mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 02:20:59 +03:00
1c27024e22
With PR 5756 the zfs module now supports c99 and the remaining past c89 workarounds can be undone. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: George Melikov <mail@gmelikov.ru> Signed-off-by: Don Brady <don.brady@delphix.com> Closes #6816
550 lines
14 KiB
C
550 lines
14 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2012, 2016 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/zfeature.h>
|
|
|
|
/*
|
|
* The data for a given space map can be kept on blocks of any size.
|
|
* Larger blocks entail fewer i/o operations, but they also cause the
|
|
* DMU to keep more data in-core, and also to waste more i/o bandwidth
|
|
* when only a few blocks have changed since the last transaction group.
|
|
*/
|
|
int space_map_blksz = (1 << 12);
|
|
|
|
/*
|
|
* Load the space map disk into the specified range tree. Segments of maptype
|
|
* are added to the range tree, other segment types are removed.
|
|
*
|
|
* Note: space_map_load() will drop sm_lock across dmu_read() calls.
|
|
* The caller must be OK with this.
|
|
*/
|
|
int
|
|
space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
|
|
{
|
|
uint64_t *entry, *entry_map, *entry_map_end;
|
|
uint64_t bufsize, size, offset, end, space;
|
|
int error = 0;
|
|
|
|
ASSERT(MUTEX_HELD(sm->sm_lock));
|
|
|
|
end = space_map_length(sm);
|
|
space = space_map_allocated(sm);
|
|
|
|
VERIFY0(range_tree_space(rt));
|
|
|
|
if (maptype == SM_FREE) {
|
|
range_tree_add(rt, sm->sm_start, sm->sm_size);
|
|
space = sm->sm_size - space;
|
|
}
|
|
|
|
bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
|
|
entry_map = vmem_alloc(bufsize, KM_SLEEP);
|
|
|
|
mutex_exit(sm->sm_lock);
|
|
if (end > bufsize) {
|
|
dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
|
|
end - bufsize, ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
mutex_enter(sm->sm_lock);
|
|
|
|
for (offset = 0; offset < end; offset += bufsize) {
|
|
size = MIN(end - offset, bufsize);
|
|
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
|
|
VERIFY(size != 0);
|
|
ASSERT3U(sm->sm_blksz, !=, 0);
|
|
|
|
dprintf("object=%llu offset=%llx size=%llx\n",
|
|
space_map_object(sm), offset, size);
|
|
|
|
mutex_exit(sm->sm_lock);
|
|
error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
|
|
entry_map, DMU_READ_PREFETCH);
|
|
mutex_enter(sm->sm_lock);
|
|
if (error != 0)
|
|
break;
|
|
|
|
entry_map_end = entry_map + (size / sizeof (uint64_t));
|
|
for (entry = entry_map; entry < entry_map_end; entry++) {
|
|
uint64_t e = *entry;
|
|
uint64_t offset, size;
|
|
|
|
if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
|
|
continue;
|
|
|
|
offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
|
|
sm->sm_start;
|
|
size = SM_RUN_DECODE(e) << sm->sm_shift;
|
|
|
|
VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
|
|
VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
|
|
VERIFY3U(offset, >=, sm->sm_start);
|
|
VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
|
|
if (SM_TYPE_DECODE(e) == maptype) {
|
|
VERIFY3U(range_tree_space(rt) + size, <=,
|
|
sm->sm_size);
|
|
range_tree_add(rt, offset, size);
|
|
} else {
|
|
range_tree_remove(rt, offset, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (error == 0)
|
|
VERIFY3U(range_tree_space(rt), ==, space);
|
|
else
|
|
range_tree_vacate(rt, NULL, NULL);
|
|
|
|
vmem_free(entry_map, bufsize);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
space_map_histogram_clear(space_map_t *sm)
|
|
{
|
|
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
|
|
return;
|
|
|
|
bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
|
|
}
|
|
|
|
boolean_t
|
|
space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
|
|
{
|
|
/*
|
|
* Verify that the in-core range tree does not have any
|
|
* ranges smaller than our sm_shift size.
