mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 04:30:33 +03:00
dda5500853
Currently vdev_disk_error() prepends its messages sent to the internal ZFS debug log with KERN_WARNING, which is currently defined as follows: #define KERN_SOH "\001" #define KERN_WARNING KERN_SOH "4" Since "\001" (ASCII Start Of Header) is not printable this results in weird characters displayed when inspecting the debug log. This commit simply removes this superfluous prefix passed to zfs_dbgmsg(). Reviewed-by: Giuseppe Di Natale <guss80@gmail.com> Reviewed-by: George Melikov <mail@gmelikov.ru> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Richard Laager <rlaager@wiktel.com> Signed-off-by: loli10K <ezomori.nozomu@gmail.com> Closes #7936
893 lines
22 KiB
C
893 lines
22 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
#include <linux/mod_compat.h>
|
|
#include <linux/msdos_fs.h>
|
|
|
|
char *zfs_vdev_scheduler = VDEV_SCHEDULER;
|
|
static void *zfs_vdev_holder = VDEV_HOLDER;
|
|
|
|
/* size of the "reserved" partition, in blocks */
|
|
#define EFI_MIN_RESV_SIZE (16 * 1024)
|
|
|
|
/*
|
|
* Virtual device vector for disks.
|
|
*/
|
|
typedef struct dio_request {
|
|
zio_t *dr_zio; /* Parent ZIO */
|
|
atomic_t dr_ref; /* References */
|
|
int dr_error; /* Bio error */
|
|
int dr_bio_count; /* Count of bio's */
|
|
struct bio *dr_bio[0]; /* Attached bio's */
|
|
} dio_request_t;
|
|
|
|
|
|
#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
|
|
static fmode_t
|
|
vdev_bdev_mode(int smode)
|
|
{
|
|
fmode_t mode = 0;
|
|
|
|
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
|
|
|
|
if (smode & FREAD)
|
|
mode |= FMODE_READ;
|
|
|
|
if (smode & FWRITE)
|
|
mode |= FMODE_WRITE;
|
|
|
|
return (mode);
|
|
}
|
|
#else
|
|
static int
|
|
vdev_bdev_mode(int smode)
|
|
{
|
|
int mode = 0;
|
|
|
|
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
|
|
|
|
if ((smode & FREAD) && !(smode & FWRITE))
|
|
mode = MS_RDONLY;
|
|
|
|
return (mode);
|
|
}
|
|
#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
|
|
|
|
/*
|
|
* Returns the usable capacity (in bytes) for the partition or disk.
|
|
*/
|
|
static uint64_t
|
|
bdev_capacity(struct block_device *bdev)
|
|
{
|
|
return (i_size_read(bdev->bd_inode));
|
|
}
|
|
|
|
/*
|
|
* Returns the maximum expansion capacity of the block device (in bytes).
|
|
*
|
|
* It is possible to expand a vdev when it has been created as a wholedisk
|
|
* and the containing block device has increased in capacity. Or when the
|
|
* partition containing the pool has been manually increased in size.
|
|
*
|
|
* This function is only responsible for calculating the potential expansion
|
|
* size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
|
|
* responsible for verifying the expected partition layout in the wholedisk
|
|
* case, and updating the partition table if appropriate. Once the partition
|
|
* size has been increased the additional capacity will be visible using
|
|
* bdev_capacity().
|
|
*/
|
|
static uint64_t
|
|
bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
|
|
{
|
|
uint64_t psize;
|
|
int64_t available;
|
|
|
|
if (wholedisk && bdev->bd_part != NULL && bdev != bdev->bd_contains) {
|
|
/*
|
|
* When reporting maximum expansion capacity for a wholedisk
|
|
* deduct any capacity which is expected to be lost due to
|
|
* alignment restrictions. Over reporting this value isn't
|
|
* harmful and would only result in slightly less capacity
|
|
* than expected post expansion.
