mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-04 07:19:48 +03:00
a2c4e95cfd
Rob Noris suggested that we could clean up redundant limits for the case of non-blk mq scenario. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Rob Norris <robn@despairlabs.com> Signed-off-by: Ameer Hamza <ahamza@ixsystems.com> Closes #16462
1970 lines
53 KiB
C
1970 lines
53 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
|
|
* Copyright (c) 2024, Rob Norris <robn@despairlabs.com>
|
|
* Copyright (c) 2024, Klara, Inc.
|
|
*/
|
|
|
|
#include <sys/dataset_kstats.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zvol.h>
|
|
#include <sys/zvol_impl.h>
|
|
#include <cityhash.h>
|
|
|
|
#include <linux/blkdev_compat.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#ifdef HAVE_BLK_MQ
|
|
#include <linux/blk-mq.h>
|
|
#endif
|
|
|
|
static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
|
|
struct request *rq, boolean_t force_sync);
|
|
|
|
static unsigned int zvol_major = ZVOL_MAJOR;
|
|
static unsigned int zvol_request_sync = 0;
|
|
static unsigned int zvol_prefetch_bytes = (128 * 1024);
|
|
static unsigned long zvol_max_discard_blocks = 16384;
|
|
|
|
/*
|
|
* Switch taskq at multiple of 512 MB offset. This can be set to a lower value
|
|
* to utilize more threads for small files but may affect prefetch hits.
|
|
*/
|
|
#define ZVOL_TASKQ_OFFSET_SHIFT 29
|
|
|
|
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
|
|
static unsigned int zvol_open_timeout_ms = 1000;
|
|
#endif
|
|
|
|
static unsigned int zvol_threads = 0;
|
|
#ifdef HAVE_BLK_MQ
|
|
static unsigned int zvol_blk_mq_threads = 0;
|
|
static unsigned int zvol_blk_mq_actual_threads;
|
|
static boolean_t zvol_use_blk_mq = B_FALSE;
|
|
|
|
/*
|
|
* The maximum number of volblocksize blocks to process per thread. Typically,
|
|
* write heavy workloads preform better with higher values here, and read
|
|
* heavy workloads preform better with lower values, but that's not a hard
|
|
* and fast rule. It's basically a knob to tune between "less overhead with
|
|
* less parallelism" and "more overhead, but more parallelism".
|
|
*
|
|
* '8' was chosen as a reasonable, balanced, default based off of sequential
|
|
* read and write tests to a zvol in an NVMe pool (with 16 CPUs).
|
|
*/
|
|
static unsigned int zvol_blk_mq_blocks_per_thread = 8;
|
|
#endif
|
|
|
|
static unsigned int zvol_num_taskqs = 0;
|
|
|
|
#ifndef BLKDEV_DEFAULT_RQ
|
|
/* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
|
|
#define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
|
|
#endif
|
|
|
|
/*
|
|
* Finalize our BIO or request.
|
|
*/
|
|
#ifdef HAVE_BLK_MQ
|
|
#define END_IO(zv, bio, rq, error) do { \
|
|
if (bio) { \
|
|
BIO_END_IO(bio, error); \
|
|
} else { \
|
|
blk_mq_end_request(rq, errno_to_bi_status(error)); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error)
|
|
#endif
|
|
|
|
#ifdef HAVE_BLK_MQ
|
|
static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
|
|
static unsigned int zvol_actual_blk_mq_queue_depth;
|
|
#endif
|
|
|
|
struct zvol_state_os {
|
|
struct gendisk *zvo_disk; /* generic disk */
|
|
struct request_queue *zvo_queue; /* request queue */
|
|
dev_t zvo_dev; /* device id */
|
|
|
|
#ifdef HAVE_BLK_MQ
|
|
struct blk_mq_tag_set tag_set;
|
|
#endif
|
|
|
|
/* Set from the global 'zvol_use_blk_mq' at zvol load */
|
|
boolean_t use_blk_mq;
|
|
};
|
|
|
|
typedef struct zv_taskq {
|
|
uint_t tqs_cnt;
|
|
taskq_t **tqs_taskq;
|
|
} zv_taskq_t;
|
|
static zv_taskq_t zvol_taskqs;
|
|
static struct ida zvol_ida;
|
|
|
|
typedef struct zv_request_stack {
|
|
zvol_state_t *zv;
|
|
struct bio *bio;
|
|
struct request *rq;
|
|
} zv_request_t;
|
|
|
|
typedef struct zv_work {
|
|
struct request *rq;
|
|
struct work_struct work;
|
|
} zv_work_t;
|
|
|
|
typedef struct zv_request_task {
|
|
zv_request_t zvr;
|
|
taskq_ent_t ent;
|
|
} zv_request_task_t;
|
|
|
|
static zv_request_task_t *
|
|
zv_request_task_create(zv_request_t zvr)
|
|
{
|
|
zv_request_task_t *task;
|
|
task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
|
|
taskq_init_ent(&task->ent);
|
|
task->zvr = zvr;
|
|
return (task);
|
|
}
|
|
|
|
static void
|
|
zv_request_task_free(zv_request_task_t *task)
|
|
{
|
|
kmem_free(task, sizeof (*task));
|
|
}
|
|
|
|
#ifdef HAVE_BLK_MQ
|
|
|
|
/*
|
|
* This is called when a new block multiqueue request comes in. A request
|
|
* contains one or more BIOs.
|
|
*/
|
|
static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
|
|
const struct blk_mq_queue_data *bd)
|
|
{
|
|
struct request *rq = bd->rq;
|
|
zvol_state_t *zv = rq->q->queuedata;
|
|
|
|
/* Tell the kernel that we are starting to process this request */
|
|
blk_mq_start_request(rq);
|
|
|
|
if (blk_rq_is_passthrough(rq)) {
|
|
/* Skip non filesystem request */
|
|
blk_mq_end_request(rq, BLK_STS_IOERR);
|
|
return (BLK_STS_IOERR);
|
|
}
|
|
|
|
zvol_request_impl(zv, NULL, rq, 0);
|
|
|
|
/* Acknowledge to the kernel that we got this request */
|
|
return (BLK_STS_OK);
|
|
}
|
|
|
|
static struct blk_mq_ops zvol_blk_mq_queue_ops = {
|
|
.queue_rq = zvol_mq_queue_rq,
|
|
};
|
|
|
|
/* Initialize our blk-mq struct */
|
|
static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
|
|
{
|
|
struct zvol_state_os *zso = zv->zv_zso;
|
|
|
|
memset(&zso->tag_set, 0, sizeof (zso->tag_set));
|
|
|
|
/* Initialize tag set. */
|
|
zso->tag_set.ops = &zvol_blk_mq_queue_ops;
|
|
zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
|
|
zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
|
|
zso->tag_set.numa_node = NUMA_NO_NODE;
|
|
zso->tag_set.cmd_size = 0;
|
|
|
|
/*
|
|
* We need BLK_MQ_F_BLOCKING here since we do blocking calls in
|
|
* zvol_request_impl()
|
|
*/
|
|
zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
|
|
zso->tag_set.driver_data = zv;
|
|
|
|
return (blk_mq_alloc_tag_set(&zso->tag_set));
|
|
}
|
|
#endif /* HAVE_BLK_MQ */
|
|
|
|
/*
|
|
* Given a path, return TRUE if path is a ZVOL.
