mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-17 10:01:01 +03:00
1d3ba0bf01
The commit replaces all findings of the link: http://www.opensolaris.org/os/licensing with this one: https://opensource.org/licenses/CDDL-1.0 Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Closes #13619
570 lines
16 KiB
C
570 lines
16 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_zfetch.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/wmsum.h>
|
|
|
|
/*
|
|
* This tunable disables predictive prefetch. Note that it leaves "prescient"
|
|
* prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
|
|
* prescient prefetch never issues i/os that end up not being needed,
|
|
* so it can't hurt performance.
|
|
*/
|
|
|
|
static int zfs_prefetch_disable = B_FALSE;
|
|
|
|
/* max # of streams per zfetch */
|
|
static unsigned int zfetch_max_streams = 8;
|
|
/* min time before stream reclaim */
|
|
static unsigned int zfetch_min_sec_reap = 1;
|
|
/* max time before stream delete */
|
|
static unsigned int zfetch_max_sec_reap = 2;
|
|
/* min bytes to prefetch per stream (default 4MB) */
|
|
static unsigned int zfetch_min_distance = 4 * 1024 * 1024;
|
|
/* max bytes to prefetch per stream (default 64MB) */
|
|
unsigned int zfetch_max_distance = 64 * 1024 * 1024;
|
|
/* max bytes to prefetch indirects for per stream (default 64MB) */
|
|
unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
|
|
/* max number of bytes in an array_read in which we allow prefetching (1MB) */
|
|
unsigned long zfetch_array_rd_sz = 1024 * 1024;
|
|
|
|
typedef struct zfetch_stats {
|
|
kstat_named_t zfetchstat_hits;
|
|
kstat_named_t zfetchstat_misses;
|
|
kstat_named_t zfetchstat_max_streams;
|
|
kstat_named_t zfetchstat_io_issued;
|
|
} zfetch_stats_t;
|
|
|
|
static zfetch_stats_t zfetch_stats = {
|
|
{ "hits", KSTAT_DATA_UINT64 },
|
|
{ "misses", KSTAT_DATA_UINT64 },
|
|
{ "max_streams", KSTAT_DATA_UINT64 },
|
|
{ "io_issued", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
struct {
|
|
wmsum_t zfetchstat_hits;
|
|
wmsum_t zfetchstat_misses;
|
|
wmsum_t zfetchstat_max_streams;
|
|
wmsum_t zfetchstat_io_issued;
|
|
} zfetch_sums;
|
|
|
|
#define ZFETCHSTAT_BUMP(stat) \
|
|
wmsum_add(&zfetch_sums.stat, 1)
|
|
#define ZFETCHSTAT_ADD(stat, val) \
|
|
wmsum_add(&zfetch_sums.stat, val)
|
|
|
|
|
|
static kstat_t *zfetch_ksp;
|
|
|
|
static int
|
|
zfetch_kstats_update(kstat_t *ksp, int rw)
|
|
{
|
|
zfetch_stats_t *zs = ksp->ks_data;
|
|
|
|
if (rw == KSTAT_WRITE)
|
|
return (EACCES);
|
|
zs->zfetchstat_hits.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_hits);
|
|
zs->zfetchstat_misses.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_misses);
|
|
zs->zfetchstat_max_streams.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_max_streams);
|
|
zs->zfetchstat_io_issued.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_io_issued);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zfetch_init(void)
|
|
{
|
|
wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
|
|
|
|
zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
|
|
if (zfetch_ksp != NULL) {
|
|
zfetch_ksp->ks_data = &zfetch_stats;
|
|
zfetch_ksp->ks_update = zfetch_kstats_update;
|
|
kstat_install(zfetch_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
zfetch_fini(void)
|
|
{
|
|
if (zfetch_ksp != NULL) {
|
|
kstat_delete(zfetch_ksp);
|
|
zfetch_ksp = NULL;
|
|
}
|
|
|
|
wmsum_fini(&zfetch_sums.zfetchstat_hits);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_misses);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
|
|
}
|
|
|
|
/*
|
|
* This takes a pointer to a zfetch structure and a dnode. It performs the
|
|
* necessary setup for the zfetch structure, grokking data from the
|
|
* associated dnode.