|
|
*/
|
|
for (int i = 0; i < sm->sm_shift; i++) {
|
|
if (rt->rt_histogram[i] != 0)
|
|
return (B_FALSE);
|
|
}
|
|
return (B_TRUE);
|
|
}
|
|
|
|
void
|
|
space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
|
|
{
|
|
int idx = 0;
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
VERIFY3U(space_map_object(sm), !=, 0);
|
|
|
|
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
|
|
return;
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
ASSERT(space_map_histogram_verify(sm, rt));
|
|
/*
|
|
* Transfer the content of the range tree histogram to the space
|
|
* map histogram. The space map histogram contains 32 buckets ranging
|
|
* between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
|
|
* however, can represent ranges from 2^0 to 2^63. Since the space
|
|
* map only cares about allocatable blocks (minimum of sm_shift) we
|
|
* can safely ignore all ranges in the range tree smaller than sm_shift.
|
|
*/
|
|
for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
|
|
/*
|
|
* Since the largest histogram bucket in the space map is
|
|
* 2^(32+sm_shift-1), we need to normalize the values in
|
|
* the range tree for any bucket larger than that size. For
|
|
* example given an sm_shift of 9, ranges larger than 2^40
|
|
* would get normalized as if they were 1TB ranges. Assume
|
|
* the range tree had a count of 5 in the 2^44 (16TB) bucket,
|
|
* the calculation below would normalize this to 5 * 2^4 (16).
|
|
*/
|
|
ASSERT3U(i, >=, idx + sm->sm_shift);
|
|
sm->sm_phys->smp_histogram[idx] +=
|
|
rt->rt_histogram[i] << (i - idx - sm->sm_shift);
|
|
|
|
/*
|
|
* Increment the space map's index as long as we haven't
|
|
* reached the maximum bucket size. Accumulate all ranges
|
|
* larger than the max bucket size into the last bucket.
|
|
*/
|
|
if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
|
|
ASSERT3U(idx + sm->sm_shift, ==, i);
|
|
idx++;
|
|
ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
space_map_entries(space_map_t *sm, range_tree_t *rt)
|
|
{
|
|
avl_tree_t *t = &rt->rt_root;
|
|
range_seg_t *rs;
|
|
uint64_t size, entries;
|
|
|
|
/*
|
|
* All space_maps always have a debug entry so account for it here.
|
|
*/
|
|
entries = 1;
|
|
|
|
/*
|
|
* Traverse the range tree and calculate the number of space map
|
|
* entries that would be required to write out the range tree.
|
|
*/
|
|
for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
|
|
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
|
|
entries += howmany(size, SM_RUN_MAX);
|
|
}
|
|
return (entries);
|
|
}
|
|
|
|
/*
|
|
* Note: space_map_write() will drop sm_lock across dmu_write() calls.
|
|
*/
|
|
void
|
|
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
|
|
dmu_tx_t *tx)
|
|
{
|
|
objset_t *os = sm->sm_os;
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
avl_tree_t *t = &rt->rt_root;
|
|
range_seg_t *rs;
|
|
uint64_t size, total, rt_space, nodes;
|
|
uint64_t *entry, *entry_map, *entry_map_end;
|
|
uint64_t expected_entries, actual_entries = 1;
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
|
|
VERIFY3U(space_map_object(sm), !=, 0);
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
/*
|
|
* This field is no longer necessary since the in-core space map
|
|
* now contains the object number but is maintained for backwards
|
|
* compatibility.