|
|
*/
|
|
boolean_t
|
|
zvol_os_is_zvol(const char *path)
|
|
{
|
|
dev_t dev = 0;
|
|
|
|
if (vdev_lookup_bdev(path, &dev) != 0)
|
|
return (B_FALSE);
|
|
|
|
if (MAJOR(dev) == zvol_major)
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
static void
|
|
zvol_write(zv_request_t *zvr)
|
|
{
|
|
struct bio *bio = zvr->bio;
|
|
struct request *rq = zvr->rq;
|
|
int error = 0;
|
|
zfs_uio_t uio;
|
|
zvol_state_t *zv = zvr->zv;
|
|
struct request_queue *q;
|
|
struct gendisk *disk;
|
|
unsigned long start_time = 0;
|
|
boolean_t acct = B_FALSE;
|
|
|
|
ASSERT3P(zv, !=, NULL);
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
ASSERT3P(zv->zv_zilog, !=, NULL);
|
|
|
|
q = zv->zv_zso->zvo_queue;
|
|
disk = zv->zv_zso->zvo_disk;
|
|
|
|
/* bio marked as FLUSH need to flush before write */
|
|
if (io_is_flush(bio, rq))
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
/* Some requests are just for flush and nothing else. */
|
|
if (io_size(bio, rq) == 0) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
END_IO(zv, bio, rq, 0);
|
|
return;
|
|
}
|
|
|
|
zfs_uio_bvec_init(&uio, bio, rq);
|
|
|
|
ssize_t start_resid = uio.uio_resid;
|
|
|
|
/*
|
|
* With use_blk_mq, accounting is done by blk_mq_start_request()
|
|
* and blk_mq_end_request(), so we can skip it here.
|
|
*/
|
|
if (bio) {
|
|
acct = blk_queue_io_stat(q);
|
|
if (acct) {
|
|
start_time = blk_generic_start_io_acct(q, disk, WRITE,
|
|
bio);
|
|
}
|
|
}
|
|
|
|
boolean_t sync =
|
|
io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
|
|
|
|
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
|
|
uio.uio_loffset, uio.uio_resid, RL_WRITER);
|
|
|
|
uint64_t volsize = zv->zv_volsize;
|
|
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
|
|
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
|
|
uint64_t off = uio.uio_loffset;
|
|
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
|
|
|
|
if (bytes > volsize - off) /* don't write past the end */
|
|
bytes = volsize - off;
|
|
|
|
dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
|
|
|
|
/* This will only fail for ENOSPC */
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
break;
|
|
}
|
|
error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
|
|
if (error == 0) {
|
|
zvol_log_write(zv, tx, off, bytes, sync);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error)
|
|
break;
|
|
}
|
|
zfs_rangelock_exit(lr);
|
|
|
|
int64_t nwritten = start_resid - uio.uio_resid;
|
|
dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
|
|
task_io_account_write(nwritten);
|
|
|
|
if (sync)
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
if (bio && acct) {
|
|
blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
|
|
}
|
|
|
|
END_IO(zv, bio, rq, -error);
|
|
}
|
|
|
|
static void
|
|
zvol_write_task(void *arg)
|
|
{
|
|
zv_request_task_t *task = arg;
|
|
zvol_write(&task->zvr);
|
|
zv_request_task_free(task);
|
|
}
|
|
|
|
static void
|
|
zvol_discard(zv_request_t *zvr)
|
|
{
|
|
struct bio *bio = zvr->bio;
|
|
struct request *rq = zvr->rq;
|
|
zvol_state_t *zv = zvr->zv;
|
|
uint64_t start = io_offset(bio, rq);
|
|
uint64_t size = io_size(bio, rq);
|
|
uint64_t end = start + size;
|
|
boolean_t sync;
|
|
int error = 0;
|
|
dmu_tx_t *tx;
|
|
struct request_queue *q = zv->zv_zso->zvo_queue;
|
|
struct gendisk *disk = zv->zv_zso->zvo_disk;
|
|
unsigned long start_time = 0;
|
|
boolean_t acct = B_FALSE;
|
|
|
|
ASSERT3P(zv, !=, NULL);
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
ASSERT3P(zv->zv_zilog, !=, NULL);
|
|
|
|
if (bio) {
|
|
acct = blk_queue_io_stat(q);
|
|
if (acct) {
|
|
start_time = blk_generic_start_io_acct(q, disk, WRITE,
|
|
bio);
|
|
}
|
|
}
|
|
|
|
sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
|
|
|
|
if (end > zv->zv_volsize) {
|
|
error = SET_ERROR(EIO);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Align the request to volume block boundaries when a secure erase is
|
|
* not required. This will prevent dnode_free_range() from zeroing out
|
|
* the unaligned parts which is slow (read-modify-write) and useless
|
|
* since we are not freeing any space by doing so.
|
|
*/
|
|
if (!io_is_secure_erase(bio, rq)) {
|
|
start = P2ROUNDUP(start, zv->zv_volblocksize);
|
|
end = P2ALIGN_TYPED(end, zv->zv_volblocksize, uint64_t);
|
|
size = end - start;
|
|
}
|
|
|
|
if (start >= end)
|
|
goto unlock;
|
|
|
|
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
|
|
start, size, RL_WRITER);
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_mark_netfree(tx);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
zvol_log_truncate(zv, tx, start, size);
|
|
dmu_tx_commit(tx);
|
|
error = dmu_free_long_range(zv->zv_objset,
|
|
ZVOL_OBJ, start, size);
|
|
}
|
|
zfs_rangelock_exit(lr);
|
|
|
|
if (error == 0 && sync)
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
unlock:
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
if (bio && acct) {
|
|
blk_generic_end_io_acct(q, disk, WRITE, bio,
|
|
start_time);
|
|
}
|
|
|
|
END_IO(zv, bio, rq, -error);
|
|
}
|
|
|
|
static void
|
|
zvol_discard_task(void *arg)
|
|
{
|
|
zv_request_task_t *task = arg;
|
|
zvol_discard(&task->zvr);
|
|
zv_request_task_free(task);
|
|
}
|
|
|
|
static void
|
|
zvol_read(zv_request_t *zvr)
|
|
{
|
|
struct bio *bio = zvr->bio;
|
|
struct request *rq = zvr->rq;
|
|
int error = 0;
|
|
zfs_uio_t uio;
|
|
boolean_t acct = B_FALSE;
|
|
zvol_state_t *zv = zvr->zv;
|
|
struct request_queue *q;
|
|
struct gendisk *disk;
|
|
unsigned long start_time = 0;
|
|
|
|
ASSERT3P(zv, !=, NULL);
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
|
|
zfs_uio_bvec_init(&uio, bio, rq);
|
|
|
|
q = zv->zv_zso->zvo_queue;
|
|
disk = zv->zv_zso->zvo_disk;
|
|
|
|
ssize_t start_resid = uio.uio_resid;
|
|
|
|
/*
|
|
* When blk-mq is being used, accounting is done by
|
|
* blk_mq_start_request() and blk_mq_end_request().
|
|
*/
|
|
if (bio) {
|
|
acct = blk_queue_io_stat(q);
|
|
if (acct)
|
|
start_time = blk_generic_start_io_acct(q, disk, READ,
|
|
bio);
|
|
}
|
|
|
|
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
|
|
uio.uio_loffset, uio.uio_resid, RL_READER);
|
|
|
|
uint64_t volsize = zv->zv_volsize;
|
|
|
|
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
|
|
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
|
|
|
|
/* don't read past the end */
|
|
if (bytes > volsize - uio.uio_loffset)
|
|
bytes = volsize - uio.uio_loffset;
|
|
|
|
error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
|
|
if (error) {
|
|
/* convert checksum errors into IO errors */
|
|
if (error == ECKSUM)
|
|
error = SET_ERROR(EIO);
|
|
break;
|
|
}
|
|
}
|
|
zfs_rangelock_exit(lr);
|
|
|
|
int64_t nread = start_resid - uio.uio_resid;
|
|
dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
|
|
task_io_account_read(nread);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
if (bio && acct) {
|
|
blk_generic_end_io_acct(q, disk, READ, bio, start_time);
|
|
}
|
|
|
|
END_IO(zv, bio, rq, -error);
|
|
}
|
|
|
|
static void
|
|
zvol_read_task(void *arg)
|
|
{
|
|
zv_request_task_t *task = arg;
|
|
zvol_read(&task->zvr);
|
|
zv_request_task_free(task);
|
|
}
|
|
|
|
|
|
/*
|
|
* Process a BIO or request
|
|
*
|
|
* Either 'bio' or 'rq' should be set depending on if we are processing a
|
|
* bio or a request (both should not be set).
