
|
|
|
/* get the mechanism parameters, if applicable */
|
|
if ((mechanism->cm_type % 3) == 2) {
|
|
if (mechanism->cm_param == NULL ||
|
|
mechanism->cm_param_len != sizeof (ulong_t)) {
|
|
ret = CRYPTO_MECHANISM_PARAM_INVALID;
|
|
goto bail;
|
|
}
|
|
PROV_SHA2_GET_DIGEST_LEN(mechanism, digest_len);
|
|
if (digest_len > sha_digest_len) {
|
|
ret = CRYPTO_MECHANISM_PARAM_INVALID;
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
/* do a SHA2 update of the inner context using the specified data */
|
|
SHA2_MAC_UPDATE(data, sha2_hmac_ctx, ret);
|
|
if (ret != CRYPTO_SUCCESS)
|
|
/* the update failed, free context and bail */
|
|
goto bail;
|
|
|
|
/*
|
|
* Do a SHA2 final on the inner context.
|
|
*/
|
|
SHA2Final(digest, &sha2_hmac_ctx.hc_icontext);
|
|
|
|
/*
|
|
* Do an SHA2 update on the outer context, feeding the inner
|
|
* digest as data.
|
|
*
|
|
* HMAC-SHA384 needs special handling as the outer hash needs only 48
|
|
* bytes of the inner hash value.
|
|
*/
|
|
if (mechanism->cm_type == SHA384_HMAC_MECH_INFO_TYPE ||
|
|
mechanism->cm_type == SHA384_HMAC_GEN_MECH_INFO_TYPE)
|
|
SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest,
|
|
SHA384_DIGEST_LENGTH);
|
|
else
|
|
SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest, sha_digest_len);
|
|
|
|
/*
|
|
* Do a SHA2 final on the outer context, storing the computed
|
|
* digest in the users buffer.
|
|
*/
|
|
switch (mac->cd_format) {
|
|
case CRYPTO_DATA_RAW:
|
|
if (digest_len != sha_digest_len) {
|
|
/*
|
|
* The caller requested a short digest. Digest
|
|
* into a scratch buffer and return to
|
|
* the user only what was requested.
|
|
*/
|
|
SHA2Final(digest, &sha2_hmac_ctx.hc_ocontext);
|
|
bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
|
|
mac->cd_offset, digest_len);
|
|
} else {
|
|
SHA2Final((unsigned char *)mac->cd_raw.iov_base +
|
|
mac->cd_offset, &sha2_hmac_ctx.hc_ocontext);
|
|
}
|
|
break;
|
|
case CRYPTO_DATA_UIO:
|
|
ret = sha2_digest_final_uio(&sha2_hmac_ctx.hc_ocontext, mac,
|
|
digest_len, digest);
|
|
break;
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
if (ret == CRYPTO_SUCCESS) {
|
|
mac->cd_length = digest_len;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
bail:
|
|
bzero(&sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t));
|
|
mac->cd_length = 0;
|
|
return (ret);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_mac_verify_atomic(crypto_provider_handle_t provider,
|
|
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
|
|
crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
|
|
crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
|
|
{
|
|
int ret = CRYPTO_SUCCESS;
|
|
uchar_t digest[SHA512_DIGEST_LENGTH];
|
|
sha2_hmac_ctx_t sha2_hmac_ctx;
|
|
uint32_t sha_digest_len, digest_len, sha_hmac_block_size;
|
|
uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
|
|
|
|
/*
|
|
* Set the digest length and block size to values appropriate to the
|
|
* mechanism
|
|
*/
|
|
switch (mechanism->cm_type) {
|
|
case SHA256_HMAC_MECH_INFO_TYPE:
|
|
case SHA256_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = digest_len = SHA256_DIGEST_LENGTH;
|
|
sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE;
|
|
break;
|
|
case SHA384_HMAC_MECH_INFO_TYPE:
|
|
case SHA384_HMAC_GEN_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = digest_len = SHA512_DIGEST_LENGTH;
|
|
sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE;
|
|
break;
|
|
default:
|
|
return (CRYPTO_MECHANISM_INVALID);
|
|
}
|
|
|
|
/* Add support for key by attributes (RFE 4706552) */
|
|
if (key->ck_format != CRYPTO_KEY_RAW)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
if (ctx_template != NULL) {
|
|
/* reuse context template */
|
|
bcopy(ctx_template, &sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t));
|
|
} else {
|
|
sha2_hmac_ctx.hc_mech_type = mechanism->cm_type;
|
|
/* no context template, initialize context */
|
|
if (keylen_in_bytes > sha_hmac_block_size) {
|
|
/*
|
|
* Hash the passed-in key to get a smaller key.