|
|
*/
|
|
available = i_size_read(bdev->bd_contains->bd_inode) -
|
|
((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
|
|
PARTITION_END_ALIGNMENT) << SECTOR_BITS);
|
|
if (available > 0)
|
|
psize = available;
|
|
else
|
|
psize = bdev_capacity(bdev);
|
|
} else {
|
|
psize = bdev_capacity(bdev);
|
|
}
|
|
|
|
return (psize);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_error(zio_t *zio)
|
|
{
|
|
zfs_dbgmsg("zio error=%d type=%d offset=%llu size=%llu flags=%x\n",
|
|
zio->io_error, zio->io_type, (u_longlong_t)zio->io_offset,
|
|
(u_longlong_t)zio->io_size, zio->io_flags);
|
|
}
|
|
|
|
/*
|
|
* Use the Linux 'noop' elevator for zfs managed block devices. This
|
|
* strikes the ideal balance by allowing the zfs elevator to do all
|
|
* request ordering and prioritization. While allowing the Linux
|
|
* elevator to do the maximum front/back merging allowed by the
|
|
* physical device. This yields the largest possible requests for
|
|
* the device with the lowest total overhead.
|
|
*/
|
|
static void
|
|
vdev_elevator_switch(vdev_t *v, char *elevator)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
struct request_queue *q;
|
|
char *device;
|
|
int error;
|
|
|
|
for (int c = 0; c < v->vdev_children; c++)
|
|
vdev_elevator_switch(v->vdev_child[c], elevator);
|
|
|
|
if (!v->vdev_ops->vdev_op_leaf || vd->vd_bdev == NULL)
|
|
return;
|
|
|
|
q = bdev_get_queue(vd->vd_bdev);
|
|
device = vd->vd_bdev->bd_disk->disk_name;
|
|
|
|
/*
|
|
* Skip devices which are not whole disks (partitions).
|
|
* Device-mapper devices are excepted since they may be whole
|
|
* disks despite the vdev_wholedisk flag, in which case we can
|
|
* and should switch the elevator. If the device-mapper device
|
|
* does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
|
|
* "Skip devices without schedulers" check below will fail.
|
|
*/
|
|
if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
|
|
return;
|
|
|
|
/* Leave existing scheduler when set to "none" */
|
|
if ((strncmp(elevator, "none", 4) == 0) && (strlen(elevator) == 4))
|
|
return;
|
|
|
|
/*
|
|
* The elevator_change() function was available in kernels from
|
|
* 2.6.36 to 4.11. When not available fall back to using the user
|
|
* mode helper functionality to set the elevator via sysfs. This
|
|
* requires /bin/echo and sysfs to be mounted which may not be true
|
|
* early in the boot process.
|
|
*/
|
|
#ifdef HAVE_ELEVATOR_CHANGE
|
|
error = elevator_change(q, elevator);
|
|
#else
|
|
#define SET_SCHEDULER_CMD \
|
|
"exec 0</dev/null " \
|
|
" 1>/sys/block/%s/queue/scheduler " \
|
|
" 2>/dev/null; " \
|
|
"echo %s"
|
|
|
|
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
|
|
char *envp[] = { NULL };
|
|
|
|
argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
|
|
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
|
|
strfree(argv[2]);
|
|
#endif /* HAVE_ELEVATOR_CHANGE */
|
|
if (error) {
|
|
zfs_dbgmsg("Unable to set \"%s\" scheduler for %s (%s): %d\n",
|
|
elevator, v->vdev_path, device, error);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
|
|
uint64_t *ashift)
|
|
{
|
|
struct block_device *bdev;
|
|
fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
|
|
int count = 0, block_size;
|
|
int bdev_retry_count = 50;
|
|
vdev_disk_t *vd;
|
|
|
|
/* Must have a pathname and it must be absolute. */
|
|
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
|
|
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
vdev_dbgmsg(v, "invalid vdev_path");
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Reopen the device if it is currently open. When expanding a
|
|
* partition force re-scanning the partition table while closed
|
|
* in order to get an accurate updated block device size. Then
|
|
* since udev may need to recreate the device links increase the
|
|
* open retry count before reporting the device as unavailable.
|
|
*/
|
|
vd = v->vdev_tsd;
|
|
if (vd) {
|
|
char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
|
|
boolean_t reread_part = B_FALSE;
|
|
|
|
rw_enter(&vd->vd_lock, RW_WRITER);
|
|
bdev = vd->vd_bdev;
|
|
vd->vd_bdev = NULL;
|
|
|
|
if (bdev) {
|
|
if (v->vdev_expanding && bdev != bdev->bd_contains) {
|
|
bdevname(bdev->bd_contains, disk_name + 5);
|
|
reread_part = B_TRUE;
|
|
}
|
|
|
|
vdev_bdev_close(bdev, mode);
|
|
}
|
|
|
|
if (reread_part) {
|
|
bdev = vdev_bdev_open(disk_name, mode, zfs_vdev_holder);
|
|
if (!IS_ERR(bdev)) {
|
|
int error = vdev_bdev_reread_part(bdev);
|
|
vdev_bdev_close(bdev, mode);
|
|
if (error == 0)
|
|
bdev_retry_count = 100;
|
|
}
|
|
}
|
|
} else {
|
|
vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
|
|
|
|
rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
|
|
rw_enter(&vd->vd_lock, RW_WRITER);
|
|
}
|
|
|
|
/*
|
|
* Devices are always opened by the path provided at configuration
|
|
* time. This means that if the provided path is a udev by-id path
|
|
* then drives may be re-cabled without an issue. If the provided
|
|
* path is a udev by-path path, then the physical location information
|
|
* will be preserved. This can be critical for more complicated
|
|
* configurations where drives are located in specific physical
|
|
* locations to maximize the systems tolerance to component failure.