|
|
*
|
|
* force_sync: Set to 0 to defer processing to a background taskq
|
|
* Set to 1 to process data synchronously
|
|
*/
|
|
static void
|
|
zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
|
|
boolean_t force_sync)
|
|
{
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
uint64_t offset = io_offset(bio, rq);
|
|
uint64_t size = io_size(bio, rq);
|
|
int rw = io_data_dir(bio, rq);
|
|
|
|
if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
|
|
END_IO(zv, bio, rq, -SET_ERROR(ENXIO));
|
|
goto out;
|
|
}
|
|
|
|
if (zvol_request_sync || zv->zv_threading == B_FALSE)
|
|
force_sync = 1;
|
|
|
|
zv_request_t zvr = {
|
|
.zv = zv,
|
|
.bio = bio,
|
|
.rq = rq,
|
|
};
|
|
|
|
if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
|
|
printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
|
|
zv->zv_zso->zvo_disk->disk_name,
|
|
(long long unsigned)offset,
|
|
(long unsigned)size);
|
|
|
|
END_IO(zv, bio, rq, -SET_ERROR(EIO));
|
|
goto out;
|
|
}
|
|
|
|
zv_request_task_t *task;
|
|
zv_taskq_t *ztqs = &zvol_taskqs;
|
|
uint_t blk_mq_hw_queue = 0;
|
|
uint_t tq_idx;
|
|
uint_t taskq_hash;
|
|
#ifdef HAVE_BLK_MQ
|
|
if (rq)
|
|
#ifdef HAVE_BLK_MQ_RQ_HCTX
|
|
blk_mq_hw_queue = rq->mq_hctx->queue_num;
|
|
#else
|
|
blk_mq_hw_queue =
|
|
rq->q->queue_hw_ctx[rq->q->mq_map[rq->cpu]]->queue_num;
|
|
#endif
|
|
#endif
|
|
taskq_hash = cityhash4((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
|
|
blk_mq_hw_queue, 0);
|
|
tq_idx = taskq_hash % ztqs->tqs_cnt;
|
|
|
|
if (rw == WRITE) {
|
|
if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
|
|
END_IO(zv, bio, rq, -SET_ERROR(EROFS));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Prevents the zvol from being suspended, or the ZIL being
|
|
* concurrently opened. Will be released after the i/o
|
|
* completes.
|
|
*/
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
/*
|
|
* Open a ZIL if this is the first time we have written to this
|
|
* zvol. We protect zv->zv_zilog with zv_suspend_lock rather
|
|
* than zv_state_lock so that we don't need to acquire an
|
|
* additional lock in this path.
|
|
*/
|
|
if (zv->zv_zilog == NULL) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
rw_enter(&zv->zv_suspend_lock, RW_WRITER);
|
|
if (zv->zv_zilog == NULL) {
|
|
zv->zv_zilog = zil_open(zv->zv_objset,
|
|
zvol_get_data, &zv->zv_kstat.dk_zil_sums);
|
|
zv->zv_flags |= ZVOL_WRITTEN_TO;
|
|
/* replay / destroy done in zvol_create_minor */
|
|
VERIFY0((zv->zv_zilog->zl_header->zh_flags &
|
|
ZIL_REPLAY_NEEDED));
|
|
}
|
|
rw_downgrade(&zv->zv_suspend_lock);
|
|
}
|
|
|
|
/*
|
|
* We don't want this thread to be blocked waiting for i/o to
|
|
* complete, so we instead wait from a taskq callback. The
|
|
* i/o may be a ZIL write (via zil_commit()), or a read of an
|
|
* indirect block, or a read of a data block (if this is a
|
|
* partial-block write). We will indicate that the i/o is
|
|
* complete by calling END_IO() from the taskq callback.
|
|
*
|
|
* This design allows the calling thread to continue and
|
|
* initiate more concurrent operations by calling
|
|
* zvol_request() again. There are typically only a small
|
|
* number of threads available to call zvol_request() (e.g.
|
|
* one per iSCSI target), so keeping the latency of
|
|
* zvol_request() low is important for performance.
|
|
*
|
|
* The zvol_request_sync module parameter allows this
|
|
* behavior to be altered, for performance evaluation
|
|
* purposes. If the callback blocks, setting
|
|
* zvol_request_sync=1 will result in much worse performance.
|
|
*
|
|
* We can have up to zvol_threads concurrent i/o's being
|
|
* processed for all zvols on the system. This is typically
|
|
* a vast improvement over the zvol_request_sync=1 behavior
|
|
* of one i/o at a time per zvol. However, an even better
|
|
* design would be for zvol_request() to initiate the zio
|
|
* directly, and then be notified by the zio_done callback,
|
|
* which would call END_IO(). Unfortunately, the DMU/ZIL
|
|
* interfaces lack this functionality (they block waiting for
|
|
* the i/o to complete).
|
|
*/
|
|
if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
|
|
if (force_sync) {
|
|
zvol_discard(&zvr);
|
|
} else {
|
|
task = zv_request_task_create(zvr);
|
|
taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
|
|
zvol_discard_task, task, 0, &task->ent);
|
|
}
|
|
} else {
|
|
if (force_sync) {
|
|
zvol_write(&zvr);
|
|
} else {
|
|
task = zv_request_task_create(zvr);
|
|
taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
|
|
zvol_write_task, task, 0, &task->ent);
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* The SCST driver, and possibly others, may issue READ I/Os
|
|
* with a length of zero bytes. These empty I/Os contain no
|
|
* data and require no additional handling.
|
|
*/
|
|
if (size == 0) {
|
|
END_IO(zv, bio, rq, 0);
|
|
goto out;
|
|
}
|
|
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
/* See comment in WRITE case above. */
|
|
if (force_sync) {
|
|
zvol_read(&zvr);
|
|
} else {
|
|
task = zv_request_task_create(zvr);
|
|
taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
|
|
zvol_read_task, task, 0, &task->ent);
|
|
}
|
|
}
|
|
|
|
out:
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
|
|
#ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
|
|
static void
|
|
zvol_submit_bio(struct bio *bio)
|
|
#else
|
|
static blk_qc_t
|
|
zvol_submit_bio(struct bio *bio)
|
|
#endif
|
|
#else
|
|
static MAKE_REQUEST_FN_RET
|
|
zvol_request(struct request_queue *q, struct bio *bio)
|
|
#endif
|
|
{
|
|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
|
|
#if defined(HAVE_BIO_BDEV_DISK)
|
|
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
|
|
#else
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
#endif
|
|
#endif
|
|
zvol_state_t *zv = q->queuedata;
|
|
|
|
zvol_request_impl(zv, bio, NULL, 0);
|
|
#if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
|
|
defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
|
|
!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
|
|
return (BLK_QC_T_NONE);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
#ifdef HAVE_BLK_MODE_T
|
|
zvol_open(struct gendisk *disk, blk_mode_t flag)
|
|
#else
|
|
zvol_open(struct block_device *bdev, fmode_t flag)
|
|
#endif
|
|
{
|
|
zvol_state_t *zv;
|
|
int error = 0;
|
|
boolean_t drop_suspend = B_FALSE;
|
|
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
|
|
hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
|
|
hrtime_t start = gethrtime();
|
|
|
|
retry:
|
|
#endif
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
/*
|
|
* Obtain a copy of private_data under the zvol_state_lock to make
|
|
* sure that either the result of zvol free code path setting
|
|
* disk->private_data to NULL is observed, or zvol_os_free()
|
|
* is not called on this zv because of the positive zv_open_count.
