mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 11:19:32 +03:00
c99c90015e
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero Reviewed by Matt Ahrens <matthew.ahrens@delphix.com> Reviewed by George Wilson <george.wilson@delphix.com> Approved by Eric Schrock <eric.schrock@delphix.com> References: illumos/illumos-gate@fb09f5aad4 https://illumos.org/issues/3006 Requires: zfsonlinux/spl@1c6d149feb Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1509
1998 lines
55 KiB
C
1998 lines
55 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/dmu_zfetch.h>
|
|
|
|
static int free_range_compar(const void *node1, const void *node2);
|
|
|
|
static kmem_cache_t *dnode_cache;
|
|
/*
|
|
* Define DNODE_STATS to turn on statistic gathering. By default, it is only
|
|
* turned on when DEBUG is also defined.
|
|
*/
|
|
#ifdef DEBUG
|
|
#define DNODE_STATS
|
|
#endif /* DEBUG */
|
|
|
|
#ifdef DNODE_STATS
|
|
#define DNODE_STAT_ADD(stat) ((stat)++)
|
|
#else
|
|
#define DNODE_STAT_ADD(stat) /* nothing */
|
|
#endif /* DNODE_STATS */
|
|
|
|
ASSERTV(static dnode_phys_t dnode_phys_zero);
|
|
|
|
int zfs_default_bs = SPA_MINBLOCKSHIFT;
|
|
int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
|
|
|
|
#ifdef _KERNEL
|
|
static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
|
|
#endif /* _KERNEL */
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
dnode_cons(void *arg, void *unused, int kmflag)
|
|
{
|
|
dnode_t *dn = arg;
|
|
int i;
|
|
|
|
rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
|
|
mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
|
|
|
|
refcount_create(&dn->dn_holds);
|
|
refcount_create(&dn->dn_tx_holds);
|
|
list_link_init(&dn->dn_link);
|
|
|
|
bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
|
|
bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
|
|
bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
|
|
bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
|
|
bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
|
|
bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
|
|
bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
|
|
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
list_link_init(&dn->dn_dirty_link[i]);
|
|
avl_create(&dn->dn_ranges[i], free_range_compar,
|
|
sizeof (free_range_t),
|
|
offsetof(struct free_range, fr_node));
|
|
list_create(&dn->dn_dirty_records[i],
|
|
sizeof (dbuf_dirty_record_t),
|
|
offsetof(dbuf_dirty_record_t, dr_dirty_node));
|
|
}
|
|
|
|
dn->dn_allocated_txg = 0;
|
|
dn->dn_free_txg = 0;
|
|
dn->dn_assigned_txg = 0;
|
|
dn->dn_dirtyctx = 0;
|
|
dn->dn_dirtyctx_firstset = NULL;
|
|
dn->dn_bonus = NULL;
|
|
dn->dn_have_spill = B_FALSE;
|
|
dn->dn_zio = NULL;
|
|
dn->dn_oldused = 0;
|
|
dn->dn_oldflags = 0;
|
|
dn->dn_olduid = 0;
|
|
dn->dn_oldgid = 0;
|
|
dn->dn_newuid = 0;
|
|
dn->dn_newgid = 0;
|
|
dn->dn_id_flags = 0;
|
|
|
|
dn->dn_dbufs_count = 0;
|
|
list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
|
|
offsetof(dmu_buf_impl_t, db_link));
|
|
|
|
dn->dn_moved = 0;
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dnode_dest(void *arg, void *unused)
|
|
{
|
|
int i;
|
|
dnode_t *dn = arg;
|
|
|
|
rw_destroy(&dn->dn_struct_rwlock);
|
|
mutex_destroy(&dn->dn_mtx);
|
|
mutex_destroy(&dn->dn_dbufs_mtx);
|
|
cv_destroy(&dn->dn_notxholds);
|
|
refcount_destroy(&dn->dn_holds);
|
|
refcount_destroy(&dn->dn_tx_holds);
|
|
ASSERT(!list_link_active(&dn->dn_link));
|
|
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
|
|
avl_destroy(&dn->dn_ranges[i]);
|
|
list_destroy(&dn->dn_dirty_records[i]);
|
|
ASSERT0(dn->dn_next_nblkptr[i]);
|
|
ASSERT0(dn->dn_next_nlevels[i]);
|
|
ASSERT0(dn->dn_next_indblkshift[i]);
|
|
ASSERT0(dn->dn_next_bonustype[i]);
|
|
ASSERT0(dn->dn_rm_spillblk[i]);
|
|
ASSERT0(dn->dn_next_bonuslen[i]);
|
|
ASSERT0(dn->dn_next_blksz[i]);
|
|
}
|
|
|
|
ASSERT0(dn->dn_allocated_txg);
|
|
ASSERT0(dn->dn_free_txg);
|
|
ASSERT0(dn->dn_assigned_txg);
|
|
ASSERT0(dn->dn_dirtyctx);
|
|
ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
|
|
ASSERT3P(dn->dn_bonus, ==, NULL);
|
|
ASSERT(!dn->dn_have_spill);
|
|
ASSERT3P(dn->dn_zio, ==, NULL);
|
|
ASSERT0(dn->dn_oldused);
|
|
ASSERT0(dn->dn_oldflags);
|
|
ASSERT0(dn->dn_olduid);
|
|
ASSERT0(dn->dn_oldgid);
|
|
ASSERT0(dn->dn_newuid);
|
|
ASSERT0(dn->dn_newgid);
|
|
ASSERT0(dn->dn_id_flags);
|
|
|
|
ASSERT0(dn->dn_dbufs_count);
|
|
list_destroy(&dn->dn_dbufs);
|
|
}
|
|
|
|
void
|
|
dnode_init(void)
|
|
{
|
|
ASSERT(dnode_cache == NULL);
|
|
dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
|
|
0, dnode_cons, dnode_dest, NULL, NULL, NULL, KMC_KMEM);
|
|
kmem_cache_set_move(dnode_cache, dnode_move);
|
|
}
|
|
|
|
void
|
|
dnode_fini(void)
|
|
{
|
|
kmem_cache_destroy(dnode_cache);
|
|
dnode_cache = NULL;
|
|
}
|
|
|
|
|
|
#ifdef ZFS_DEBUG
|
|
void
|
|
dnode_verify(dnode_t *dn)
|
|
{
|
|
int drop_struct_lock = FALSE;
|
|
|
|
ASSERT(dn->dn_phys);
|
|
ASSERT(dn->dn_objset);
|
|
ASSERT(dn->dn_handle->dnh_dnode == dn);
|
|
|
|
ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
|
|
|
|
if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
|
|
return;
|
|
|
|
if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
drop_struct_lock = TRUE;
|
|
}
|
|
if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
|
|
int i;
|
|
ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
|
|
if (dn->dn_datablkshift) {
|
|
ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
|
|
ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
|
|
ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
|
|
}
|
|
ASSERT3U(dn->dn_nlevels, <=, 30);
|
|
ASSERT(DMU_OT_IS_VALID(dn->dn_type));
|
|
ASSERT3U(dn->dn_nblkptr, >=, 1);
|
|
ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
|
|
ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
|
|
ASSERT3U(dn->dn_datablksz, ==,
|
|
dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
|
|
ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
|
|
ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
|
|
dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
|
|
}
|
|
}
|
|
if (dn->dn_phys->dn_type != DMU_OT_NONE)
|
|
ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
|
|
ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
|
|
if (dn->dn_dbuf != NULL) {
|
|
ASSERT3P(dn->dn_phys, ==,
|
|
(dnode_phys_t *)dn->dn_dbuf->db.db_data +
|
|
(dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
|
|
}
|
|
if (drop_struct_lock)
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
dnode_byteswap(dnode_phys_t *dnp)
|
|
{
|
|
uint64_t *buf64 = (void*)&dnp->dn_blkptr;
|
|
int i;
|
|
|
|
if (dnp->dn_type == DMU_OT_NONE) {
|
|
bzero(dnp, sizeof (dnode_phys_t));
|
|
return;
|
|
}
|
|
|
|
dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
|
|
dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
|
|
dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
|
|
dnp->dn_used = BSWAP_64(dnp->dn_used);
|
|
|
|
/*
|
|
* dn_nblkptr is only one byte, so it's OK to read it in either
|
|
* byte order. We can't read dn_bouslen.
|
|
*/
|
|
ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
|
|
ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
|
|
for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
|
|
buf64[i] = BSWAP_64(buf64[i]);
|
|
|
|
/*
|
|
* OK to check dn_bonuslen for zero, because it won't matter if
|
|
* we have the wrong byte order. This is necessary because the
|
|
* dnode dnode is smaller than a regular dnode.
|
|
*/
|
|
if (dnp->dn_bonuslen != 0) {
|
|
/*
|
|
* Note that the bonus length calculated here may be
|
|
* longer than the actual bonus buffer. This is because
|
|
* we always put the bonus buffer after the last block
|
|
* pointer (instead of packing it against the end of the
|
|
* dnode buffer).