|
|
* The inner context is used since it hasn't been
|
|
* initialized yet.
|
|
*/
|
|
PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3,
|
|
&sha2_hmac_ctx.hc_icontext,
|
|
key->ck_data, keylen_in_bytes, digest);
|
|
sha2_mac_init_ctx(&sha2_hmac_ctx, digest,
|
|
sha_digest_len);
|
|
} else {
|
|
sha2_mac_init_ctx(&sha2_hmac_ctx, key->ck_data,
|
|
keylen_in_bytes);
|
|
}
|
|
}
|
|
|
|
/* get the mechanism parameters, if applicable */
|
|
if (mechanism->cm_type % 3 == 2) {
|
|
if (mechanism->cm_param == NULL ||
|
|
mechanism->cm_param_len != sizeof (ulong_t)) {
|
|
ret = CRYPTO_MECHANISM_PARAM_INVALID;
|
|
goto bail;
|
|
}
|
|
PROV_SHA2_GET_DIGEST_LEN(mechanism, digest_len);
|
|
if (digest_len > sha_digest_len) {
|
|
ret = CRYPTO_MECHANISM_PARAM_INVALID;
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
if (mac->cd_length != digest_len) {
|
|
ret = CRYPTO_INVALID_MAC;
|
|
goto bail;
|
|
}
|
|
|
|
/* do a SHA2 update of the inner context using the specified data */
|
|
SHA2_MAC_UPDATE(data, sha2_hmac_ctx, ret);
|
|
if (ret != CRYPTO_SUCCESS)
|
|
/* the update failed, free context and bail */
|
|
goto bail;
|
|
|
|
/* do a SHA2 final on the inner context */
|
|
SHA2Final(digest, &sha2_hmac_ctx.hc_icontext);
|
|
|
|
/*
|
|
* Do an SHA2 update on the outer context, feeding the inner
|
|
* digest as data.
|
|
*
|
|
* HMAC-SHA384 needs special handling as the outer hash needs only 48
|
|
* bytes of the inner hash value.
|
|
*/
|
|
if (mechanism->cm_type == SHA384_HMAC_MECH_INFO_TYPE ||
|
|
mechanism->cm_type == SHA384_HMAC_GEN_MECH_INFO_TYPE)
|
|
SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest,
|
|
SHA384_DIGEST_LENGTH);
|
|
else
|
|
SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest, sha_digest_len);
|
|
|
|
/*
|
|
* Do a SHA2 final on the outer context, storing the computed
|
|
* digest in the users buffer.
|
|
*/
|
|
SHA2Final(digest, &sha2_hmac_ctx.hc_ocontext);
|
|
|
|
/*
|
|
* Compare the computed digest against the expected digest passed
|
|
* as argument.
|
|
*/
|
|
|
|
switch (mac->cd_format) {
|
|
|
|
case CRYPTO_DATA_RAW:
|
|
if (bcmp(digest, (unsigned char *)mac->cd_raw.iov_base +
|
|
mac->cd_offset, digest_len) != 0)
|
|
ret = CRYPTO_INVALID_MAC;
|
|
break;
|
|
|
|
case CRYPTO_DATA_UIO: {
|
|
off_t offset = mac->cd_offset;
|
|
uint_t vec_idx;
|
|
off_t scratch_offset = 0;
|
|
size_t length = digest_len;
|
|
size_t cur_len;
|
|
|
|
/* we support only kernel buffer */
|
|
if (mac->cd_uio->uio_segflg != UIO_SYSSPACE)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
/* jump to the first iovec containing the expected digest */
|
|
for (vec_idx = 0;
|
|
offset >= mac->cd_uio->uio_iov[vec_idx].iov_len &&
|
|
vec_idx < mac->cd_uio->uio_iovcnt;
|
|
offset -= mac->cd_uio->uio_iov[vec_idx++].iov_len)
|
|
;
|
|
if (vec_idx == mac->cd_uio->uio_iovcnt) {
|
|
/*
|
|
* The caller specified an offset that is
|
|
* larger than the total size of the buffers
|
|
* it provided.
|
|
*/
|
|
ret = CRYPTO_DATA_LEN_RANGE;
|
|
break;
|
|
}
|
|
|
|
/* do the comparison of computed digest vs specified one */
|
|
while (vec_idx < mac->cd_uio->uio_iovcnt && length > 0) {
|
|
cur_len = MIN(mac->cd_uio->uio_iov[vec_idx].iov_len -
|
|
offset, length);
|
|
|
|
if (bcmp(digest + scratch_offset,
|
|
mac->cd_uio->uio_iov[vec_idx].iov_base + offset,
|
|
cur_len) != 0) {
|
|
ret = CRYPTO_INVALID_MAC;
|
|
break;
|
|
}
|
|
|
|
length -= cur_len;
|
|
vec_idx++;
|
|
scratch_offset += cur_len;
|
|
offset = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
ret = CRYPTO_ARGUMENTS_BAD;
|
|
}
|
|
|
|
return (ret);
|
|
bail:
|
|
bzero(&sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t));
|
|
mac->cd_length = 0;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* KCF software provider context management entry points.