|
|
*/
|
|
#ifdef HAVE_BLK_MODE_T
|
|
zv = disk->private_data;
|
|
#else
|
|
zv = bdev->bd_disk->private_data;
|
|
#endif
|
|
if (zv == NULL) {
|
|
rw_exit(&zvol_state_lock);
|
|
return (-SET_ERROR(ENXIO));
|
|
}
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
|
|
if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_exit(&zvol_state_lock);
|
|
return (-SET_ERROR(ENXIO));
|
|
}
|
|
|
|
/*
|
|
* Make sure zvol is not suspended during first open
|
|
* (hold zv_suspend_lock) and respect proper lock acquisition
|
|
* ordering - zv_suspend_lock before zv_state_lock
|
|
*/
|
|
if (zv->zv_open_count == 0) {
|
|
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
/* check to see if zv_suspend_lock is needed */
|
|
if (zv->zv_open_count != 0) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
} else {
|
|
drop_suspend = B_TRUE;
|
|
}
|
|
} else {
|
|
drop_suspend = B_TRUE;
|
|
}
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
if (zv->zv_open_count == 0) {
|
|
boolean_t drop_namespace = B_FALSE;
|
|
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
|
|
/*
|
|
* In all other call paths the spa_namespace_lock is taken
|
|
* before the bdev->bd_mutex lock. However, on open(2)
|
|
* the __blkdev_get() function calls fops->open() with the
|
|
* bdev->bd_mutex lock held. This can result in a deadlock
|
|
* when zvols from one pool are used as vdevs in another.
|
|
*
|
|
* To prevent a lock inversion deadlock we preemptively
|
|
* take the spa_namespace_lock. Normally the lock will not
|
|
* be contended and this is safe because spa_open_common()
|
|
* handles the case where the caller already holds the
|
|
* spa_namespace_lock.
|
|
*
|
|
* When the lock cannot be aquired after multiple retries
|
|
* this must be the vdev on zvol deadlock case and we have
|
|
* no choice but to return an error. For 5.12 and older
|
|
* kernels returning -ERESTARTSYS will result in the
|
|
* bdev->bd_mutex being dropped, then reacquired, and
|
|
* fops->open() being called again. This process can be
|
|
* repeated safely until both locks are acquired. For 5.13
|
|
* and newer the -ERESTARTSYS retry logic was removed from
|
|
* the kernel so the only option is to return the error for
|
|
* the caller to handle it.
|
|
*/
|
|
if (!mutex_owned(&spa_namespace_lock)) {
|
|
if (!mutex_tryenter(&spa_namespace_lock)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
drop_suspend = B_FALSE;
|
|
|
|
#ifdef HAVE_BLKDEV_GET_ERESTARTSYS
|
|
schedule();
|
|
return (-SET_ERROR(ERESTARTSYS));
|
|
#else
|
|
if ((gethrtime() - start) > timeout)
|
|
return (-SET_ERROR(ERESTARTSYS));
|
|
|
|
schedule_timeout_interruptible(
|
|
MSEC_TO_TICK(10));
|
|
goto retry;
|
|
#endif
|
|
} else {
|
|
drop_namespace = B_TRUE;
|
|
}
|
|
}
|
|
|
|
error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
|
|
|
|
if (drop_namespace)
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
if (error == 0) {
|
|
if ((blk_mode_is_open_write(flag)) &&
|
|
(zv->zv_flags & ZVOL_RDONLY)) {
|
|
if (zv->zv_open_count == 0)
|
|
zvol_last_close(zv);
|
|
|
|
error = -SET_ERROR(EROFS);
|
|
} else {
|
|
zv->zv_open_count++;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
if (drop_suspend)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
if (error == 0)
|
|
#ifdef HAVE_BLK_MODE_T
|
|
disk_check_media_change(disk);
|
|
#else
|
|
zfs_check_media_change(bdev);
|
|
#endif
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
|
|
zvol_release(struct gendisk *disk)
|
|
#else
|
|
zvol_release(struct gendisk *disk, fmode_t unused)
|
|
#endif
|
|
{
|
|
#if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
|
|
(void) unused;
|
|
#endif
|
|
zvol_state_t *zv;
|
|
boolean_t drop_suspend = B_TRUE;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
zv = disk->private_data;
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
/*
|
|
* make sure zvol is not suspended during last close
|
|
* (hold zv_suspend_lock) and respect proper lock acquisition
|
|
* ordering - zv_suspend_lock before zv_state_lock
|
|
*/
|
|
if (zv->zv_open_count == 1) {
|
|
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
/* check to see if zv_suspend_lock is needed */
|
|
if (zv->zv_open_count != 1) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
drop_suspend = B_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
drop_suspend = B_FALSE;
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
zv->zv_open_count--;
|
|
if (zv->zv_open_count == 0) {
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
zvol_last_close(zv);
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
if (drop_suspend)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
}
|
|
|
|
static int
|
|
zvol_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
int error = 0;
|
|
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
|
|
switch (cmd) {
|
|
case BLKFLSBUF:
|
|
#ifdef HAVE_FSYNC_BDEV
|
|
fsync_bdev(bdev);
|
|
#elif defined(HAVE_SYNC_BLOCKDEV)
|
|
sync_blockdev(bdev);
|
|
#else
|
|
#error "Neither fsync_bdev() nor sync_blockdev() found"
|
|
#endif
|
|
invalidate_bdev(bdev);
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
if (!(zv->zv_flags & ZVOL_RDONLY))
|
|
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
break;
|
|
|
|
case BLKZNAME:
|
|
mutex_enter(&zv->zv_state_lock);
|
|
error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
|
|
mutex_exit(&zv->zv_state_lock);
|
|
break;
|
|
|
|
default:
|
|
error = -ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int
|
|
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
return (zvol_ioctl(bdev, mode, cmd, arg));
|
|
}
|
|
#else
|
|
#define zvol_compat_ioctl NULL
|
|
#endif
|
|
|
|
static unsigned int
|
|
zvol_check_events(struct gendisk *disk, unsigned int clearing)
|
|
{
|
|
unsigned int mask = 0;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
|
|
zvol_state_t *zv = disk->private_data;
|
|
if (zv != NULL) {
|
|
mutex_enter(&zv->zv_state_lock);
|
|
mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
|
|
zv->zv_changed = 0;
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (mask);
|
|
}
|
|
|
|
static int
|
|
zvol_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
|
|
zvol_state_t *zv = disk->private_data;
|
|
if (zv != NULL) {
|
|
mutex_enter(&zv->zv_state_lock);
|
|
set_capacity(zv->zv_zso->zvo_disk,
|
|
zv->zv_volsize >> SECTOR_BITS);
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
|
|
{
|
|
struct gendisk *disk = zv->zv_zso->zvo_disk;
|
|
|
|
#if defined(HAVE_REVALIDATE_DISK_SIZE)
|
|
revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
|
|
#elif defined(HAVE_REVALIDATE_DISK)
|
|
revalidate_disk(disk);
|
|
#else
|
|
zvol_revalidate_disk(disk);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zvol_os_clear_private(zvol_state_t *zv)
|
|
{
|
|
/*
|
|
* Cleared while holding zvol_state_lock as a writer
|
|
* which will prevent zvol_open() from opening it.
|
|
*/
|
|
zv->zv_zso->zvo_disk->private_data = NULL;
|
|
}
|
|
|
|
/*
|
|
* Provide a simple virtual geometry for legacy compatibility. For devices
|
|
* smaller than 1 MiB a small head and sector count is used to allow very
|
|
* tiny devices. For devices over 1 Mib a standard head and sector count
|
|
* is used to keep the cylinders count reasonable.
|
|
*/
|
|
static int
|
|
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
sector_t sectors;
|
|
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
|
|
sectors = get_capacity(zv->zv_zso->zvo_disk);
|
|
|
|
if (sectors > 2048) {
|
|
geo->heads = 16;
|
|
geo->sectors = 63;
|
|
} else {
|
|
geo->heads = 2;
|
|
geo->sectors = 4;
|
|
}
|
|
|
|
geo->start = 0;
|
|
geo->cylinders = sectors / (geo->heads * geo->sectors);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Why have two separate block_device_operations structs?
|
|
*
|
|
* Normally we'd just have one, and assign 'submit_bio' as needed. However,
|
|
* it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
|
|
* can't just change submit_bio dynamically at runtime. So just create two
|
|
* separate structs to get around this.