|
|
*/
|
|
void
|
|
dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
|
|
{
|
|
if (zf == NULL)
|
|
return;
|
|
zf->zf_dnode = dno;
|
|
zf->zf_numstreams = 0;
|
|
|
|
list_create(&zf->zf_stream, sizeof (zstream_t),
|
|
offsetof(zstream_t, zs_node));
|
|
|
|
mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_fini(zstream_t *zs)
|
|
{
|
|
ASSERT(!list_link_active(&zs->zs_node));
|
|
zfs_refcount_destroy(&zs->zs_callers);
|
|
zfs_refcount_destroy(&zs->zs_refs);
|
|
kmem_free(zs, sizeof (*zs));
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
list_remove(&zf->zf_stream, zs);
|
|
zf->zf_numstreams--;
|
|
membar_producer();
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
}
|
|
|
|
/*
|
|
* Clean-up state associated with a zfetch structure (e.g. destroy the
|
|
* streams). This doesn't free the zfetch_t itself, that's left to the caller.
|
|
*/
|
|
void
|
|
dmu_zfetch_fini(zfetch_t *zf)
|
|
{
|
|
zstream_t *zs;
|
|
|
|
mutex_enter(&zf->zf_lock);
|
|
while ((zs = list_head(&zf->zf_stream)) != NULL)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
mutex_exit(&zf->zf_lock);
|
|
list_destroy(&zf->zf_stream);
|
|
mutex_destroy(&zf->zf_lock);
|
|
|
|
zf->zf_dnode = NULL;
|
|
}
|
|
|
|
/*
|
|
* If there aren't too many active streams already, create one more.
|
|
* In process delete/reuse all streams without hits for zfetch_max_sec_reap.
|
|
* If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
|
|
* The "blkid" argument is the next block that we expect this stream to access.
|
|
*/
|
|
static void
|
|
dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
|
|
{
|
|
zstream_t *zs, *zs_next, *zs_old = NULL;
|
|
hrtime_t now = gethrtime(), t;
|
|
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
|
|
/*
|
|
* Delete too old streams, reusing the first found one.
|
|
*/
|
|
t = now - SEC2NSEC(zfetch_max_sec_reap);
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
|
|
zs_next = list_next(&zf->zf_stream, zs);
|
|
/*
|
|
* Skip if still active. 1 -- zf_stream reference.
|
|
*/
|
|
if (zfs_refcount_count(&zs->zs_refs) != 1)
|
|
continue;
|
|
if (zs->zs_atime > t)
|
|
continue;
|
|
if (zs_old)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
else
|
|
zs_old = zs;
|
|
}
|
|
if (zs_old) {
|
|
zs = zs_old;
|
|
goto reuse;
|
|
}
|
|
|
|
/*
|
|
* The maximum number of streams is normally zfetch_max_streams,
|
|
* but for small files we lower it such that it's at least possible
|
|
* for all the streams to be non-overlapping.
|
|
*/
|
|
uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
|
|
zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
|
|
zfetch_max_distance));
|
|
if (zf->zf_numstreams >= max_streams) {
|
|
t = now - SEC2NSEC(zfetch_min_sec_reap);
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
if (zfs_refcount_count(&zs->zs_refs) != 1)
|
|
continue;
|
|
if (zs->zs_atime > t)
|
|
continue;
|
|
if (zs_old == NULL || zs->zs_atime < zs_old->zs_atime)
|
|
zs_old = zs;
|
|
}
|
|
if (zs_old) {
|
|
zs = zs_old;
|
|
goto reuse;
|
|
}
|
|
ZFETCHSTAT_BUMP(zfetchstat_max_streams);
|
|
return;
|
|
}
|
|
|
|
zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
|
|
zs->zs_fetch = zf;
|
|
zfs_refcount_create(&zs->zs_callers);
|
|
zfs_refcount_create(&zs->zs_refs);
|
|
/* One reference for zf_stream. */
|
|
zfs_refcount_add(&zs->zs_refs, NULL);
|
|
zf->zf_numstreams++;
|
|
list_insert_head(&zf->zf_stream, zs);
|
|
|
|
reuse:
|
|
zs->zs_blkid = blkid;
|
|
zs->zs_pf_dist = 0;
|
|
zs->zs_pf_start = blkid;
|
|
zs->zs_pf_end = blkid;
|
|
zs->zs_ipf_dist = 0;
|
|
zs->zs_ipf_start = blkid;
|
|
zs->zs_ipf_end = blkid;
|
|
/* Allow immediate stream reuse until first hit. */
|
|
zs->zs_atime = now - SEC2NSEC(zfetch_min_sec_reap);
|
|
zs->zs_missed = B_FALSE;
|
|
zs->zs_more = B_FALSE;
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
|
|
{
|
|
zstream_t *zs = arg;
|
|
|
|
if (io_issued && level == 0 && blkid < zs->zs_blkid)
|
|
zs->zs_more = B_TRUE;
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
}
|
|
|
|
/*
|
|
* This is the predictive prefetch entry point. dmu_zfetch_prepare()
|
|
* associates dnode access specified with blkid and nblks arguments with
|
|
* prefetch stream, predicts further accesses based on that stats and returns
|
|
* the stream pointer on success. That pointer must later be passed to
|
|
* dmu_zfetch_run() to initiate the speculative prefetch for the stream and
|
|
* release it. dmu_zfetch() is a wrapper for simple cases when window between
|
|
* prediction and prefetch initiation is not needed.