|
|
*/
|
|
int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
|
|
size_t len = DN_MAX_BONUSLEN - off;
|
|
dmu_object_byteswap_t byteswap;
|
|
ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
|
|
byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
|
|
dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
|
|
}
|
|
|
|
/* Swap SPILL block if we have one */
|
|
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
|
|
byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
|
|
|
|
}
|
|
|
|
void
|
|
dnode_buf_byteswap(void *vbuf, size_t size)
|
|
{
|
|
dnode_phys_t *buf = vbuf;
|
|
int i;
|
|
|
|
ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
|
|
ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
|
|
|
|
size >>= DNODE_SHIFT;
|
|
for (i = 0; i < size; i++) {
|
|
dnode_byteswap(buf);
|
|
buf++;
|
|
}
|
|
}
|
|
|
|
static int
|
|
free_range_compar(const void *node1, const void *node2)
|
|
{
|
|
const free_range_t *rp1 = node1;
|
|
const free_range_t *rp2 = node2;
|
|
|
|
if (rp1->fr_blkid < rp2->fr_blkid)
|
|
return (-1);
|
|
else if (rp1->fr_blkid > rp2->fr_blkid)
|
|
return (1);
|
|
else return (0);
|
|
}
|
|
|
|
void
|
|
dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
|
|
{
|
|
ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
|
|
|
|
dnode_setdirty(dn, tx);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
|
|
(dn->dn_nblkptr-1) * sizeof (blkptr_t));
|
|
dn->dn_bonuslen = newsize;
|
|
if (newsize == 0)
|
|
dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
|
|
else
|
|
dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
void
|
|
dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
|
|
{
|
|
ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
|
|
dnode_setdirty(dn, tx);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
dn->dn_bonustype = newtype;
|
|
dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
void
|
|
dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
|
|
{
|
|
ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
|
|
ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
|
|
dnode_setdirty(dn, tx);
|
|
dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
|
|
dn->dn_have_spill = B_FALSE;
|
|
}
|
|
|
|
static void
|
|
dnode_setdblksz(dnode_t *dn, int size)
|
|
{
|
|
ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
|
|
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
|
|
ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
|
|
1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
|
|
dn->dn_datablksz = size;
|
|
dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
|
|
dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
|
|
}
|
|
|
|
static dnode_t *
|
|
dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
|
|
uint64_t object, dnode_handle_t *dnh)
|
|
{
|
|
dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_PUSHPAGE);
|
|
|
|
ASSERT(!POINTER_IS_VALID(dn->dn_objset));
|
|
dn->dn_moved = 0;
|
|
|
|
/*
|
|
* Defer setting dn_objset until the dnode is ready to be a candidate
|
|
* for the dnode_move() callback.
|
|
*/
|
|
dn->dn_object = object;
|
|
dn->dn_dbuf = db;
|
|
dn->dn_handle = dnh;
|
|
dn->dn_phys = dnp;
|
|
|
|
if (dnp->dn_datablkszsec) {
|
|
dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
|
|
} else {
|
|
dn->dn_datablksz = 0;
|
|
dn->dn_datablkszsec = 0;
|
|
dn->dn_datablkshift = 0;
|
|
}
|
|
dn->dn_indblkshift = dnp->dn_indblkshift;
|
|
dn->dn_nlevels = dnp->dn_nlevels;
|
|
dn->dn_type = dnp->dn_type;
|
|
dn->dn_nblkptr = dnp->dn_nblkptr;
|
|
dn->dn_checksum = dnp->dn_checksum;
|
|
dn->dn_compress = dnp->dn_compress;
|
|
dn->dn_bonustype = dnp->dn_bonustype;
|
|
dn->dn_bonuslen = dnp->dn_bonuslen;
|
|
dn->dn_maxblkid = dnp->dn_maxblkid;
|
|
dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
|
|
dn->dn_id_flags = 0;
|
|
|
|
dmu_zfetch_init(&dn->dn_zfetch, dn);
|
|
|
|
ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
|
|
|
|
mutex_enter(&os->os_lock);
|
|
list_insert_head(&os->os_dnodes, dn);
|
|
membar_producer();
|
|
/*
|
|
* Everything else must be valid before assigning dn_objset makes the
|
|
* dnode eligible for dnode_move().
|
|
*/
|
|
dn->dn_objset = os;
|
|
mutex_exit(&os->os_lock);
|
|
|
|
arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
|
|
return (dn);
|
|
}
|
|
|
|
/*
|
|
* Caller must be holding the dnode handle, which is released upon return.
|
|
*/
|
|
static void
|
|
dnode_destroy(dnode_t *dn)
|
|
{
|
|
objset_t *os = dn->dn_objset;
|
|
|
|
ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
|
|
|
|
mutex_enter(&os->os_lock);
|
|
POINTER_INVALIDATE(&dn->dn_objset);
|
|
list_remove(&os->os_dnodes, dn);
|
|
mutex_exit(&os->os_lock);
|
|
|
|
/* the dnode can no longer move, so we can release the handle */
|
|
zrl_remove(&dn->dn_handle->dnh_zrlock);
|
|
|
|
dn->dn_allocated_txg = 0;
|
|
dn->dn_free_txg = 0;
|
|
dn->dn_assigned_txg = 0;
|
|
|
|
dn->dn_dirtyctx = 0;
|
|
if (dn->dn_dirtyctx_firstset != NULL) {
|
|
kmem_free(dn->dn_dirtyctx_firstset, 1);
|
|
dn->dn_dirtyctx_firstset = NULL;
|
|
}
|
|
if (dn->dn_bonus != NULL) {
|
|
mutex_enter(&dn->dn_bonus->db_mtx);
|
|
dbuf_evict(dn->dn_bonus);
|
|
dn->dn_bonus = NULL;
|
|
}
|
|
dn->dn_zio = NULL;
|
|
|
|
dn->dn_have_spill = B_FALSE;
|
|
dn->dn_oldused = 0;
|
|
dn->dn_oldflags = 0;
|
|
dn->dn_olduid = 0;
|
|
dn->dn_oldgid = 0;
|
|
dn->dn_newuid = 0;
|
|
dn->dn_newgid = 0;
|
|
dn->dn_id_flags = 0;
|
|
|
|
dmu_zfetch_rele(&dn->dn_zfetch);
|
|
kmem_cache_free(dnode_cache, dn);
|
|
arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
|
|
}
|
|
|
|
void
|
|
dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
int i;
|
|
|
|
if (blocksize == 0)
|
|
blocksize = 1 << zfs_default_bs;
|
|
else if (blocksize > SPA_MAXBLOCKSIZE)
|
|
blocksize = SPA_MAXBLOCKSIZE;
|
|
else
|
|
blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
|
|
|
|
if (ibs == 0)
|
|
ibs = zfs_default_ibs;
|
|
|
|
ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
|
|
|
|
dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
|
|
dn->dn_object, tx->tx_txg, blocksize, ibs);
|
|
|
|
ASSERT(dn->dn_type == DMU_OT_NONE);
|
|
ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
|
|
ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
|
|
ASSERT(ot != DMU_OT_NONE);
|
|
ASSERT(DMU_OT_IS_VALID(ot));
|
|
ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
|
|
(bonustype == DMU_OT_SA && bonuslen == 0) ||
|
|
(bonustype != DMU_OT_NONE && bonuslen != 0));
|
|
ASSERT(DMU_OT_IS_VALID(bonustype));
|
|
ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
|
|
ASSERT(dn->dn_type == DMU_OT_NONE);
|
|
ASSERT0(dn->dn_maxblkid);
|
|
ASSERT0(dn->dn_allocated_txg);
|
|
ASSERT0(dn->dn_assigned_txg);
|
|
ASSERT(refcount_is_zero(&dn->dn_tx_holds));
|
|
ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
|
|
ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
|
|
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
ASSERT0(dn->dn_next_nblkptr[i]);
|
|
ASSERT0(dn->dn_next_nlevels[i]);
|
|
ASSERT0(dn->dn_next_indblkshift[i]);
|
|
ASSERT0(dn->dn_next_bonuslen[i]);
|
|
ASSERT0(dn->dn_next_bonustype[i]);
|
|
ASSERT0(dn->dn_rm_spillblk[i]);
|
|
ASSERT0(dn->dn_next_blksz[i]);
|
|
ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
|
|
ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
|
|
ASSERT0(avl_numnodes(&dn->dn_ranges[i]));
|
|
}
|
|
|
|
dn->dn_type = ot;
|
|
dnode_setdblksz(dn, blocksize);
|
|
dn->dn_indblkshift = ibs;
|
|
dn->dn_nlevels = 1;
|
|
if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