|
|
*/
|
|
static const struct block_device_operations zvol_ops_blk_mq = {
|
|
.open = zvol_open,
|
|
.release = zvol_release,
|
|
.ioctl = zvol_ioctl,
|
|
.compat_ioctl = zvol_compat_ioctl,
|
|
.check_events = zvol_check_events,
|
|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
#endif
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static const struct block_device_operations zvol_ops = {
|
|
.open = zvol_open,
|
|
.release = zvol_release,
|
|
.ioctl = zvol_ioctl,
|
|
.compat_ioctl = zvol_compat_ioctl,
|
|
.check_events = zvol_check_events,
|
|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
#endif
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
|
|
.submit_bio = zvol_submit_bio,
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Since 6.9, Linux has been removing queue limit setters in favour of an
|
|
* initial queue_limits struct applied when the device is open. Since 6.11,
|
|
* queue_limits is being extended to allow more things to be applied when the
|
|
* device is open. Setters are also being removed for this.
|
|
*
|
|
* For OpenZFS, this means that depending on kernel version, some options may
|
|
* be set up before the device is open, and some applied to an open device
|
|
* (queue) after the fact.
|
|
*
|
|
* We manage this complexity by having our own limits struct,
|
|
* zvol_queue_limits_t, in which we carry any queue config that we're
|
|
* interested in setting. This structure is the same on all kernels.
|
|
*
|
|
* These limits are then applied to the queue at device open time by the most
|
|
* appropriate method for the kernel.
|
|
*
|
|
* zvol_queue_limits_convert() is used on 6.9+ (where the two-arg form of
|
|
* blk_alloc_disk() exists). This converts our limits struct to a proper Linux
|
|
* struct queue_limits, and passes it in. Any fields added in later kernels are
|
|
* (obviously) not set up here.
|
|
*
|
|
* zvol_queue_limits_apply() is called on all kernel versions after the queue
|
|
* is created, and applies any remaining config. Before 6.9 that will be
|
|
* everything, via setter methods. After 6.9 that will be whatever couldn't be
|
|
* put into struct queue_limits. (This implies that zvol_queue_limits_apply()
|
|
* will always be a no-op on the latest kernel we support).
|
|
*/
|
|
typedef struct zvol_queue_limits {
|
|
unsigned int zql_max_hw_sectors;
|
|
unsigned short zql_max_segments;
|
|
unsigned int zql_max_segment_size;
|
|
unsigned int zql_io_opt;
|
|
unsigned int zql_physical_block_size;
|
|
unsigned int zql_max_discard_sectors;
|
|
unsigned int zql_discard_granularity;
|
|
} zvol_queue_limits_t;
|
|
|
|
static void
|
|
zvol_queue_limits_init(zvol_queue_limits_t *limits, zvol_state_t *zv,
|
|
boolean_t use_blk_mq)
|
|
{
|
|
limits->zql_max_hw_sectors = (DMU_MAX_ACCESS / 4) >> 9;
|
|
|
|
if (use_blk_mq) {
|
|
/*
|
|
* IO requests can be really big (1MB). When an IO request
|
|
* comes in, it is passed off to zvol_read() or zvol_write()
|
|
* in a new thread, where it is chunked up into 'volblocksize'
|
|
* sized pieces and processed. So for example, if the request
|
|
* is a 1MB write and your volblocksize is 128k, one zvol_write
|
|
* thread will take that request and sequentially do ten 128k
|
|
* IOs. This is due to the fact that the thread needs to lock
|
|
* each volblocksize sized block. So you might be wondering:
|
|
* "instead of passing the whole 1MB request to one thread,
|
|
* why not pass ten individual 128k chunks to ten threads and
|
|
* process the whole write in parallel?" The short answer is
|
|
* that there's a sweet spot number of chunks that balances
|
|
* the greater parallelism with the added overhead of more
|
|
* threads. The sweet spot can be different depending on if you
|
|
* have a read or write heavy workload. Writes typically want
|
|
* high chunk counts while reads typically want lower ones. On
|
|
* a test pool with 6 NVMe drives in a 3x 2-disk mirror
|
|
* configuration, with volblocksize=8k, the sweet spot for good
|
|
* sequential reads and writes was at 8 chunks.
|
|
*/
|
|
|
|
/*
|
|
* Below we tell the kernel how big we want our requests
|
|
* to be. You would think that blk_queue_io_opt() would be
|
|
* used to do this since it is used to "set optimal request
|
|
* size for the queue", but that doesn't seem to do
|
|
* anything - the kernel still gives you huge requests
|
|
* with tons of little PAGE_SIZE segments contained within it.
|
|
*
|
|
* Knowing that the kernel will just give you PAGE_SIZE segments
|
|
* no matter what, you can say "ok, I want PAGE_SIZE byte
|
|
* segments, and I want 'N' of them per request", where N is
|
|
* the correct number of segments for the volblocksize and
|
|
* number of chunks you want.
|
|
*/
|
|
#ifdef HAVE_BLK_MQ
|
|
if (zvol_blk_mq_blocks_per_thread != 0) {
|
|
unsigned int chunks;
|
|
chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
|
|
|
|
limits->zql_max_segment_size = PAGE_SIZE;
|
|
limits->zql_max_segments =
|
|
(zv->zv_volblocksize * chunks) / PAGE_SIZE;
|
|
} else {
|
|
/*
|
|
* Special case: zvol_blk_mq_blocks_per_thread = 0
|
|
* Max everything out.
|
|
*/
|
|
limits->zql_max_segments = UINT16_MAX;
|
|
limits->zql_max_segment_size = UINT_MAX;
|
|
}
|
|
} else {
|
|
#endif
|
|
limits->zql_max_segments = UINT16_MAX;
|
|
limits->zql_max_segment_size = UINT_MAX;
|
|
}
|
|
|
|
limits->zql_io_opt = zv->zv_volblocksize;
|
|
|
|
limits->zql_physical_block_size = zv->zv_volblocksize;
|
|
limits->zql_max_discard_sectors =
|
|
(zvol_max_discard_blocks * zv->zv_volblocksize) >> 9;
|
|
limits->zql_discard_granularity = zv->zv_volblocksize;
|
|
}
|
|
|
|
#ifdef HAVE_BLK_ALLOC_DISK_2ARG
|
|
static void
|
|
zvol_queue_limits_convert(zvol_queue_limits_t *limits,
|
|
struct queue_limits *qlimits)
|
|
{
|
|
memset(qlimits, 0, sizeof (struct queue_limits));
|
|
qlimits->max_hw_sectors = limits->zql_max_hw_sectors;
|
|
qlimits->max_segments = limits->zql_max_segments;
|
|
qlimits->max_segment_size = limits->zql_max_segment_size;
|
|
qlimits->io_opt = limits->zql_io_opt;
|
|
qlimits->physical_block_size = limits->zql_physical_block_size;
|
|
qlimits->max_discard_sectors = limits->zql_max_discard_sectors;
|
|
qlimits->max_hw_discard_sectors = limits->zql_max_discard_sectors;
|
|
qlimits->discard_granularity = limits->zql_discard_granularity;
|
|
#ifdef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
|
|
qlimits->features =
|
|
BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_IO_STAT;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
zvol_queue_limits_apply(zvol_queue_limits_t *limits,
|
|
struct request_queue *queue)
|
|
{
|
|
#ifndef HAVE_BLK_ALLOC_DISK_2ARG
|
|
blk_queue_max_hw_sectors(queue, limits->zql_max_hw_sectors);
|
|
blk_queue_max_segments(queue, limits->zql_max_segments);
|
|
blk_queue_max_segment_size(queue, limits->zql_max_segment_size);
|
|
blk_queue_io_opt(queue, limits->zql_io_opt);
|
|
blk_queue_physical_block_size(queue, limits->zql_physical_block_size);
|
|
blk_queue_max_discard_sectors(queue, limits->zql_max_discard_sectors);