|
|
*/
|
|
sm->sm_phys->smp_object = sm->sm_object;
|
|
|
|
if (range_tree_space(rt) == 0) {
|
|
VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
|
|
return;
|
|
}
|
|
|
|
if (maptype == SM_ALLOC)
|
|
sm->sm_phys->smp_alloc += range_tree_space(rt);
|
|
else
|
|
sm->sm_phys->smp_alloc -= range_tree_space(rt);
|
|
|
|
expected_entries = space_map_entries(sm, rt);
|
|
|
|
entry_map = vmem_alloc(sm->sm_blksz, KM_SLEEP);
|
|
entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
|
|
entry = entry_map;
|
|
|
|
*entry++ = SM_DEBUG_ENCODE(1) |
|
|
SM_DEBUG_ACTION_ENCODE(maptype) |
|
|
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
|
|
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
|
|
|
|
total = 0;
|
|
nodes = avl_numnodes(&rt->rt_root);
|
|
rt_space = range_tree_space(rt);
|
|
for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
|
|
uint64_t start;
|
|
|
|
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
|
|
start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
|
|
|
|
total += size << sm->sm_shift;
|
|
|
|
while (size != 0) {
|
|
uint64_t run_len;
|
|
|
|
run_len = MIN(size, SM_RUN_MAX);
|
|
|
|
if (entry == entry_map_end) {
|
|
mutex_exit(rt->rt_lock);
|
|
dmu_write(os, space_map_object(sm),
|
|
sm->sm_phys->smp_objsize, sm->sm_blksz,
|
|
entry_map, tx);
|
|
mutex_enter(rt->rt_lock);
|
|
sm->sm_phys->smp_objsize += sm->sm_blksz;
|
|
entry = entry_map;
|
|
}
|
|
|
|
*entry++ = SM_OFFSET_ENCODE(start) |
|
|
SM_TYPE_ENCODE(maptype) |
|
|
SM_RUN_ENCODE(run_len);
|
|
|
|
start += run_len;
|
|
size -= run_len;
|
|
actual_entries++;
|
|
}
|
|
}
|
|
|
|
if (entry != entry_map) {
|
|
size = (entry - entry_map) * sizeof (uint64_t);
|
|
mutex_exit(rt->rt_lock);
|
|
dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
|
|
size, entry_map, tx);
|
|
mutex_enter(rt->rt_lock);
|
|
sm->sm_phys->smp_objsize += size;
|
|
}
|
|
ASSERT3U(expected_entries, ==, actual_entries);
|
|
|
|
/*
|
|
* Ensure that the space_map's accounting wasn't changed
|
|
* while we were in the middle of writing it out.
|
|
*/
|
|
VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
|
|
VERIFY3U(range_tree_space(rt), ==, rt_space);
|
|
VERIFY3U(range_tree_space(rt), ==, total);
|
|
|
|
vmem_free(entry_map, sm->sm_blksz);
|
|
}
|
|
|
|
static int
|
|
space_map_open_impl(space_map_t *sm)
|
|
{
|
|
int error;
|
|
u_longlong_t blocks;
|
|
|
|
error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
|
|
if (error)
|
|
return (error);
|
|
|
|
dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
|
|
sm->sm_phys = sm->sm_dbuf->db_data;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
|
|
uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
|
|
{
|
|
space_map_t *sm;
|
|
int error;
|
|
|
|
ASSERT(*smp == NULL);
|
|
ASSERT(os != NULL);
|
|
ASSERT(object != 0);
|
|
|
|
sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
|
|
|
|
sm->sm_start = start;
|
|
sm->sm_size = size;
|
|
sm->sm_shift = shift;
|
|
sm->sm_lock = lp;
|
|
sm->sm_os = os;
|
|
sm->sm_object = object;
|
|
sm->sm_length = 0;
|
|
sm->sm_alloc = 0;
|
|
sm->sm_blksz = 0;
|
|
sm->sm_dbuf = NULL;
|
|
sm->sm_phys = NULL;
|
|
|
|
error = space_map_open_impl(sm);
|
|
if (error != 0) {
|
|
space_map_close(sm);
|
|
return (error);
|
|
}
|
|
|
|
*smp = sm;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
space_map_close(space_map_t *sm)
|
|
{
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
if (sm->sm_dbuf != NULL)
|
|
dmu_buf_rele(sm->sm_dbuf, sm);
|
|
sm->sm_dbuf = NULL;
|
|
sm->sm_phys = NULL;
|
|
|
|
kmem_free(sm, sizeof (*sm));
|
|
}
|
|
|
|
void
|
|
space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
|
|
{
|
|
objset_t *os = sm->sm_os;
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
dmu_object_info_t doi;
|
|
|
|
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
|
|
|
|
dmu_object_info_from_db(sm->sm_dbuf, &doi);
|
|
|
|
/*
|
|
* If the space map has the wrong bonus size (because
|
|
* SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
|
|
* the wrong block size (because space_map_blksz has changed),
|
|
* free and re-allocate its object with the updated sizes.