|
|
dn->dn_nblkptr = 1;
|
|
else
|
|
dn->dn_nblkptr = 1 +
|
|
((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
|
|
dn->dn_bonustype = bonustype;
|
|
dn->dn_bonuslen = bonuslen;
|
|
dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
|
|
dn->dn_compress = ZIO_COMPRESS_INHERIT;
|
|
dn->dn_dirtyctx = 0;
|
|
|
|
dn->dn_free_txg = 0;
|
|
if (dn->dn_dirtyctx_firstset) {
|
|
kmem_free(dn->dn_dirtyctx_firstset, 1);
|
|
dn->dn_dirtyctx_firstset = NULL;
|
|
}
|
|
|
|
dn->dn_allocated_txg = tx->tx_txg;
|
|
dn->dn_id_flags = 0;
|
|
|
|
dnode_setdirty(dn, tx);
|
|
dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
|
|
dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
|
|
dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
|
|
dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
|
|
}
|
|
|
|
void
|
|
dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
int nblkptr;
|
|
|
|
ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
|
|
ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
|
|
ASSERT0(blocksize % SPA_MINBLOCKSIZE);
|
|
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
|
|
ASSERT(tx->tx_txg != 0);
|
|
ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
|
|
(bonustype != DMU_OT_NONE && bonuslen != 0) ||
|
|
(bonustype == DMU_OT_SA && bonuslen == 0));
|
|
ASSERT(DMU_OT_IS_VALID(bonustype));
|
|
ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
|
|
|
|
/* clean up any unreferenced dbufs */
|
|
dnode_evict_dbufs(dn);
|
|
|
|
dn->dn_id_flags = 0;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
dnode_setdirty(dn, tx);
|
|
if (dn->dn_datablksz != blocksize) {
|
|
/* change blocksize */
|
|
ASSERT(dn->dn_maxblkid == 0 &&
|
|
(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
|
|
dnode_block_freed(dn, 0)));
|
|
dnode_setdblksz(dn, blocksize);
|
|
dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
|
|
}
|
|
if (dn->dn_bonuslen != bonuslen)
|
|
dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
|
|
|
|
if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
|
|
nblkptr = 1;
|
|
else
|
|
nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
|
|
if (dn->dn_bonustype != bonustype)
|
|
dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
|
|
if (dn->dn_nblkptr != nblkptr)
|
|
dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
|
|
if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
|
|
dbuf_rm_spill(dn, tx);
|
|
dnode_rm_spill(dn, tx);
|
|
}
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
/* change type */
|
|
dn->dn_type = ot;
|
|
|
|
/* change bonus size and type */
|
|
mutex_enter(&dn->dn_mtx);
|
|
dn->dn_bonustype = bonustype;
|
|
dn->dn_bonuslen = bonuslen;
|
|
dn->dn_nblkptr = nblkptr;
|
|
dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
|
|
dn->dn_compress = ZIO_COMPRESS_INHERIT;
|
|
ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
|
|
|
|
/* fix up the bonus db_size */
|
|
if (dn->dn_bonus) {
|
|
dn->dn_bonus->db.db_size =
|
|
DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
|
|
ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
|
|
}
|
|
|
|
dn->dn_allocated_txg = tx->tx_txg;
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
#ifdef DNODE_STATS
|
|
static struct {
|
|
uint64_t dms_dnode_invalid;
|
|
uint64_t dms_dnode_recheck1;
|
|
uint64_t dms_dnode_recheck2;
|
|
uint64_t dms_dnode_special;
|
|
uint64_t dms_dnode_handle;
|
|
uint64_t dms_dnode_rwlock;
|
|
uint64_t dms_dnode_active;
|
|
} dnode_move_stats;
|
|
#endif /* DNODE_STATS */
|
|
|
|
static void
|
|
dnode_move_impl(dnode_t *odn, dnode_t *ndn)
|
|
{
|
|
int i;
|
|
|
|
ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
|
|
ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
|
|
ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
|
|
ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
|
|
|
|
/* Copy fields. */
|
|
ndn->dn_objset = odn->dn_objset;
|
|
ndn->dn_object = odn->dn_object;
|
|
ndn->dn_dbuf = odn->dn_dbuf;
|
|
ndn->dn_handle = odn->dn_handle;
|
|
ndn->dn_phys = odn->dn_phys;
|
|
ndn->dn_type = odn->dn_type;
|
|
ndn->dn_bonuslen = odn->dn_bonuslen;
|
|
ndn->dn_bonustype = odn->dn_bonustype;
|
|
ndn->dn_nblkptr = odn->dn_nblkptr;
|
|
ndn->dn_checksum = odn->dn_checksum;
|
|
ndn->dn_compress = odn->dn_compress;
|
|
ndn->dn_nlevels = odn->dn_nlevels;
|
|
ndn->dn_indblkshift = odn->dn_indblkshift;
|
|
ndn->dn_datablkshift = odn->dn_datablkshift;
|
|
ndn->dn_datablkszsec = odn->dn_datablkszsec;
|
|
ndn->dn_datablksz = odn->dn_datablksz;
|
|
ndn->dn_maxblkid = odn->dn_maxblkid;
|
|
bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
|
|
sizeof (odn->dn_next_nblkptr));
|
|
bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
|
|
sizeof (odn->dn_next_nlevels));
|
|
bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
|
|
sizeof (odn->dn_next_indblkshift));
|
|
bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
|
|
sizeof (odn->dn_next_bonustype));
|
|
bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
|
|
sizeof (odn->dn_rm_spillblk));
|
|
bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
|
|
sizeof (odn->dn_next_bonuslen));
|
|
bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
|
|
sizeof (odn->dn_next_blksz));
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
list_move_tail(&ndn->dn_dirty_records[i],
|
|
&odn->dn_dirty_records[i]);
|
|
}
|
|
bcopy(&odn->dn_ranges[0], &ndn->dn_ranges[0], sizeof (odn->dn_ranges));
|
|
ndn->dn_allocated_txg = odn->dn_allocated_txg;
|
|
ndn->dn_free_txg = odn->dn_free_txg;
|
|
ndn->dn_assigned_txg = odn->dn_assigned_txg;
|
|
ndn->dn_dirtyctx = odn->dn_dirtyctx;
|
|
ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
|
|
ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
|
|
refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
|
|
ASSERT(list_is_empty(&ndn->dn_dbufs));
|
|
list_move_tail(&ndn->dn_dbufs, &odn->dn_dbufs);
|
|
ndn->dn_dbufs_count = odn->dn_dbufs_count;
|
|
ndn->dn_bonus = odn->dn_bonus;
|
|
ndn->dn_have_spill = odn->dn_have_spill;
|
|
ndn->dn_zio = odn->dn_zio;
|
|
ndn->dn_oldused = odn->dn_oldused;
|
|
ndn->dn_oldflags = odn->dn_oldflags;
|
|
ndn->dn_olduid = odn->dn_olduid;
|
|
ndn->dn_oldgid = odn->dn_oldgid;
|
|
ndn->dn_newuid = odn->dn_newuid;
|
|
ndn->dn_newgid = odn->dn_newgid;
|
|
ndn->dn_id_flags = odn->dn_id_flags;
|
|
dmu_zfetch_init(&ndn->dn_zfetch, NULL);
|
|
list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
|
|
ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
|
|
ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
|
|
ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
|
|
|
|
/*
|
|
* Update back pointers. Updating the handle fixes the back pointer of
|
|
* every descendant dbuf as well as the bonus dbuf.
|
|
*/
|
|
ASSERT(ndn->dn_handle->dnh_dnode == odn);
|
|
ndn->dn_handle->dnh_dnode = ndn;
|
|
if (ndn->dn_zfetch.zf_dnode == odn) {
|
|
ndn->dn_zfetch.zf_dnode = ndn;
|
|
}
|
|
|
|
/*
|
|
* Invalidate the original dnode by clearing all of its back pointers.
|
|
*/
|
|
odn->dn_dbuf = NULL;
|
|
odn->dn_handle = NULL;
|
|
list_create(&odn->dn_dbufs, sizeof (dmu_buf_impl_t),
|
|
offsetof(dmu_buf_impl_t, db_link));
|
|
odn->dn_dbufs_count = 0;
|
|
odn->dn_bonus = NULL;
|
|
odn->dn_zfetch.zf_dnode = NULL;
|
|
|
|
/*
|
|
* Set the low bit of the objset pointer to ensure that dnode_move()
|
|
* recognizes the dnode as invalid in any subsequent callback.
|
|
*/
|
|
POINTER_INVALIDATE(&odn->dn_objset);
|
|
|
|
/*
|
|
* Satisfy the destructor.