|
|
blk_queue_discard_granularity(queue, limits->zql_discard_granularity);
|
|
#endif
|
|
#ifndef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
|
|
blk_queue_set_write_cache(queue, B_TRUE);
|
|
blk_queue_flag_set(QUEUE_FLAG_IO_STAT, queue);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
zvol_alloc_non_blk_mq(struct zvol_state_os *zso, zvol_queue_limits_t *limits)
|
|
{
|
|
#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
|
|
#if defined(HAVE_BLK_ALLOC_DISK)
|
|
zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
|
|
if (zso->zvo_disk == NULL)
|
|
return (1);
|
|
|
|
zso->zvo_disk->minors = ZVOL_MINORS;
|
|
zso->zvo_queue = zso->zvo_disk->queue;
|
|
#elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
|
|
struct queue_limits qlimits;
|
|
zvol_queue_limits_convert(limits, &qlimits);
|
|
struct gendisk *disk = blk_alloc_disk(&qlimits, NUMA_NO_NODE);
|
|
if (IS_ERR(disk)) {
|
|
zso->zvo_disk = NULL;
|
|
return (1);
|
|
}
|
|
|
|
zso->zvo_disk = disk;
|
|
zso->zvo_disk->minors = ZVOL_MINORS;
|
|
zso->zvo_queue = zso->zvo_disk->queue;
|
|
|
|
#else
|
|
zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
|
|
if (zso->zvo_queue == NULL)
|
|
return (1);
|
|
|
|
zso->zvo_disk = alloc_disk(ZVOL_MINORS);
|
|
if (zso->zvo_disk == NULL) {
|
|
blk_cleanup_queue(zso->zvo_queue);
|
|
return (1);
|
|
}
|
|
|
|
zso->zvo_disk->queue = zso->zvo_queue;
|
|
#endif /* HAVE_BLK_ALLOC_DISK */
|
|
#else
|
|
zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
|
|
if (zso->zvo_queue == NULL)
|
|
return (1);
|
|
|
|
zso->zvo_disk = alloc_disk(ZVOL_MINORS);
|
|
if (zso->zvo_disk == NULL) {
|
|
blk_cleanup_queue(zso->zvo_queue);
|
|
return (1);
|
|
}
|
|
|
|
zso->zvo_disk->queue = zso->zvo_queue;
|
|
#endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
|
|
|
|
zvol_queue_limits_apply(limits, zso->zvo_queue);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
static int
|
|
zvol_alloc_blk_mq(zvol_state_t *zv, zvol_queue_limits_t *limits)
|
|
{
|
|
#ifdef HAVE_BLK_MQ
|
|
struct zvol_state_os *zso = zv->zv_zso;
|
|
|
|
/* Allocate our blk-mq tag_set */
|
|
if (zvol_blk_mq_alloc_tag_set(zv) != 0)
|
|
return (1);
|
|
|
|
#if defined(HAVE_BLK_ALLOC_DISK)
|
|
zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
|
|
if (zso->zvo_disk == NULL) {
|
|
blk_mq_free_tag_set(&zso->tag_set);
|
|
return (1);
|
|
}
|
|
zso->zvo_queue = zso->zvo_disk->queue;
|
|
zso->zvo_disk->minors = ZVOL_MINORS;
|
|
#elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
|
|
struct queue_limits qlimits;
|
|
zvol_queue_limits_convert(limits, &qlimits);
|
|
struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, &qlimits, zv);
|
|
if (IS_ERR(disk)) {
|
|
zso->zvo_disk = NULL;
|
|
blk_mq_free_tag_set(&zso->tag_set);
|
|
return (1);
|
|
}
|
|
|
|
zso->zvo_disk = disk;
|
|
zso->zvo_queue = zso->zvo_disk->queue;
|
|
zso->zvo_disk->minors = ZVOL_MINORS;
|
|
#else
|
|
zso->zvo_disk = alloc_disk(ZVOL_MINORS);
|
|
if (zso->zvo_disk == NULL) {
|
|
blk_cleanup_queue(zso->zvo_queue);
|
|
blk_mq_free_tag_set(&zso->tag_set);
|
|
return (1);
|
|
}
|
|
/* Allocate queue */
|
|
zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
|
|
if (IS_ERR(zso->zvo_queue)) {
|
|
blk_mq_free_tag_set(&zso->tag_set);
|
|
return (1);
|
|
}
|
|
|
|
/* Our queue is now created, assign it to our disk */
|
|
zso->zvo_disk->queue = zso->zvo_queue;
|
|
#endif
|
|
|
|
zvol_queue_limits_apply(limits, zso->zvo_queue);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for a new zvol_state_t and setup the required
|
|
* request queue and generic disk structures for the block device.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_alloc(dev_t dev, const char *name, uint64_t volblocksize)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct zvol_state_os *zso;
|
|
uint64_t volmode;
|
|
int ret;
|
|
|
|
if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
|
|
return (NULL);
|
|
|
|
if (volmode == ZFS_VOLMODE_DEFAULT)
|
|
volmode = zvol_volmode;
|
|
|
|
if (volmode == ZFS_VOLMODE_NONE)
|
|
return (NULL);
|
|
|
|
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
|
|
zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
|
|
zv->zv_zso = zso;
|
|
zv->zv_volmode = volmode;
|
|
zv->zv_volblocksize = volblocksize;
|
|
|
|
list_link_init(&zv->zv_next);
|
|
mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&zv->zv_removing_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
#ifdef HAVE_BLK_MQ
|
|
zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
|
|
#endif
|
|
|
|
zvol_queue_limits_t limits;
|
|
zvol_queue_limits_init(&limits, zv, zv->zv_zso->use_blk_mq);
|
|
|
|
/*
|
|
* The block layer has 3 interfaces for getting BIOs:
|
|
*
|
|
* 1. blk-mq request queues (new)
|
|
* 2. submit_bio() (oldest)
|
|
* 3. regular request queues (old).
|
|
*
|
|
* Each of those interfaces has two permutations:
|
|
*
|
|
* a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
|
|
* both the disk and its queue (5.14 kernel or newer)
|
|
*
|
|
* b) We don't have blk_*alloc_disk(), and have to allocate the
|
|
* disk and the queue separately. (5.13 kernel or older)
|
|
*/
|
|
if (zv->zv_zso->use_blk_mq) {
|
|
ret = zvol_alloc_blk_mq(zv, &limits);
|
|
zso->zvo_disk->fops = &zvol_ops_blk_mq;
|
|
} else {
|
|
ret = zvol_alloc_non_blk_mq(zso, &limits);
|
|
zso->zvo_disk->fops = &zvol_ops;
|
|
}
|
|
if (ret != 0)
|
|
goto out_kmem;
|
|
|
|
/* Limit read-ahead to a single page to prevent over-prefetching. */
|
|
blk_queue_set_read_ahead(zso->zvo_queue, 1);
|
|
|
|
if (!zv->zv_zso->use_blk_mq) {
|
|
/* Disable write merging in favor of the ZIO pipeline. */
|
|
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
|
|
}
|
|
|
|
zso->zvo_queue->queuedata = zv;
|
|
zso->zvo_dev = dev;
|
|
zv->zv_open_count = 0;
|
|
strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
|
|
|
|
zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
|
|
rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
zso->zvo_disk->major = zvol_major;
|
|
zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
|
|
|
|
/*
|
|
* Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
|
|
* This is accomplished by limiting the number of minors for the
|
|
* device to one and explicitly disabling partition scanning.
|
|
*/
|
|
if (volmode == ZFS_VOLMODE_DEV) {
|
|
zso->zvo_disk->minors = 1;
|
|
zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
|
|
zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
|
|
}
|
|
|
|
zso->zvo_disk->first_minor = (dev & MINORMASK);
|
|
zso->zvo_disk->private_data = zv;
|
|
snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
|
|
ZVOL_DEV_NAME, (dev & MINORMASK));
|
|
|
|
return (zv);
|
|
|
|
out_kmem:
|
|
kmem_free(zso, sizeof (struct zvol_state_os));
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Cleanup then free a zvol_state_t which was created by zvol_alloc().
|
|
* At this time, the structure is not opened by anyone, is taken off
|
|
* the zvol_state_list, and has its private data set to NULL.