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
sha2_create_ctx_template(crypto_provider_handle_t provider,
|
|
crypto_mechanism_t *mechanism, crypto_key_t *key,
|
|
crypto_spi_ctx_template_t *ctx_template, size_t *ctx_template_size,
|
|
crypto_req_handle_t req)
|
|
{
|
|
sha2_hmac_ctx_t *sha2_hmac_ctx_tmpl;
|
|
uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
|
|
uint32_t sha_digest_len, sha_hmac_block_size;
|
|
|
|
/*
|
|
* Set the digest length and block size to values appropriate to the
|
|
* mechanism
|
|
*/
|
|
switch (mechanism->cm_type) {
|
|
case SHA256_HMAC_MECH_INFO_TYPE:
|
|
case SHA256_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA256_DIGEST_LENGTH;
|
|
sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE;
|
|
break;
|
|
case SHA384_HMAC_MECH_INFO_TYPE:
|
|
case SHA384_HMAC_GEN_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_MECH_INFO_TYPE:
|
|
case SHA512_HMAC_GEN_MECH_INFO_TYPE:
|
|
sha_digest_len = SHA512_DIGEST_LENGTH;
|
|
sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE;
|
|
break;
|
|
default:
|
|
return (CRYPTO_MECHANISM_INVALID);
|
|
}
|
|
|
|
/* Add support for key by attributes (RFE 4706552) */
|
|
if (key->ck_format != CRYPTO_KEY_RAW)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
/*
|
|
* Allocate and initialize SHA2 context.
|
|
*/
|
|
sha2_hmac_ctx_tmpl = kmem_alloc(sizeof (sha2_hmac_ctx_t),
|
|
crypto_kmflag(req));
|
|
if (sha2_hmac_ctx_tmpl == NULL)
|
|
return (CRYPTO_HOST_MEMORY);
|
|
|
|
sha2_hmac_ctx_tmpl->hc_mech_type = mechanism->cm_type;
|
|
|
|
if (keylen_in_bytes > sha_hmac_block_size) {
|
|
uchar_t digested_key[SHA512_DIGEST_LENGTH];
|
|
|
|
/*
|
|
* Hash the passed-in key to get a smaller key.
|
|
* The inner context is used since it hasn't been
|
|
* initialized yet.
|
|
*/
|
|
PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3,
|
|
&sha2_hmac_ctx_tmpl->hc_icontext,
|
|
key->ck_data, keylen_in_bytes, digested_key);
|
|
sha2_mac_init_ctx(sha2_hmac_ctx_tmpl, digested_key,
|
|
sha_digest_len);
|
|
} else {
|
|
sha2_mac_init_ctx(sha2_hmac_ctx_tmpl, key->ck_data,
|
|
keylen_in_bytes);
|
|
}
|
|
|
|
*ctx_template = (crypto_spi_ctx_template_t)sha2_hmac_ctx_tmpl;
|
|
*ctx_template_size = sizeof (sha2_hmac_ctx_t);
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
static int
|
|
sha2_free_context(crypto_ctx_t *ctx)
|
|
{
|
|
uint_t ctx_len;
|
|
|
|
if (ctx->cc_provider_private == NULL)
|
|
return (CRYPTO_SUCCESS);
|
|
|
|
/*
|
|
* We have to free either SHA2 or SHA2-HMAC contexts, which
|
|
* have different lengths.
|
|
*
|
|
* Note: Below is dependent on the mechanism ordering.
|
|
*/
|
|
|
|
if (PROV_SHA2_CTX(ctx)->sc_mech_type % 3 == 0)
|
|
ctx_len = sizeof (sha2_ctx_t);
|
|
else
|
|
ctx_len = sizeof (sha2_hmac_ctx_t);
|
|
|
|
bzero(ctx->cc_provider_private, ctx_len);
|
|
kmem_free(ctx->cc_provider_private, ctx_len);
|
|
ctx->cc_provider_private = NULL;
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|