|
|
*/
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
list_create(&odn->dn_dirty_records[i],
|
|
sizeof (dbuf_dirty_record_t),
|
|
offsetof(dbuf_dirty_record_t, dr_dirty_node));
|
|
odn->dn_ranges[i].avl_root = NULL;
|
|
odn->dn_ranges[i].avl_numnodes = 0;
|
|
odn->dn_next_nlevels[i] = 0;
|
|
odn->dn_next_indblkshift[i] = 0;
|
|
odn->dn_next_bonustype[i] = 0;
|
|
odn->dn_rm_spillblk[i] = 0;
|
|
odn->dn_next_bonuslen[i] = 0;
|
|
odn->dn_next_blksz[i] = 0;
|
|
}
|
|
odn->dn_allocated_txg = 0;
|
|
odn->dn_free_txg = 0;
|
|
odn->dn_assigned_txg = 0;
|
|
odn->dn_dirtyctx = 0;
|
|
odn->dn_dirtyctx_firstset = NULL;
|
|
odn->dn_have_spill = B_FALSE;
|
|
odn->dn_zio = NULL;
|
|
odn->dn_oldused = 0;
|
|
odn->dn_oldflags = 0;
|
|
odn->dn_olduid = 0;
|
|
odn->dn_oldgid = 0;
|
|
odn->dn_newuid = 0;
|
|
odn->dn_newgid = 0;
|
|
odn->dn_id_flags = 0;
|
|
|
|
/*
|
|
* Mark the dnode.
|
|
*/
|
|
ndn->dn_moved = 1;
|
|
odn->dn_moved = (uint8_t)-1;
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static kmem_cbrc_t
|
|
dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
|
{
|
|
dnode_t *odn = buf, *ndn = newbuf;
|
|
objset_t *os;
|
|
int64_t refcount;
|
|
uint32_t dbufs;
|
|
|
|
/*
|
|
* The dnode is on the objset's list of known dnodes if the objset
|
|
* pointer is valid. We set the low bit of the objset pointer when
|
|
* freeing the dnode to invalidate it, and the memory patterns written
|
|
* by kmem (baddcafe and deadbeef) set at least one of the two low bits.
|
|
* A newly created dnode sets the objset pointer last of all to indicate
|
|
* that the dnode is known and in a valid state to be moved by this
|
|
* function.
|
|
*/
|
|
os = odn->dn_objset;
|
|
if (!POINTER_IS_VALID(os)) {
|
|
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
|
|
return (KMEM_CBRC_DONT_KNOW);
|
|
}
|
|
|
|
/*
|
|
* Ensure that the objset does not go away during the move.
|
|
*/
|
|
rw_enter(&os_lock, RW_WRITER);
|
|
if (os != odn->dn_objset) {
|
|
rw_exit(&os_lock);
|
|
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
|
|
return (KMEM_CBRC_DONT_KNOW);
|
|
}
|
|
|
|
/*
|
|
* If the dnode is still valid, then so is the objset. We know that no
|
|
* valid objset can be freed while we hold os_lock, so we can safely
|
|
* ensure that the objset remains in use.
|
|
*/
|
|
mutex_enter(&os->os_lock);
|
|
|
|
/*
|
|
* Recheck the objset pointer in case the dnode was removed just before
|
|
* acquiring the lock.
|
|
*/
|
|
if (os != odn->dn_objset) {
|
|
mutex_exit(&os->os_lock);
|
|
rw_exit(&os_lock);
|
|
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
|
|
return (KMEM_CBRC_DONT_KNOW);
|
|
}
|
|
|
|
/*
|
|
* At this point we know that as long as we hold os->os_lock, the dnode
|
|
* cannot be freed and fields within the dnode can be safely accessed.
|
|
* The objset listing this dnode cannot go away as long as this dnode is
|
|
* on its list.
|
|
*/
|
|
rw_exit(&os_lock);
|
|
if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
|
|
mutex_exit(&os->os_lock);
|
|
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
|
|
return (KMEM_CBRC_NO);
|
|
}
|
|
ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
|
|
|
|
/*
|
|
* Lock the dnode handle to prevent the dnode from obtaining any new
|
|
* holds. This also prevents the descendant dbufs and the bonus dbuf
|
|
* from accessing the dnode, so that we can discount their holds. The
|
|
* handle is safe to access because we know that while the dnode cannot
|
|
* go away, neither can its handle. Once we hold dnh_zrlock, we can
|
|
* safely move any dnode referenced only by dbufs.
|
|
*/
|
|
if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
|
|
mutex_exit(&os->os_lock);
|
|
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
|
|
return (KMEM_CBRC_LATER);
|
|
}
|
|
|
|
/*
|
|
* Ensure a consistent view of the dnode's holds and the dnode's dbufs.
|
|
* We need to guarantee that there is a hold for every dbuf in order to
|
|
* determine whether the dnode is actively referenced. Falsely matching
|
|
* a dbuf to an active hold would lead to an unsafe move. It's possible
|
|
* that a thread already having an active dnode hold is about to add a
|
|
* dbuf, and we can't compare hold and dbuf counts while the add is in
|
|
* progress.
|
|
*/
|
|
if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
|
|
zrl_exit(&odn->dn_handle->dnh_zrlock);
|
|
mutex_exit(&os->os_lock);
|
|
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
|
|
return (KMEM_CBRC_LATER);
|
|
}
|
|
|
|
/*
|
|
* A dbuf may be removed (evicted) without an active dnode hold. In that
|
|
* case, the dbuf count is decremented under the handle lock before the
|
|
* dbuf's hold is released. This order ensures that if we count the hold
|
|
* after the dbuf is removed but before its hold is released, we will
|
|
* treat the unmatched hold as active and exit safely. If we count the
|
|
* hold before the dbuf is removed, the hold is discounted, and the
|
|
* removal is blocked until the move completes.
|
|
*/
|
|
refcount = refcount_count(&odn->dn_holds);
|
|
ASSERT(refcount >= 0);
|
|
dbufs = odn->dn_dbufs_count;
|
|
|
|
/* We can't have more dbufs than dnode holds. */
|
|
ASSERT3U(dbufs, <=, refcount);
|
|
DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
|
|
uint32_t, dbufs);
|
|
|
|
if (refcount > dbufs) {
|
|
rw_exit(&odn->dn_struct_rwlock);
|
|
zrl_exit(&odn->dn_handle->dnh_zrlock);
|
|
mutex_exit(&os->os_lock);
|
|
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
|
|
return (KMEM_CBRC_LATER);
|
|
}
|
|
|
|
rw_exit(&odn->dn_struct_rwlock);
|
|
|
|
/*
|
|
* At this point we know that anyone with a hold on the dnode is not
|
|
* actively referencing it. The dnode is known and in a valid state to
|
|
* move. We're holding the locks needed to execute the critical section.
|
|
*/
|
|
dnode_move_impl(odn, ndn);
|
|
|
|
list_link_replace(&odn->dn_link, &ndn->dn_link);
|
|
/* If the dnode was safe to move, the refcount cannot have changed. */
|
|
ASSERT(refcount == refcount_count(&ndn->dn_holds));
|
|
ASSERT(dbufs == ndn->dn_dbufs_count);
|
|
zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
|
|
mutex_exit(&os->os_lock);
|
|
|
|
return (KMEM_CBRC_YES);
|
|
}
|
|
#endif /* _KERNEL */
|
|
|
|
void
|
|
dnode_special_close(dnode_handle_t *dnh)
|
|
{
|
|
dnode_t *dn = dnh->dnh_dnode;
|
|
|
|
/*
|
|
* Wait for final references to the dnode to clear. This can
|
|
* only happen if the arc is asyncronously evicting state that
|
|
* has a hold on this dnode while we are trying to evict this
|
|
* dnode.
|
|
*/
|
|
while (refcount_count(&dn->dn_holds) > 0)
|
|
delay(1);
|
|
zrl_add(&dnh->dnh_zrlock);
|
|
dnode_destroy(dn); /* implicit zrl_remove() */
|
|
zrl_destroy(&dnh->dnh_zrlock);
|
|
dnh->dnh_dnode = NULL;
|
|
}
|
|
|
|
dnode_t *
|
|
dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
|
|
dnode_handle_t *dnh)
|
|
{
|
|
dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
|
|
dnh->dnh_dnode = dn;
|
|
zrl_init(&dnh->dnh_zrlock);
|
|
DNODE_VERIFY(dn);
|
|
return (dn);
|
|
}
|
|
|
|
static void
|
|
dnode_buf_pageout(dmu_buf_t *db, void *arg)
|
|
{
|
|
dnode_children_t *children_dnodes = arg;
|
|
int i;
|
|
int epb = db->db_size >> DNODE_SHIFT;
|
|
|
|
ASSERT(epb == children_dnodes->dnc_count);
|
|
|
|
for (i = 0; i < epb; i++) {
|
|
dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
|
|
dnode_t *dn;
|
|
|
|
/*
|
|
* The dnode handle lock guards against the dnode moving to
|
|
* another valid address, so there is no need here to guard
|
|
* against changes to or from NULL.