|
|
* The zvol_state_lock is dropped.
|
|
*
|
|
* This function may take many milliseconds to complete (e.g. we've seen
|
|
* it take over 256ms), due to the calls to "blk_cleanup_queue" and
|
|
* "del_gendisk". Thus, consumers need to be careful to account for this
|
|
* latency when calling this function.
|
|
*/
|
|
void
|
|
zvol_os_free(zvol_state_t *zv)
|
|
{
|
|
|
|
ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
|
|
ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT0(zv->zv_open_count);
|
|
ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
|
|
|
|
rw_destroy(&zv->zv_suspend_lock);
|
|
zfs_rangelock_fini(&zv->zv_rangelock);
|
|
|
|
del_gendisk(zv->zv_zso->zvo_disk);
|
|
#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
|
|
(defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
|
|
#if defined(HAVE_BLK_CLEANUP_DISK)
|
|
blk_cleanup_disk(zv->zv_zso->zvo_disk);
|
|
#else
|
|
put_disk(zv->zv_zso->zvo_disk);
|
|
#endif
|
|
#else
|
|
blk_cleanup_queue(zv->zv_zso->zvo_queue);
|
|
put_disk(zv->zv_zso->zvo_disk);
|
|
#endif
|
|
|
|
#ifdef HAVE_BLK_MQ
|
|
if (zv->zv_zso->use_blk_mq)
|
|
blk_mq_free_tag_set(&zv->zv_zso->tag_set);
|
|
#endif
|
|
|
|
ida_simple_remove(&zvol_ida,
|
|
MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
|
|
|
|
cv_destroy(&zv->zv_removing_cv);
|
|
mutex_destroy(&zv->zv_state_lock);
|
|
dataset_kstats_destroy(&zv->zv_kstat);
|
|
|
|
kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
}
|
|
|
|
void
|
|
zvol_wait_close(zvol_state_t *zv)
|
|
{
|
|
}
|
|
|
|
struct add_disk_work {
|
|
struct delayed_work work;
|
|
struct gendisk *disk;
|
|
int error;
|
|
};
|
|
|
|
static int
|
|
__zvol_os_add_disk(struct gendisk *disk)
|
|
{
|
|
int error = 0;
|
|
#ifdef HAVE_ADD_DISK_RET
|
|
error = add_disk(disk);
|
|
#else
|
|
add_disk(disk);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
|
|
static void
|
|
zvol_os_add_disk_work(struct work_struct *work)
|
|
{
|
|
struct add_disk_work *add_disk_work;
|
|
add_disk_work = container_of(work, struct add_disk_work, work.work);
|
|
add_disk_work->error = __zvol_os_add_disk(add_disk_work->disk);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* SPECIAL CASE:
|
|
*
|
|
* This function basically calls add_disk() from a workqueue. You may be
|
|
* thinking: why not just call add_disk() directly?
|
|
*
|
|
* When you call add_disk(), the zvol appears to the world. When this happens,
|
|
* the kernel calls disk_scan_partitions() on the zvol, which behaves
|
|
* differently on the 6.9+ kernels:
|
|
*
|
|
* - 6.8 and older kernels -
|
|
* disk_scan_partitions()
|
|
* handle = bdev_open_by_dev(
|
|
* zvol_open()
|
|
* bdev_release(handle);
|
|
* zvol_release()
|
|
*
|
|
*
|
|
* - 6.9+ kernels -
|
|
* disk_scan_partitions()
|
|
* file = bdev_file_open_by_dev()
|
|
* zvol_open()
|
|
* fput(file)
|
|
* < wait for return to userspace >
|
|
* zvol_release()
|
|
*
|
|
* The difference is that the bdev_release() from the 6.8 kernel is synchronous
|
|
* while the fput() from the 6.9 kernel is async. Or more specifically it's
|
|
* async that has to wait until we return to userspace (since it adds the fput
|
|
* into the caller's work queue with the TWA_RESUME flag set). This is not the
|
|
* behavior we want, since we want do things like create+destroy a zvol within
|
|
* a single ZFS_IOC_CREATE ioctl, and the "create" part needs to release the
|
|
* reference to the zvol while we're in the IOCTL, which can't wait until we
|
|
* return to userspace.
|
|
*
|
|
* We can get around this since fput() has a special codepath for when it's
|
|
* running in a kernel thread or interrupt. In those cases, it just puts the
|
|
* fput into the system workqueue, which we can force to run with
|
|
* __flush_workqueue(). That is why we call add_disk() from a workqueue - so it
|
|
* run from a kernel thread and "tricks" the fput() codepaths.
|
|
*
|
|
* Note that __flush_workqueue() is slowly getting deprecated. This may be ok
|
|
* though, since our IOCTL will spin on EBUSY waiting for the zvol release (via
|
|
* fput) to happen, which it eventually, naturally, will from the system_wq
|
|
* without us explicitly calling __flush_workqueue().
|
|
*/
|
|
static int
|
|
zvol_os_add_disk(struct gendisk *disk)
|
|
{
|
|
#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH) /* 6.9+ kernel */
|
|
struct add_disk_work add_disk_work;
|
|
|
|
INIT_DELAYED_WORK(&add_disk_work.work, zvol_os_add_disk_work);
|
|
add_disk_work.disk = disk;
|
|
add_disk_work.error = 0;
|
|
|
|
/* Use *_delayed_work functions since they're not GPL'd */
|
|
schedule_delayed_work(&add_disk_work.work, 0);
|
|
flush_delayed_work(&add_disk_work.work);
|
|
|
|
__flush_workqueue(system_wq);
|
|
return (add_disk_work.error);
|
|
#else /* <= 6.8 kernel */
|
|
return (__zvol_os_add_disk(disk));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Create a block device minor node and setup the linkage between it
|
|
* and the specified volume. Once this function returns the block
|
|
* device is live and ready for use.
|
|
*/
|
|
int
|
|
zvol_os_create_minor(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
objset_t *os;
|
|
dmu_object_info_t *doi;
|
|
uint64_t volsize;
|
|
uint64_t len;
|
|
unsigned minor = 0;
|
|
int error = 0;
|
|
int idx;
|
|
uint64_t hash = zvol_name_hash(name);
|
|
uint64_t volthreading;
|
|
bool replayed_zil = B_FALSE;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return (0);
|
|
|
|
idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
|
|
if (idx < 0)
|
|
return (SET_ERROR(-idx));
|
|
minor = idx << ZVOL_MINOR_BITS;
|
|
if (MINOR(minor) != minor) {
|
|
/* too many partitions can cause an overflow */
|
|
zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
|
|
name, minor, MINOR(minor));
|
|
ida_simple_remove(&zvol_ida, idx);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
zv = zvol_find_by_name_hash(name, hash, RW_NONE);
|
|
if (zv) {
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
mutex_exit(&zv->zv_state_lock);
|
|
ida_simple_remove(&zvol_ida, idx);
|
|
return (SET_ERROR(EEXIST));
|
|
}
|
|
|
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
|
|
|
error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
|
|
if (error)
|
|
goto out_doi;
|
|
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
zv = zvol_alloc(MKDEV(zvol_major, minor), name,
|
|
doi->doi_data_block_size);
|
|
if (zv == NULL) {
|
|
error = SET_ERROR(EAGAIN);
|
|
goto out_dmu_objset_disown;
|
|
}
|
|
zv->zv_hash = hash;
|
|
|
|
if (dmu_objset_is_snapshot(os))
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_objset = os;
|
|
|
|
/* Default */
|
|
zv->zv_threading = B_TRUE;
|
|
if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
|
|
== 0)
|
|
zv->zv_threading = volthreading;
|
|
|
|
set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
|
|
|
|
#ifdef QUEUE_FLAG_DISCARD
|
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
|
|
#endif
|
|
#ifdef QUEUE_FLAG_NONROT
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
|
|
#endif
|
|
#ifdef QUEUE_FLAG_ADD_RANDOM
|
|
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
|
|
#endif
|
|
/* This flag was introduced in kernel version 4.12. */
|
|
#ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
|
|
blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
|
|
#endif
|
|
|
|
ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
|
|
error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
ASSERT3P(zv->zv_zilog, ==, NULL);
|
|
zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
|
|
if (spa_writeable(dmu_objset_spa(os))) {
|
|
if (zil_replay_disable)
|
|
replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
|
|
else
|
|
replayed_zil = zil_replay(os, zv, zvol_replay_vector);
|
|
}
|
|
if (replayed_zil)
|
|
zil_close(zv->zv_zilog);
|
|
zv->zv_zilog = NULL;
|
|
|
|
/*
|
|
* When udev detects the addition of the device it will immediately
|
|
* invoke blkid(8) to determine the type of content on the device.