|
|
* fetch_data argument specifies whether actual data blocks should be fetched:
|
|
* FALSE -- prefetch only indirect blocks for predicted data blocks;
|
|
* TRUE -- prefetch predicted data blocks plus following indirect blocks.
|
|
*/
|
|
zstream_t *
|
|
dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
|
|
boolean_t fetch_data, boolean_t have_lock)
|
|
{
|
|
zstream_t *zs;
|
|
spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
|
|
|
|
if (zfs_prefetch_disable)
|
|
return (NULL);
|
|
/*
|
|
* If we haven't yet loaded the indirect vdevs' mappings, we
|
|
* can only read from blocks that we carefully ensure are on
|
|
* concrete vdevs (or previously-loaded indirect vdevs). So we
|
|
* can't allow the predictive prefetcher to attempt reads of other
|
|
* blocks (e.g. of the MOS's dnode object).
|
|
*/
|
|
if (!spa_indirect_vdevs_loaded(spa))
|
|
return (NULL);
|
|
|
|
/*
|
|
* As a fast path for small (single-block) files, ignore access
|
|
* to the first block.
|
|
*/
|
|
if (!have_lock && blkid == 0)
|
|
return (NULL);
|
|
|
|
if (!have_lock)
|
|
rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
|
|
|
|
/*
|
|
* A fast path for small files for which no prefetch will
|
|
* happen.
|
|
*/
|
|
uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
|
|
if (maxblkid < 2) {
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (NULL);
|
|
}
|
|
mutex_enter(&zf->zf_lock);
|
|
|
|
/*
|
|
* Find matching prefetch stream. Depending on whether the accesses
|
|
* are block-aligned, first block of the new access may either follow
|
|
* the last block of the previous access, or be equal to it.
|
|
*/
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
if (blkid == zs->zs_blkid) {
|
|
break;
|
|
} else if (blkid + 1 == zs->zs_blkid) {
|
|
blkid++;
|
|
nblks--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the file is ending, remove the matching stream if found.
|
|
* If not found then it is too late to create a new one now.
|
|
*/
|
|
uint64_t end_of_access_blkid = blkid + nblks;
|
|
if (end_of_access_blkid >= maxblkid) {
|
|
if (zs != NULL)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (NULL);
|
|
}
|
|
|
|
/* Exit if we already prefetched this block before. */
|
|
if (nblks == 0) {
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (NULL);
|
|
}
|
|
|
|
if (zs == NULL) {
|
|
/*
|
|
* This access is not part of any existing stream. Create
|
|
* a new stream for it.
|
|
*/
|
|
dmu_zfetch_stream_create(zf, end_of_access_blkid);
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
ZFETCHSTAT_BUMP(zfetchstat_misses);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* This access was to a block that we issued a prefetch for on
|
|
* behalf of this stream. Calculate further prefetch distances.
|
|
*
|
|
* Start prefetch from the demand access size (nblks). Double the
|
|
* distance every access up to zfetch_min_distance. After that only
|
|
* if needed increase the distance by 1/8 up to zfetch_max_distance.
|
|
*/
|
|
unsigned int nbytes = nblks << zf->zf_dnode->dn_datablkshift;
|
|
unsigned int pf_nblks;
|
|
if (fetch_data) {
|
|
if (unlikely(zs->zs_pf_dist < nbytes))
|
|
zs->zs_pf_dist = nbytes;
|
|
else if (zs->zs_pf_dist < zfetch_min_distance)
|
|
zs->zs_pf_dist *= 2;
|
|
else if (zs->zs_more)
|
|
zs->zs_pf_dist += zs->zs_pf_dist / 8;
|
|
zs->zs_more = B_FALSE;
|
|
if (zs->zs_pf_dist > zfetch_max_distance)
|
|
zs->zs_pf_dist = zfetch_max_distance;
|
|
pf_nblks = zs->zs_pf_dist >> zf->zf_dnode->dn_datablkshift;
|
|
} else {
|
|
pf_nblks = 0;
|
|
}
|
|
if (zs->zs_pf_start < end_of_access_blkid)
|
|
zs->zs_pf_start = end_of_access_blkid;
|
|
if (zs->zs_pf_end < end_of_access_blkid + pf_nblks)
|
|
zs->zs_pf_end = end_of_access_blkid + pf_nblks;
|
|
|
|
/*
|
|
* Do the same for indirects, starting where we will stop reading
|
|
* data blocks (and the indirects that point to them).