|
|
*
|
|
* Alternatively, you can provide your own udev rule to flexibly map
|
|
* the drives as you see fit. It is not advised that you use the
|
|
* /dev/[hd]d devices which may be reordered due to probing order.
|
|
* Devices in the wrong locations will be detected by the higher
|
|
* level vdev validation.
|
|
*
|
|
* The specified paths may be briefly removed and recreated in
|
|
* response to udev events. This should be exceptionally unlikely
|
|
* because the zpool command makes every effort to verify these paths
|
|
* have already settled prior to reaching this point. Therefore,
|
|
* a ENOENT failure at this point is highly likely to be transient
|
|
* and it is reasonable to sleep and retry before giving up. In
|
|
* practice delays have been observed to be on the order of 100ms.
|
|
*/
|
|
bdev = ERR_PTR(-ENXIO);
|
|
while (IS_ERR(bdev) && count < bdev_retry_count) {
|
|
bdev = vdev_bdev_open(v->vdev_path, mode, zfs_vdev_holder);
|
|
if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
|
|
schedule_timeout(MSEC_TO_TICK(10));
|
|
count++;
|
|
} else if (IS_ERR(bdev)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IS_ERR(bdev)) {
|
|
int error = -PTR_ERR(bdev);
|
|
vdev_dbgmsg(v, "open error=%d count=%d\n", error, count);
|
|
vd->vd_bdev = NULL;
|
|
v->vdev_tsd = vd;
|
|
rw_exit(&vd->vd_lock);
|
|
return (SET_ERROR(error));
|
|
} else {
|
|
vd->vd_bdev = bdev;
|
|
v->vdev_tsd = vd;
|
|
rw_exit(&vd->vd_lock);
|
|
}
|
|
|
|
/* Determine the physical block size */
|
|
block_size = vdev_bdev_block_size(vd->vd_bdev);
|
|
|
|
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
|
|
v->vdev_nowritecache = B_FALSE;
|
|
|
|
/* Inform the ZIO pipeline that we are non-rotational */
|
|
v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
|
|
|
|
/* Physical volume size in bytes for the partition */
|
|
*psize = bdev_capacity(vd->vd_bdev);
|
|
|
|
/* Physical volume size in bytes including possible expansion space */
|
|
*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
|
|
|
|
/* Based on the minimum sector size set the block size */
|
|
*ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
/* Try to set the io scheduler elevator algorithm */
|
|
(void) vdev_elevator_switch(v, zfs_vdev_scheduler);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_close(vdev_t *v)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (v->vdev_reopening || vd == NULL)
|
|
return;
|
|
|
|
if (vd->vd_bdev != NULL) {
|
|
vdev_bdev_close(vd->vd_bdev,
|
|
vdev_bdev_mode(spa_mode(v->vdev_spa)));
|
|
}
|
|
|
|
rw_destroy(&vd->vd_lock);
|
|
kmem_free(vd, sizeof (vdev_disk_t));
|
|
v->vdev_tsd = NULL;
|
|
}
|
|
|
|
static dio_request_t *
|
|
vdev_disk_dio_alloc(int bio_count)
|
|
{
|
|
dio_request_t *dr;
|
|
int i;
|
|
|
|
dr = kmem_zalloc(sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * bio_count, KM_SLEEP);
|
|
if (dr) {
|
|
atomic_set(&dr->dr_ref, 0);
|
|
dr->dr_bio_count = bio_count;
|
|
dr->dr_error = 0;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
dr->dr_bio[i] = NULL;
|
|
}
|
|
|
|
return (dr);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_free(dio_request_t *dr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
bio_put(dr->dr_bio[i]);
|
|
|
|
kmem_free(dr, sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * dr->dr_bio_count);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_get(dio_request_t *dr)
|
|
{
|
|