|
|
*/
|
|
if (dnh->dnh_dnode == NULL) {
|
|
zrl_destroy(&dnh->dnh_zrlock);
|
|
continue;
|
|
}
|
|
|
|
zrl_add(&dnh->dnh_zrlock);
|
|
dn = dnh->dnh_dnode;
|
|
/*
|
|
* If there are holds on this dnode, then there should
|
|
* be holds on the dnode's containing dbuf as well; thus
|
|
* it wouldn't be eligible for eviction and this function
|
|
* would not have been called.
|
|
*/
|
|
ASSERT(refcount_is_zero(&dn->dn_holds));
|
|
ASSERT(refcount_is_zero(&dn->dn_tx_holds));
|
|
|
|
dnode_destroy(dn); /* implicit zrl_remove() */
|
|
zrl_destroy(&dnh->dnh_zrlock);
|
|
dnh->dnh_dnode = NULL;
|
|
}
|
|
kmem_free(children_dnodes, sizeof (dnode_children_t) +
|
|
(epb - 1) * sizeof (dnode_handle_t));
|
|
}
|
|
|
|
/*
|
|
* errors:
|
|
* EINVAL - invalid object number.
|
|
* EIO - i/o error.
|
|
* succeeds even for free dnodes.
|
|
*/
|
|
int
|
|
dnode_hold_impl(objset_t *os, uint64_t object, int flag,
|
|
void *tag, dnode_t **dnp)
|
|
{
|
|
int epb, idx, err;
|
|
int drop_struct_lock = FALSE;
|
|
int type;
|
|
uint64_t blk;
|
|
dnode_t *mdn, *dn;
|
|
dmu_buf_impl_t *db;
|
|
dnode_children_t *children_dnodes;
|
|
dnode_handle_t *dnh;
|
|
|
|
/*
|
|
* If you are holding the spa config lock as writer, you shouldn't
|
|
* be asking the DMU to do *anything* unless it's the root pool
|
|
* which may require us to read from the root filesystem while
|
|
* holding some (not all) of the locks as writer.
|
|
*/
|
|
ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
|
|
(spa_is_root(os->os_spa) &&
|
|
spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
|
|
|
|
if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
|
|
dn = (object == DMU_USERUSED_OBJECT) ?
|
|
DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
|
|
if (dn == NULL)
|
|
return (ENOENT);
|
|
type = dn->dn_type;
|
|
if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
|
|
return (ENOENT);
|
|
if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
|
|
return (EEXIST);
|
|
DNODE_VERIFY(dn);
|
|
(void) refcount_add(&dn->dn_holds, tag);
|
|
*dnp = dn;
|
|
return (0);
|
|
}
|
|
|
|
if (object == 0 || object >= DN_MAX_OBJECT)
|
|
return (EINVAL);
|
|
|
|
mdn = DMU_META_DNODE(os);
|
|
ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
|
|
|
|
DNODE_VERIFY(mdn);
|
|
|
|
if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
|
|
rw_enter(&mdn->dn_struct_rwlock, RW_READER);
|
|
drop_struct_lock = TRUE;
|
|
}
|
|
|
|
blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
|
|
|
|
db = dbuf_hold(mdn, blk, FTAG);
|
|
if (drop_struct_lock)
|
|
rw_exit(&mdn->dn_struct_rwlock);
|
|
if (db == NULL)
|
|
return (EIO);
|
|
err = dbuf_read(db, NULL, DB_RF_CANFAIL);
|
|
if (err) {
|
|
dbuf_rele(db, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
|
|
epb = db->db.db_size >> DNODE_SHIFT;
|
|
|
|
idx = object & (epb-1);
|
|
|
|
ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
|
|
children_dnodes = dmu_buf_get_user(&db->db);
|
|
if (children_dnodes == NULL) {
|
|
int i;
|
|
dnode_children_t *winner;
|
|
children_dnodes = kmem_alloc(sizeof (dnode_children_t) +
|
|
(epb - 1) * sizeof (dnode_handle_t),
|
|
KM_PUSHPAGE | KM_NODEBUG);
|
|
children_dnodes->dnc_count = epb;
|
|
dnh = &children_dnodes->dnc_children[0];
|
|
for (i = 0; i < epb; i++) {
|
|
zrl_init(&dnh[i].dnh_zrlock);
|
|
dnh[i].dnh_dnode = NULL;
|
|
}
|
|
if ((winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
|
|
dnode_buf_pageout))) {
|
|
kmem_free(children_dnodes, sizeof (dnode_children_t) +
|
|
(epb - 1) * sizeof (dnode_handle_t));
|
|
children_dnodes = winner;
|
|
}
|
|
}
|
|
ASSERT(children_dnodes->dnc_count == epb);
|
|
|
|
dnh = &children_dnodes->dnc_children[idx];
|
|
zrl_add(&dnh->dnh_zrlock);
|
|
if ((dn = dnh->dnh_dnode) == NULL) {
|
|
dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
|
|
dnode_t *winner;
|
|
|
|
dn = dnode_create(os, phys, db, object, dnh);
|
|
winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
|
|
if (winner != NULL) {
|
|
zrl_add(&dnh->dnh_zrlock);
|
|
dnode_destroy(dn); /* implicit zrl_remove() */
|
|
dn = winner;
|
|
}
|
|
}
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
type = dn->dn_type;
|
|
if (dn->dn_free_txg ||
|
|
((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
|
|
((flag & DNODE_MUST_BE_FREE) &&
|
|
(type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
|
|
mutex_exit(&dn->dn_mtx);
|
|
zrl_remove(&dnh->dnh_zrlock);
|
|
dbuf_rele(db, FTAG);
|
|
return (type == DMU_OT_NONE ? ENOENT : EEXIST);
|
|
}
|
|
mutex_exit(&dn->dn_mtx);
|
|
|
|
if (refcount_add(&dn->dn_holds, tag) == 1)
|
|
dbuf_add_ref(db, dnh);
|
|
/* Now we can rely on the hold to prevent the dnode from moving. */
|
|
zrl_remove(&dnh->dnh_zrlock);
|
|
|
|
DNODE_VERIFY(dn);
|
|
ASSERT3P(dn->dn_dbuf, ==, db);
|
|
ASSERT3U(dn->dn_object, ==, object);
|
|
dbuf_rele(db, FTAG);
|
|
|
|
*dnp = dn;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return held dnode if the object is allocated, NULL if not.
|
|
*/
|
|
int
|
|
dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
|
|
{
|
|
return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
|
|
}
|
|
|
|
/*
|
|
* Can only add a reference if there is already at least one
|
|
* reference on the dnode. Returns FALSE if unable to add a
|
|
* new reference.
|
|
*/
|
|
boolean_t
|
|
dnode_add_ref(dnode_t *dn, void *tag)
|
|
{
|
|
mutex_enter(&dn->dn_mtx);
|
|
if (refcount_is_zero(&dn->dn_holds)) {
|
|
mutex_exit(&dn->dn_mtx);
|
|
return (FALSE);
|
|
}
|
|
VERIFY(1 < refcount_add(&dn->dn_holds, tag));
|
|
mutex_exit(&dn->dn_mtx);
|
|
return (TRUE);
|
|
}
|
|
|
|
void
|
|
dnode_rele(dnode_t *dn, void *tag)
|
|
{
|
|
uint64_t refs;
|
|
/* Get while the hold prevents the dnode from moving. */
|
|
dmu_buf_impl_t *db = dn->dn_dbuf;
|
|
dnode_handle_t *dnh = dn->dn_handle;
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
refs = refcount_remove(&dn->dn_holds, tag);
|
|
mutex_exit(&dn->dn_mtx);
|
|
|
|
/*
|
|
* It's unsafe to release the last hold on a dnode by dnode_rele() or
|
|
* indirectly by dbuf_rele() while relying on the dnode handle to
|
|
* prevent the dnode from moving, since releasing the last hold could
|
|
* result in the dnode's parent dbuf evicting its dnode handles. For
|
|
* that reason anyone calling dnode_rele() or dbuf_rele() without some
|
|
* other direct or indirect hold on the dnode must first drop the dnode
|
|
* handle.
|
|
*/
|
|
ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
|
|
|
|
/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
|
|
if (refs == 0 && db != NULL) {
|
|
/*
|
|
* Another thread could add a hold to the dnode handle in
|
|
* dnode_hold_impl() while holding the parent dbuf. Since the
|
|
* hold on the parent dbuf prevents the handle from being
|
|
* destroyed, the hold on the handle is OK. We can't yet assert
|
|
* that the handle has zero references, but that will be
|
|
* asserted anyway when the handle gets destroyed.