|
|
*/
|
|
if (unlikely(zs->zs_ipf_dist < nbytes))
|
|
zs->zs_ipf_dist = nbytes;
|
|
else
|
|
zs->zs_ipf_dist *= 2;
|
|
if (zs->zs_ipf_dist > zfetch_max_idistance)
|
|
zs->zs_ipf_dist = zfetch_max_idistance;
|
|
pf_nblks = zs->zs_ipf_dist >> zf->zf_dnode->dn_datablkshift;
|
|
if (zs->zs_ipf_start < zs->zs_pf_end)
|
|
zs->zs_ipf_start = zs->zs_pf_end;
|
|
if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
|
|
zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
|
|
|
|
zs->zs_blkid = end_of_access_blkid;
|
|
/* Protect the stream from reclamation. */
|
|
zs->zs_atime = gethrtime();
|
|
zfs_refcount_add(&zs->zs_refs, NULL);
|
|
/* Count concurrent callers. */
|
|
zfs_refcount_add(&zs->zs_callers, NULL);
|
|
mutex_exit(&zf->zf_lock);
|
|
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
|
|
ZFETCHSTAT_BUMP(zfetchstat_hits);
|
|
return (zs);
|
|
}
|
|
|
|
void
|
|
dmu_zfetch_run(zstream_t *zs, boolean_t missed, boolean_t have_lock)
|
|
{
|
|
zfetch_t *zf = zs->zs_fetch;
|
|
int64_t pf_start, pf_end, ipf_start, ipf_end;
|
|
int epbs, issued;
|
|
|
|
if (missed)
|
|
zs->zs_missed = missed;
|
|
|
|
/*
|
|
* Postpone the prefetch if there are more concurrent callers.
|
|
* It happens when multiple requests are waiting for the same
|
|
* indirect block. The last one will run the prefetch for all.
|
|
*/
|
|
if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
|
|
/* Drop reference taken in dmu_zfetch_prepare(). */
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&zf->zf_lock);
|
|
if (zs->zs_missed) {
|
|
pf_start = zs->zs_pf_start;
|
|
pf_end = zs->zs_pf_start = zs->zs_pf_end;
|
|
} else {
|
|
pf_start = pf_end = 0;
|
|
}
|
|
ipf_start = zs->zs_ipf_start;
|
|
ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
|
|
mutex_exit(&zf->zf_lock);
|
|
ASSERT3S(pf_start, <=, pf_end);
|
|
ASSERT3S(ipf_start, <=, ipf_end);
|
|
|
|
epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
|
|
ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
|
|
ASSERT3S(ipf_start, <=, ipf_end);
|
|
issued = pf_end - pf_start + ipf_end - ipf_start;
|
|
if (issued > 1) {
|
|
/* More references on top of taken in dmu_zfetch_prepare(). */
|
|
for (int i = 0; i < issued - 1; i++)
|
|
zfs_refcount_add(&zs->zs_refs, NULL);
|
|
} else if (issued == 0) {
|
|
/* Some other thread has done our work, so drop the ref. */
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
return;
|
|
}
|
|
|
|
if (!have_lock)
|
|
rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
|
|
|
|
issued = 0;
|
|
for (int64_t blk = pf_start; blk < pf_end; blk++) {
|
|
issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
|
|
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
|
|
dmu_zfetch_done, zs);
|
|
}
|
|
for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
|
|
issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
|
|
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
|
|
dmu_zfetch_done, zs);
|
|
}
|
|
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
|
|
if (issued)
|
|
ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
|
|
}
|
|
|
|
void
|
|
dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
|
|
boolean_t missed, boolean_t have_lock)
|
|
{
|
|
zstream_t *zs;
|
|
|
|
zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
|
|
if (zs)
|
|
dmu_zfetch_run(zs, missed, have_lock);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
|
|
"Disable all ZFS prefetching");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
|
|
"Max number of streams per zfetch");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
|
|
"Min time before stream reclaim");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
|
|
"Max time before stream delete");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
|
|
"Min bytes to prefetch per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
|
|
"Max bytes to prefetch per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
|
|
"Max bytes to prefetch indirects for per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, array_rd_sz, ULONG, ZMOD_RW,
|
|
"Number of bytes in a array_read");
|