|
|
*
|
|
* Otherwise, just truncate the current object.
|
|
*/
|
|
if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
|
|
doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
|
|
doi.doi_data_block_size != space_map_blksz) {
|
|
zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
|
|
"object[%llu]: old bonus %u, old blocksz %u",
|
|
dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
|
|
doi.doi_bonus_size, doi.doi_data_block_size);
|
|
|
|
space_map_free(sm, tx);
|
|
dmu_buf_rele(sm->sm_dbuf, sm);
|
|
|
|
sm->sm_object = space_map_alloc(sm->sm_os, tx);
|
|
VERIFY0(space_map_open_impl(sm));
|
|
} else {
|
|
VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
|
|
|
|
/*
|
|
* If the spacemap is reallocated, its histogram
|
|
* will be reset. Do the same in the common case so that
|
|
* bugs related to the uncommon case do not go unnoticed.
|
|
*/
|
|
bzero(sm->sm_phys->smp_histogram,
|
|
sizeof (sm->sm_phys->smp_histogram));
|
|
}
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
sm->sm_phys->smp_objsize = 0;
|
|
sm->sm_phys->smp_alloc = 0;
|
|
}
|
|
|
|
/*
|
|
* Update the in-core space_map allocation and length values.
|
|
*/
|
|
void
|
|
space_map_update(space_map_t *sm)
|
|
{
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
ASSERT(MUTEX_HELD(sm->sm_lock));
|
|
|
|
sm->sm_alloc = sm->sm_phys->smp_alloc;
|
|
sm->sm_length = sm->sm_phys->smp_objsize;
|
|
}
|
|
|
|
uint64_t
|
|
space_map_alloc(objset_t *os, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
uint64_t object;
|
|
int bonuslen;
|
|
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
|
|
spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
|
|
bonuslen = sizeof (space_map_phys_t);
|
|
ASSERT3U(bonuslen, <=, dmu_bonus_max());
|
|
} else {
|
|
bonuslen = SPACE_MAP_SIZE_V0;
|
|
}
|
|
|
|
object = dmu_object_alloc(os,
|
|
DMU_OT_SPACE_MAP, space_map_blksz,
|
|
DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
|
|
|
|
return (object);
|
|
}
|
|
|
|
void
|
|
space_map_free(space_map_t *sm, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa;
|
|
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
spa = dmu_objset_spa(sm->sm_os);
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
|
|
dmu_object_info_t doi;
|
|
|
|
dmu_object_info_from_db(sm->sm_dbuf, &doi);
|
|
if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
|
|
VERIFY(spa_feature_is_active(spa,
|
|
SPA_FEATURE_SPACEMAP_HISTOGRAM));
|
|
spa_feature_decr(spa,
|
|
SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
|
|
}
|
|
}
|
|
|
|
VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
|
|
sm->sm_object = 0;
|
|
}
|
|
|
|
uint64_t
|
|
space_map_object(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_object : 0);
|
|
}
|
|
|
|
/*
|
|
* Returns the already synced, on-disk allocated space.
|
|
*/
|
|
uint64_t
|
|
space_map_allocated(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_alloc : 0);
|
|
}
|
|
|
|
/*
|
|
* Returns the already synced, on-disk length;
|
|
*/
|
|
uint64_t
|
|
space_map_length(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_length : 0);
|
|
}
|
|
|
|
/*
|
|
* Returns the allocated space that is currently syncing.
|
|
*/
|
|
int64_t
|
|
space_map_alloc_delta(space_map_t *sm)
|
|
{
|
|
if (sm == NULL)
|
|
return (0);
|
|
ASSERT(sm->sm_dbuf != NULL);
|
|
return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
|
|
}
|