atomic_inc(&dr->dr_ref);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_dio_put(dio_request_t *dr)
|
|
{
|
|
int rc = atomic_dec_return(&dr->dr_ref);
|
|
|
|
/*
|
|
* Free the dio_request when the last reference is dropped and
|
|
* ensure zio_interpret is called only once with the correct zio
|
|
*/
|
|
if (rc == 0) {
|
|
zio_t *zio = dr->dr_zio;
|
|
int error = dr->dr_error;
|
|
|
|
vdev_disk_dio_free(dr);
|
|
|
|
if (zio) {
|
|
zio->io_error = error;
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
|
|
zio_delay_interrupt(zio);
|
|
}
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
|
|
{
|
|
dio_request_t *dr = bio->bi_private;
|
|
int rc;
|
|
|
|
if (dr->dr_error == 0) {
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
dr->dr_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
if (error)
|
|
dr->dr_error = -(error);
|
|
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
dr->dr_error = EIO;
|
|
#endif
|
|
}
|
|
|
|
/* Drop reference acquired by __vdev_disk_physio */
|
|
rc = vdev_disk_dio_put(dr);
|
|
}
|
|
|
|
static unsigned int
|
|
bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
|
|
{
|
|
unsigned int offset, size, i;
|
|
struct page *page;
|
|
|
|
offset = offset_in_page(bio_ptr);
|
|
for (i = 0; i < bio->bi_max_vecs; i++) {
|
|
size = PAGE_SIZE - offset;
|
|
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
if (size > bio_size)
|
|
size = bio_size;
|
|
|
|
if (is_vmalloc_addr(bio_ptr))
|
|
page = vmalloc_to_page(bio_ptr);
|
|
else
|
|
page = virt_to_page(bio_ptr);
|
|
|
|
/*
|
|
* Some network related block device uses tcp_sendpage, which
|
|
* doesn't behave well when using 0-count page, this is a
|
|
* safety net to catch them.
|
|
*/
|
|
ASSERT3S(page_count(page), >, 0);
|
|
|
|
if (bio_add_page(bio, page, size, offset) != size)
|
|
break;
|
|
|
|
bio_ptr += size;
|
|
bio_size -= size;
|
|
offset = 0;
|
|
}
|
|
|
|
return (bio_size);
|
|
}
|
|
|
|
static unsigned int
|
|
bio_map_abd_off(struct bio *bio, abd_t *abd, unsigned int size, size_t off)
|
|
{
|
|
if (abd_is_linear(abd))
|
|
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, size));
|
|
|
|
return (abd_scatter_bio_map_off(bio, abd, size, off));
|
|
}
|
|
|
|
static inline void
|
|
vdev_submit_bio_impl(struct bio *bio)
|
|
{
|
|
#ifdef HAVE_1ARG_SUBMIT_BIO
|
|
submit_bio(bio);
|
|
#else
|
|
submit_bio(0, bio);
|
|
#endif
|
|
}
|
|
|
|
#ifndef HAVE_BIO_SET_DEV
|
|
static inline void
|
|
bio_set_dev(struct bio *bio, struct block_device *bdev)
|
|
{
|
|
bio->bi_bdev = bdev;
|
|
}
|
|
#endif /* !HAVE_BIO_SET_DEV */
|
|
|
|
static inline void
|
|
vdev_submit_bio(struct bio *bio)
|
|
{
|
|
#ifdef HAVE_CURRENT_BIO_TAIL
|
|
struct bio **bio_tail = current->bio_tail;
|
|
current->bio_tail = NULL;
|
|
vdev_submit_bio_impl(bio);
|
|
current->bio_tail = bio_tail;
|
|
#else
|
|
struct bio_list *bio_list = current->bio_list;
|
|
current->bio_list = NULL;
|
|
vdev_submit_bio_impl(bio);
|
|
current->bio_list = bio_list;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
__vdev_disk_physio(struct block_device *bdev, zio_t *zio,
|
|
size_t io_size, uint64_t io_offset, int rw, int flags)
|
|
{
|
|
dio_request_t *dr;
|
|
uint64_t abd_offset;
|
|
uint64_t bio_offset;
|
|
int bio_size, bio_count = 16;
|
|
int i = 0, error = 0;
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
|
|
struct blk_plug plug;
|
|
#endif
|
|
/*
|
|
* Accessing outside the block device is never allowed.