|
|
* Prefetching the blocks commonly scanned by blkid(8) will speed
|
|
* up this process.
|
|
*/
|
|
len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
|
|
if (len > 0) {
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
|
|
zv->zv_objset = NULL;
|
|
out_dmu_objset_disown:
|
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
|
out_doi:
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
/*
|
|
* Keep in mind that once add_disk() is called, the zvol is
|
|
* announced to the world, and zvol_open()/zvol_release() can
|
|
* be called at any time. Incidentally, add_disk() itself calls
|
|
* zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
|
|
* directly as well.
|
|
*/
|
|
if (error == 0) {
|
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
|
zvol_insert(zv);
|
|
rw_exit(&zvol_state_lock);
|
|
error = zvol_os_add_disk(zv->zv_zso->zvo_disk);
|
|
} else {
|
|
ida_simple_remove(&zvol_ida, idx);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
|
|
{
|
|
int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
|
|
|
|
ASSERT(RW_LOCK_HELD(&zvol_state_lock));
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
|
|
|
|
/* move to new hashtable entry */
|
|
zv->zv_hash = zvol_name_hash(newname);
|
|
hlist_del(&zv->zv_hlink);
|
|
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
|
|
|
|
/*
|
|
* The block device's read-only state is briefly changed causing
|
|
* a KOBJ_CHANGE uevent to be issued. This ensures udev detects
|
|
* the name change and fixes the symlinks. This does not change
|
|
* ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
|
|
* changes. This would normally be done using kobject_uevent() but
|
|
* that is a GPL-only symbol which is why we need this workaround.
|
|
*/
|
|
set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
|
|
set_disk_ro(zv->zv_zso->zvo_disk, readonly);
|
|
|
|
dataset_kstats_rename(&zv->zv_kstat, newname);
|
|
}
|
|
|
|
void
|
|
zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
|
|
{
|
|
|
|
set_disk_ro(zv->zv_zso->zvo_disk, flags);
|
|
}
|
|
|
|
void
|
|
zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
|
|
{
|
|
|
|
set_capacity(zv->zv_zso->zvo_disk, capacity);
|
|
}
|
|
|
|
int
|
|
zvol_init(void)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* zvol_threads is the module param the user passes in.
|
|
*
|
|
* zvol_actual_threads is what we use internally, since the user can
|
|
* pass zvol_thread = 0 to mean "use all the CPUs" (the default).
|
|
*/
|
|
static unsigned int zvol_actual_threads;
|
|
|
|
if (zvol_threads == 0) {
|
|
/*
|
|
* See dde9380a1 for why 32 was chosen here. This should
|
|
* probably be refined to be some multiple of the number
|
|
* of CPUs.
|
|
*/
|
|
zvol_actual_threads = MAX(num_online_cpus(), 32);
|
|
} else {
|
|
zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
|
|
}
|
|
|
|
/*
|
|
* Use atleast 32 zvol_threads but for many core system,
|
|
* prefer 6 threads per taskq, but no more taskqs
|
|
* than threads in them on large systems.
|
|
*
|
|
* taskq total
|
|
* cpus taskqs threads threads
|
|
* ------- ------- ------- -------
|
|
* 1 1 32 32
|
|
* 2 1 32 32
|
|
* 4 1 32 32
|
|
* 8 2 16 32
|
|
* 16 3 11 33
|
|
* 32 5 7 35
|
|
* 64 8 8 64
|
|
* 128 11 12 132
|
|
* 256 16 16 256
|
|
*/
|
|
zv_taskq_t *ztqs = &zvol_taskqs;
|
|
uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs);
|
|
if (num_tqs == 0) {
|
|
num_tqs = 1 + num_online_cpus() / 6;
|
|
while (num_tqs * num_tqs > zvol_actual_threads)
|
|
num_tqs--;
|
|
}
|
|
uint_t per_tq_thread = zvol_actual_threads / num_tqs;
|
|
if (per_tq_thread * num_tqs < zvol_actual_threads)
|
|
per_tq_thread++;
|
|
ztqs->tqs_cnt = num_tqs;
|
|
ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
|
|
error = register_blkdev(zvol_major, ZVOL_DRIVER);
|
|
if (error) {
|
|
kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *));
|
|
ztqs->tqs_taskq = NULL;
|
|
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef HAVE_BLK_MQ
|
|
if (zvol_blk_mq_queue_depth == 0) {
|
|
zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
|
|
} else {
|
|
zvol_actual_blk_mq_queue_depth =
|
|
MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
|
|
}
|
|
|
|
if (zvol_blk_mq_threads == 0) {
|
|
zvol_blk_mq_actual_threads = num_online_cpus();
|
|
} else {
|
|
zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
|
|
1024);
|
|
}
|
|
#endif
|
|
for (uint_t i = 0; i < num_tqs; i++) {
|
|
char name[32];
|
|
(void) snprintf(name, sizeof (name), "%s_tq-%u",
|
|
ZVOL_DRIVER, i);
|
|
ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
|
|
maxclsyspri, per_tq_thread, INT_MAX,
|
|
TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
|
|
if (ztqs->tqs_taskq[i] == NULL) {
|
|
for (int j = i - 1; j >= 0; j--)
|
|
taskq_destroy(ztqs->tqs_taskq[j]);
|
|
unregister_blkdev(zvol_major, ZVOL_DRIVER);
|
|
kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
|
|
sizeof (taskq_t *));
|
|
ztqs->tqs_taskq = NULL;
|
|
return (-ENOMEM);
|
|
}
|
|
}
|
|
|
|
zvol_init_impl();
|
|
ida_init(&zvol_ida);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zvol_fini(void)
|
|
{
|
|
zv_taskq_t *ztqs = &zvol_taskqs;
|
|
zvol_fini_impl();
|
|
unregister_blkdev(zvol_major, ZVOL_DRIVER);
|
|
|
|
if (ztqs->tqs_taskq == NULL) {
|
|
ASSERT3U(ztqs->tqs_cnt, ==, 0);
|
|
} else {
|
|
for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
|
|
ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
|
|
taskq_destroy(ztqs->tqs_taskq[i]);
|
|
}
|
|
kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
|
|
sizeof (taskq_t *));
|
|
ztqs->tqs_taskq = NULL;
|
|
}
|
|
|
|
ida_destroy(&zvol_ida);
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
module_param(zvol_inhibit_dev, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
|
|
|
|
module_param(zvol_major, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
|
|
|
|
module_param(zvol_threads, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
|
|
"to 0 to use all active CPUs");
|
|
|
|
module_param(zvol_request_sync, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
|
|
|
|
module_param(zvol_max_discard_blocks, ulong, 0444);
|
|
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
|
|
|
|
module_param(zvol_num_taskqs, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs");
|
|
|
|
module_param(zvol_prefetch_bytes, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
|
|
|
|
module_param(zvol_volmode, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
|
|
|
|
#ifdef HAVE_BLK_MQ
|
|
module_param(zvol_blk_mq_queue_depth, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
|
|
|
|
module_param(zvol_use_blk_mq, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
|
|
|
|
module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
|
|
"Process volblocksize blocks per thread");
|
|
#endif
|
|
|
|
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
|
|
module_param(zvol_open_timeout_ms, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
|
|
#endif
|
|
|
|
/* END CSTYLED */
|