|
|
*/
|
|
dbuf_rele(db, dnh);
|
|
}
|
|
}
|
|
|
|
void
|
|
dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
|
|
{
|
|
objset_t *os = dn->dn_objset;
|
|
uint64_t txg = tx->tx_txg;
|
|
|
|
if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
|
|
dsl_dataset_dirty(os->os_dsl_dataset, tx);
|
|
return;
|
|
}
|
|
|
|
DNODE_VERIFY(dn);
|
|
|
|
#ifdef ZFS_DEBUG
|
|
mutex_enter(&dn->dn_mtx);
|
|
ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
|
|
ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
|
|
mutex_exit(&dn->dn_mtx);
|
|
#endif
|
|
|
|
/*
|
|
* Determine old uid/gid when necessary
|
|
*/
|
|
dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
|
|
|
|
mutex_enter(&os->os_lock);
|
|
|
|
/*
|
|
* If we are already marked dirty, we're done.
|
|
*/
|
|
if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
|
|
mutex_exit(&os->os_lock);
|
|
return;
|
|
}
|
|
|
|
ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
|
|
ASSERT(dn->dn_datablksz != 0);
|
|
ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
|
|
ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
|
|
ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
|
|
|
|
dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
|
|
dn->dn_object, txg);
|
|
|
|
if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
|
|
list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
|
|
} else {
|
|
list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
|
|
}
|
|
|
|
mutex_exit(&os->os_lock);
|
|
|
|
/*
|
|
* The dnode maintains a hold on its containing dbuf as
|
|
* long as there are holds on it. Each instantiated child
|
|
* dbuf maintains a hold on the dnode. When the last child
|
|
* drops its hold, the dnode will drop its hold on the
|
|
* containing dbuf. We add a "dirty hold" here so that the
|
|
* dnode will hang around after we finish processing its
|
|
* children.
|
|
*/
|
|
VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
|
|
|
|
(void) dbuf_dirty(dn->dn_dbuf, tx);
|
|
|
|
dsl_dataset_dirty(os->os_dsl_dataset, tx);
|
|
}
|
|
|
|
void
|
|
dnode_free(dnode_t *dn, dmu_tx_t *tx)
|
|
{
|
|
int txgoff = tx->tx_txg & TXG_MASK;
|
|
|
|
dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
|
|
|
|
/* we should be the only holder... hopefully */
|
|
/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
|
|
mutex_exit(&dn->dn_mtx);
|
|
return;
|
|
}
|
|
dn->dn_free_txg = tx->tx_txg;
|
|
mutex_exit(&dn->dn_mtx);
|
|
|
|
/*
|
|
* If the dnode is already dirty, it needs to be moved from
|
|
* the dirty list to the free list.
|
|
*/
|
|
mutex_enter(&dn->dn_objset->os_lock);
|
|
if (list_link_active(&dn->dn_dirty_link[txgoff])) {
|
|
list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
|
|
list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
|
|
mutex_exit(&dn->dn_objset->os_lock);
|
|
} else {
|
|
mutex_exit(&dn->dn_objset->os_lock);
|
|
dnode_setdirty(dn, tx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to change the block size for the indicated dnode. This can only
|
|
* succeed if there are no blocks allocated or dirty beyond first block
|
|
*/
|
|
int
|
|
dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db, *db_next;
|
|
int err;
|
|
|
|
if (size == 0)
|
|
size = SPA_MINBLOCKSIZE;
|
|
if (size > SPA_MAXBLOCKSIZE)
|
|
size = SPA_MAXBLOCKSIZE;
|
|
else
|
|
size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
|
|
|
|
if (ibs == dn->dn_indblkshift)
|
|
ibs = 0;
|
|
|
|
if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
|
|
return (0);
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
|
|
/* Check for any allocated blocks beyond the first */
|
|
if (dn->dn_phys->dn_maxblkid != 0)
|
|
goto fail;
|
|
|
|
mutex_enter(&dn->dn_dbufs_mtx);
|
|
for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
|
|
db_next = list_next(&dn->dn_dbufs, db);
|
|
|
|
if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
|
|
db->db_blkid != DMU_SPILL_BLKID) {
|
|
mutex_exit(&dn->dn_dbufs_mtx);
|
|
goto fail;
|
|
}
|
|
}
|
|
mutex_exit(&dn->dn_dbufs_mtx);
|
|
|
|
if (ibs && dn->dn_nlevels != 1)
|
|
goto fail;
|
|
|
|
/* resize the old block */
|
|
err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
|
|
if (err == 0)
|
|
dbuf_new_size(db, size, tx);
|
|
else if (err != ENOENT)
|
|
goto fail;
|
|
|
|
dnode_setdblksz(dn, size);
|
|
dnode_setdirty(dn, tx);
|
|
dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
|
|
if (ibs) {
|
|
dn->dn_indblkshift = ibs;
|
|
dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
|
|
}
|
|
/* rele after we have fixed the blocksize in the dnode */
|
|
if (db)
|
|
dbuf_rele(db, FTAG);
|
|
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
return (0);
|
|
|
|
fail:
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
/* read-holding callers must not rely on the lock being continuously held */
|
|
void
|
|
dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
|
|
{
|
|
uint64_t txgoff = tx->tx_txg & TXG_MASK;
|
|
int epbs, new_nlevels;
|
|
uint64_t sz;
|
|
|
|
ASSERT(blkid != DMU_BONUS_BLKID);
|
|
|
|
ASSERT(have_read ?
|
|
RW_READ_HELD(&dn->dn_struct_rwlock) :
|
|
RW_WRITE_HELD(&dn->dn_struct_rwlock));
|
|
|
|
/*
|
|
* if we have a read-lock, check to see if we need to do any work
|
|
* before upgrading to a write-lock.
|
|
*/
|
|
if (have_read) {
|
|
if (blkid <= dn->dn_maxblkid)
|
|
return;
|
|
|
|
if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
}
|
|
}
|
|
|
|
if (blkid <= dn->dn_maxblkid)
|
|
goto out;
|
|
|
|
dn->dn_maxblkid = blkid;
|
|
|
|
/*
|
|
* Compute the number of levels necessary to support the new maxblkid.
|
|
*/
|
|
new_nlevels = 1;
|
|
epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
for (sz = dn->dn_nblkptr;
|
|
sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
|
|
new_nlevels++;
|
|
|
|
if (new_nlevels > dn->dn_nlevels) {
|
|
int old_nlevels = dn->dn_nlevels;
|
|
dmu_buf_impl_t *db;
|
|
list_t *list;
|
|
dbuf_dirty_record_t *new, *dr, *dr_next;
|
|
|
|
dn->dn_nlevels = new_nlevels;
|
|
|
|
ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
|
|
dn->dn_next_nlevels[txgoff] = new_nlevels;
|
|
|
|
/* dirty the left indirects */
|
|
db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
|
|
ASSERT(db != NULL);
|
|
new = dbuf_dirty(db, tx);
|
|
dbuf_rele(db, FTAG);
|
|
|
|
/* transfer the dirty records to the new indirect */
|
|
mutex_enter(&dn->dn_mtx);
|
|
mutex_enter(&new->dt.di.dr_mtx);
|
|
list = &dn->dn_dirty_records[txgoff];
|
|
for (dr = list_head(list); dr; dr = dr_next) {
|
|
dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
|
|
if (dr->dr_dbuf->db_level != new_nlevels-1 &&
|
|
dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
|
|
dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
|
|
ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
|
|
list_remove(&dn->dn_dirty_records[txgoff], dr);
|
|
list_insert_tail(&new->dt.di.dr_children, dr);
|
|
dr->dr_parent = new;
|
|
}
|
|
}
|
|
mutex_exit(&new->dt.di.dr_mtx);
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
out:
|
|
if (have_read)
|
|
rw_downgrade(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
void
|
|
dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
|
|
{
|
|
avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
|
|
avl_index_t where;
|
|
free_range_t *rp;
|
|
free_range_t rp_tofind;
|
|
uint64_t endblk = blkid + nblks;
|
|
|
|
ASSERT(MUTEX_HELD(&dn->dn_mtx));
|
|
ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */
|
|
|
|
dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
|
|
blkid, nblks, tx->tx_txg);
|
|
rp_tofind.fr_blkid = blkid;
|
|
rp = avl_find(tree, &rp_tofind, &where);
|
|
if (rp == NULL)
|
|
rp = avl_nearest(tree, where, AVL_BEFORE);
|
|
if (rp == NULL)
|
|
rp = avl_nearest(tree, where, AVL_AFTER);
|
|
|
|
while (rp && (rp->fr_blkid <= blkid + nblks)) {
|
|
uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks;
|
|
free_range_t *nrp = AVL_NEXT(tree, rp);
|
|
|
|
if (blkid <= rp->fr_blkid && endblk >= fr_endblk) {
|
|
/* clear this entire range */
|
|
avl_remove(tree, rp);
|
|
kmem_free(rp, sizeof (free_range_t));
|
|
} else if (blkid <= rp->fr_blkid &&
|
|
endblk > rp->fr_blkid && endblk < fr_endblk) {
|
|
/* clear the beginning of this range */
|
|
rp->fr_blkid = endblk;
|
|
rp->fr_nblks = fr_endblk - endblk;
|
|
} else if (blkid > rp->fr_blkid && blkid < fr_endblk &&
|
|
endblk >= fr_endblk) {
|
|
/* clear the end of this range */
|
|
rp->fr_nblks = blkid - rp->fr_blkid;
|
|
} else if (blkid > rp->fr_blkid && endblk < fr_endblk) {
|
|
/* clear a chunk out of this range */
|
|
free_range_t *new_rp =
|
|
kmem_alloc(sizeof (free_range_t), KM_PUSHPAGE);
|
|
|
|
new_rp->fr_blkid = endblk;
|
|
new_rp->fr_nblks = fr_endblk - endblk;
|
|
avl_insert_here(tree, new_rp, rp, AVL_AFTER);
|
|
rp->fr_nblks = blkid - rp->fr_blkid;
|
|
}
|
|
/* there may be no overlap */
|
|
rp = nrp;
|
|
}
|
|
}
|
|
|
|
void
|
|
dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db;
|
|
uint64_t blkoff, blkid, nblks;
|
|
int blksz, blkshift, head, tail;
|
|
int trunc = FALSE;
|
|
int epbs;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
blksz = dn->dn_datablksz;
|
|
blkshift = dn->dn_datablkshift;
|
|
epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
|
|
if (len == -1ULL) {
|
|
len = UINT64_MAX - off;
|
|
trunc = TRUE;
|
|
}
|
|
|
|
/*
|
|
* First, block align the region to free:
|
|
*/
|
|
if (ISP2(blksz)) {
|
|
head = P2NPHASE(off, blksz);
|
|
blkoff = P2PHASE(off, blksz);
|
|
if ((off >> blkshift) > dn->dn_maxblkid)
|
|
goto out;
|
|
} else {
|
|
ASSERT(dn->dn_maxblkid == 0);
|
|
if (off == 0 && len >= blksz) {
|
|
/* Freeing the whole block; fast-track this request */
|
|
blkid = 0;
|
|
nblks = 1;
|
|
goto done;
|
|
} else if (off >= blksz) {
|
|
/* Freeing past end-of-data */
|
|
goto out;
|
|
} else {
|
|
/* Freeing part of the block. */
|
|
head = blksz - off;
|
|
ASSERT3U(head, >, 0);
|
|
}
|
|
blkoff = off;
|
|
}
|
|
/* zero out any partial block data at the start of the range */
|
|
if (head) {
|
|
ASSERT3U(blkoff + head, ==, blksz);
|
|
if (len < head)
|
|
head = len;
|
|
if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
|
|
FTAG, &db) == 0) {
|
|
caddr_t data;
|
|
|
|
/* don't dirty if it isn't on disk and isn't dirty */
|
|
if (db->db_last_dirty ||
|
|
(db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dbuf_will_dirty(db, tx);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
data = db->db.db_data;
|
|
bzero(data + blkoff, head);
|
|
}
|
|
dbuf_rele(db, FTAG);
|
|
}
|
|
off += head;
|
|
len -= head;
|
|
}
|
|
|
|
/* If the range was less than one block, we're done */
|
|
if (len == 0)
|
|
goto out;
|
|
|
|
/* If the remaining range is past end of file, we're done */
|
|
if ((off >> blkshift) > dn->dn_maxblkid)
|
|
goto out;
|
|
|
|
ASSERT(ISP2(blksz));
|
|
if (trunc)
|
|
tail = 0;
|
|
else
|
|
tail = P2PHASE(len, blksz);
|
|
|
|
ASSERT0(P2PHASE(off, blksz));
|
|
/* zero out any partial block data at the end of the range */
|
|
if (tail) {
|
|
if (len < tail)
|
|
tail = len;
|
|
if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
|
|
TRUE, FTAG, &db) == 0) {
|
|
/* don't dirty if not on disk and not dirty */
|
|
if (db->db_last_dirty ||
|
|
(db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dbuf_will_dirty(db, tx);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
bzero(db->db.db_data, tail);
|
|
}
|
|
dbuf_rele(db, FTAG);
|
|
}
|
|
len -= tail;
|
|
}
|
|
|
|
/* If the range did not include a full block, we are done */
|
|
if (len == 0)
|
|
goto out;
|
|
|
|
ASSERT(IS_P2ALIGNED(off, blksz));
|
|
ASSERT(trunc || IS_P2ALIGNED(len, blksz));
|
|
blkid = off >> blkshift;
|
|
nblks = len >> blkshift;
|
|
if (trunc)
|
|
nblks += 1;
|
|
|
|
/*
|
|
* Read in and mark all the level-1 indirects dirty,
|
|
* so that they will stay in memory until syncing phase.
|
|
* Always dirty the first and last indirect to make sure
|
|
* we dirty all the partial indirects.
|
|
*/
|
|
if (dn->dn_nlevels > 1) {
|
|
uint64_t i, first, last;
|
|
int shift = epbs + dn->dn_datablkshift;
|
|
|
|
first = blkid >> epbs;
|
|
if ((db = dbuf_hold_level(dn, 1, first, FTAG))) {
|
|
dbuf_will_dirty(db, tx);
|
|
dbuf_rele(db, FTAG);
|
|
}
|
|
if (trunc)
|
|
last = dn->dn_maxblkid >> epbs;
|
|
else
|
|
last = (blkid + nblks - 1) >> epbs;
|
|
if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
|
|
dbuf_will_dirty(db, tx);
|
|
dbuf_rele(db, FTAG);
|
|
}
|
|
for (i = first + 1; i < last; i++) {
|
|
uint64_t ibyte = i << shift;
|
|
int err;
|
|
|
|
err = dnode_next_offset(dn,
|
|
DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
|
|
i = ibyte >> shift;
|
|
if (err == ESRCH || i >= last)
|
|
break;
|
|
ASSERT(err == 0);
|
|
db = dbuf_hold_level(dn, 1, i, FTAG);
|
|
if (db) {
|
|
dbuf_will_dirty(db, tx);
|
|
dbuf_rele(db, FTAG);
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
/*
|
|
* Add this range to the dnode range list.
|
|
* We will finish up this free operation in the syncing phase.
|
|
*/
|
|
mutex_enter(&dn->dn_mtx);
|
|
dnode_clear_range(dn, blkid, nblks, tx);
|
|
{
|
|
free_range_t *rp, *found;
|
|
avl_index_t where;
|
|
avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
|
|
|
|
/* Add new range to dn_ranges */
|
|
rp = kmem_alloc(sizeof (free_range_t), KM_PUSHPAGE);
|
|
rp->fr_blkid = blkid;
|
|
rp->fr_nblks = nblks;
|
|
found = avl_find(tree, rp, &where);
|
|
ASSERT(found == NULL);
|
|
avl_insert(tree, rp, where);
|
|
dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
|
|
blkid, nblks, tx->tx_txg);
|
|
}
|
|
mutex_exit(&dn->dn_mtx);
|
|
|
|
dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
|
|
dnode_setdirty(dn, tx);
|
|
out:
|
|
if (trunc && dn->dn_maxblkid >= (off >> blkshift))
|
|
dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);
|
|
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
static boolean_t
|
|
dnode_spill_freed(dnode_t *dn)
|
|
{
|
|
int i;
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
|
|
break;
|
|
}
|
|
mutex_exit(&dn->dn_mtx);
|
|
return (i < TXG_SIZE);
|
|
}
|
|
|
|
/* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
|
|
uint64_t
|
|
dnode_block_freed(dnode_t *dn, uint64_t blkid)
|
|
{
|
|
free_range_t range_tofind;
|
|
void *dp = spa_get_dsl(dn->dn_objset->os_spa);
|
|
int i;
|
|
|
|
if (blkid == DMU_BONUS_BLKID)
|
|
return (FALSE);
|
|
|
|
/*
|
|
* If we're in the process of opening the pool, dp will not be
|
|
* set yet, but there shouldn't be anything dirty.
|
|
*/
|
|
if (dp == NULL)
|
|
return (FALSE);
|
|
|
|
if (dn->dn_free_txg)
|
|
return (TRUE);
|
|
|
|
if (blkid == DMU_SPILL_BLKID)
|
|
return (dnode_spill_freed(dn));
|
|
|
|
range_tofind.fr_blkid = blkid;
|
|
mutex_enter(&dn->dn_mtx);
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
free_range_t *range_found;
|
|
avl_index_t idx;
|
|
|
|
range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx);
|
|
if (range_found) {
|
|
ASSERT(range_found->fr_nblks > 0);
|
|
break;
|
|
}
|
|
range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE);
|
|
if (range_found &&
|
|
range_found->fr_blkid + range_found->fr_nblks > blkid)
|
|
break;
|
|
}
|
|
mutex_exit(&dn->dn_mtx);
|
|
return (i < TXG_SIZE);
|
|
}
|
|
|
|
/* call from syncing context when we actually write/free space for this dnode */
|
|
void
|
|
dnode_diduse_space(dnode_t *dn, int64_t delta)
|
|
{
|
|
uint64_t space;
|
|
dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
|
|
dn, dn->dn_phys,
|
|
(u_longlong_t)dn->dn_phys->dn_used,
|
|
(longlong_t)delta);
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
space = DN_USED_BYTES(dn->dn_phys);
|
|
if (delta > 0) {
|
|
ASSERT3U(space + delta, >=, space); /* no overflow */
|
|
} else {
|
|
ASSERT3U(space, >=, -delta); /* no underflow */
|
|
}
|
|
space += delta;
|
|
if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
|
|
ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
|
|
ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
|
|
dn->dn_phys->dn_used = space >> DEV_BSHIFT;
|
|
} else {
|
|
dn->dn_phys->dn_used = space;
|
|
dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
|
|
}
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
/*
|
|
* Call when we think we're going to write/free space in open context.
|
|
* Be conservative (ie. OK to write less than this or free more than
|
|
* this, but don't write more or free less).
|
|
*/
|
|
void
|
|
dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
|
|
{
|
|
objset_t *os = dn->dn_objset;
|
|
dsl_dataset_t *ds = os->os_dsl_dataset;
|
|
|
|
if (space > 0)
|
|
space = spa_get_asize(os->os_spa, space);
|
|
|
|
if (ds)
|
|
dsl_dir_willuse_space(ds->ds_dir, space, tx);
|
|
|
|
dmu_tx_willuse_space(tx, space);
|
|
}
|
|
|
|
/*
|
|
* This function scans a block at the indicated "level" looking for
|
|
* a hole or data (depending on 'flags'). If level > 0, then we are
|
|
* scanning an indirect block looking at its pointers. If level == 0,
|
|
* then we are looking at a block of dnodes. If we don't find what we
|
|
* are looking for in the block, we return ESRCH. Otherwise, return
|
|
* with *offset pointing to the beginning (if searching forwards) or
|
|
* end (if searching backwards) of the range covered by the block
|
|
* pointer we matched on (or dnode).
|
|
*
|
|
* The basic search algorithm used below by dnode_next_offset() is to
|
|
* use this function to search up the block tree (widen the search) until
|
|
* we find something (i.e., we don't return ESRCH) and then search back
|
|
* down the tree (narrow the search) until we reach our original search
|
|
* level.
|
|
*/
|
|
static int
|
|
dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
|
|
int lvl, uint64_t blkfill, uint64_t txg)
|
|
{
|
|
dmu_buf_impl_t *db = NULL;
|
|
void *data = NULL;
|
|
uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
uint64_t epb = 1ULL << epbs;
|
|
uint64_t minfill, maxfill;
|
|
boolean_t hole;
|
|
int i, inc, error, span;
|
|
|
|
dprintf("probing object %llu offset %llx level %d of %u\n",
|
|
dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
|
|
|
|
hole = ((flags & DNODE_FIND_HOLE) != 0);
|
|
inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
|
|
ASSERT(txg == 0 || !hole);
|
|
|
|
if (lvl == dn->dn_phys->dn_nlevels) {
|
|
error = 0;
|
|
epb = dn->dn_phys->dn_nblkptr;
|
|
data = dn->dn_phys->dn_blkptr;
|
|
} else {
|
|
uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
|
|
error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
|
|
if (error) {
|
|
if (error != ENOENT)
|
|
return (error);
|
|
if (hole)
|
|
return (0);
|
|
/*
|
|
* This can only happen when we are searching up
|
|
* the block tree for data. We don't really need to
|
|
* adjust the offset, as we will just end up looking
|
|
* at the pointer to this block in its parent, and its
|
|
* going to be unallocated, so we will skip over it.
|
|
*/
|
|
return (ESRCH);
|
|
}
|
|
error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
|
|
if (error) {
|
|
dbuf_rele(db, FTAG);
|
|
return (error);
|
|
}
|
|
data = db->db.db_data;
|
|
}
|
|
|
|
if (db && txg &&
|
|
(db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
|
|
/*
|
|
* This can only happen when we are searching up the tree
|
|
* and these conditions mean that we need to keep climbing.
|
|
*/
|
|
error = ESRCH;
|
|
} else if (lvl == 0) {
|
|
dnode_phys_t *dnp = data;
|
|
span = DNODE_SHIFT;
|
|
ASSERT(dn->dn_type == DMU_OT_DNODE);
|
|
|
|
for (i = (*offset >> span) & (blkfill - 1);
|
|
i >= 0 && i < blkfill; i += inc) {
|
|
if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
|
|
break;
|
|
*offset += (1ULL << span) * inc;
|
|
}
|
|
if (i < 0 || i == blkfill)
|
|
error = ESRCH;
|
|
} else {
|
|
blkptr_t *bp = data;
|
|
uint64_t start = *offset;
|
|
span = (lvl - 1) * epbs + dn->dn_datablkshift;
|
|
minfill = 0;
|
|
maxfill = blkfill << ((lvl - 1) * epbs);
|
|
|
|
if (hole)
|
|
maxfill--;
|
|
else
|
|
minfill++;
|
|
|
|
*offset = *offset >> span;
|
|
for (i = BF64_GET(*offset, 0, epbs);
|
|
i >= 0 && i < epb; i += inc) {
|
|
if (bp[i].blk_fill >= minfill &&
|
|
bp[i].blk_fill <= maxfill &&
|
|
(hole || bp[i].blk_birth > txg))
|
|
break;
|
|
if (inc > 0 || *offset > 0)
|
|
*offset += inc;
|
|
}
|
|
*offset = *offset << span;
|
|
if (inc < 0) {
|
|
/* traversing backwards; position offset at the end */
|
|
ASSERT3U(*offset, <=, start);
|
|
*offset = MIN(*offset + (1ULL << span) - 1, start);
|
|
} else if (*offset < start) {
|
|
*offset = start;
|
|
}
|
|
if (i < 0 || i >= epb)
|
|
error = ESRCH;
|
|
}
|
|
|
|
if (db)
|
|
dbuf_rele(db, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Find the next hole, data, or sparse region at or after *offset.
|
|
* The value 'blkfill' tells us how many items we expect to find
|
|
* in an L0 data block; this value is 1 for normal objects,
|
|
* DNODES_PER_BLOCK for the meta dnode, and some fraction of
|
|
* DNODES_PER_BLOCK when searching for sparse regions thereof.
|
|
*
|
|
* Examples:
|
|
*
|
|
* dnode_next_offset(dn, flags, offset, 1, 1, 0);
|
|
* Finds the next/previous hole/data in a file.
|
|
* Used in dmu_offset_next().
|
|
*
|
|
* dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
|
|
* Finds the next free/allocated dnode an objset's meta-dnode.
|
|
* Only finds objects that have new contents since txg (ie.
|
|
* bonus buffer changes and content removal are ignored).
|
|
* Used in dmu_object_next().
|
|
*
|
|
* dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
|
|
* Finds the next L2 meta-dnode bp that's at most 1/4 full.
|
|
* Used in dmu_object_alloc().
|
|
*/
|
|
int
|
|
dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
|
|
int minlvl, uint64_t blkfill, uint64_t txg)
|
|
{
|
|
uint64_t initial_offset = *offset;
|
|
int lvl, maxlvl;
|
|
int error = 0;
|
|
|
|
if (!(flags & DNODE_FIND_HAVELOCK))
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
|
|
if (dn->dn_phys->dn_nlevels == 0) {
|
|
error = ESRCH;
|
|
goto out;
|
|
}
|
|
|
|
if (dn->dn_datablkshift == 0) {
|
|
if (*offset < dn->dn_datablksz) {
|
|
if (flags & DNODE_FIND_HOLE)
|
|
*offset = dn->dn_datablksz;
|
|
} else {
|
|
error = ESRCH;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
maxlvl = dn->dn_phys->dn_nlevels;
|
|
|
|
for (lvl = minlvl; lvl <= maxlvl; lvl++) {
|
|
error = dnode_next_offset_level(dn,
|
|
flags, offset, lvl, blkfill, txg);
|
|
if (error != ESRCH)
|
|
break;
|
|
}
|
|
|
|
while (error == 0 && --lvl >= minlvl) {
|
|
error = dnode_next_offset_level(dn,
|
|
flags, offset, lvl, blkfill, txg);
|
|
}
|
|
|
|
if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
|
|
initial_offset < *offset : initial_offset > *offset))
|
|
error = ESRCH;
|
|
out:
|
|
if (!(flags & DNODE_FIND_HAVELOCK))
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
return (error);
|
|
}
|