|
|
*/
|
|
if (io_offset + io_size > bdev->bd_inode->i_size) {
|
|
vdev_dbgmsg(zio->io_vd,
|
|
"Illegal access %llu size %llu, device size %llu",
|
|
io_offset, io_size, i_size_read(bdev->bd_inode));
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
retry:
|
|
dr = vdev_disk_dio_alloc(bio_count);
|
|
if (dr == NULL)
|
|
return (SET_ERROR(ENOMEM));
|
|
|
|
if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
|
|
bio_set_flags_failfast(bdev, &flags);
|
|
|
|
dr->dr_zio = zio;
|
|
|
|
/*
|
|
* When the IO size exceeds the maximum bio size for the request
|
|
* queue we are forced to break the IO in multiple bio's and wait
|
|
* for them all to complete. Ideally, all pool users will set
|
|
* their volume block size to match the maximum request size and
|
|
* the common case will be one bio per vdev IO request.
|
|
*/
|
|
|
|
abd_offset = 0;
|
|
bio_offset = io_offset;
|
|
bio_size = io_size;
|
|
for (i = 0; i <= dr->dr_bio_count; i++) {
|
|
|
|
/* Finished constructing bio's for given buffer */
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
/*
|
|
* By default only 'bio_count' bio's per dio are allowed.
|
|
* However, if we find ourselves in a situation where more
|
|
* are needed we allocate a larger dio and warn the user.
|
|
*/
|
|
if (dr->dr_bio_count == i) {
|
|
vdev_disk_dio_free(dr);
|
|
bio_count *= 2;
|
|
goto retry;
|
|
}
|
|
|
|
/* bio_alloc() with __GFP_WAIT never returns NULL */
|
|
dr->dr_bio[i] = bio_alloc(GFP_NOIO,
|
|
MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
|
|
BIO_MAX_PAGES));
|
|
if (unlikely(dr->dr_bio[i] == NULL)) {
|
|
vdev_disk_dio_free(dr);
|
|
return (SET_ERROR(ENOMEM));
|
|
}
|
|
|
|
/* Matching put called by vdev_disk_physio_completion */
|
|
vdev_disk_dio_get(dr);
|
|
|
|
bio_set_dev(dr->dr_bio[i], bdev);
|
|
BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
|
|
dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
|
|
dr->dr_bio[i]->bi_private = dr;
|
|
bio_set_op_attrs(dr->dr_bio[i], rw, flags);
|
|
|
|
/* Remaining size is returned to become the new size */
|
|
bio_size = bio_map_abd_off(dr->dr_bio[i], zio->io_abd,
|
|
bio_size, abd_offset);
|
|
|
|
/* Advance in buffer and construct another bio if needed */
|
|
abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
}
|
|
|
|
/* Extra reference to protect dio_request during vdev_submit_bio */
|
|
vdev_disk_dio_get(dr);
|
|
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
|
|
if (dr->dr_bio_count > 1)
|
|
blk_start_plug(&plug);
|
|
#endif
|
|
|
|
/* Submit all bio's associated with this dio */
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
vdev_submit_bio(dr->dr_bio[i]);
|
|
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
|
|
if (dr->dr_bio_count > 1)
|
|
blk_finish_plug(&plug);
|
|
#endif
|
|
|
|
(void) vdev_disk_dio_put(dr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
|
|
{
|
|
zio_t *zio = bio->bi_private;
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
zio->io_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
zio->io_error = -error;
|
|
#endif
|
|
|
|
if (zio->io_error && (zio->io_error == EOPNOTSUPP))
|
|
zio->io_vd->vdev_nowritecache = B_TRUE;
|
|
|
|
bio_put(bio);
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
|
|
{
|
|
struct request_queue *q;
|
|
struct bio *bio;
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (!q)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
bio = bio_alloc(GFP_NOIO, 0);
|
|
/* bio_alloc() with __GFP_WAIT never returns NULL */
|
|
if (unlikely(bio == NULL))
|
|
return (SET_ERROR(ENOMEM));
|
|
|
|
bio->bi_end_io = vdev_disk_io_flush_completion;
|
|
bio->bi_private = zio;
|
|
bio_set_dev(bio, bdev);
|
|
bio_set_flush(bio);
|
|
vdev_submit_bio(bio);
|
|
invalidate_bdev(bdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
int rw, flags, error;
|
|
|
|
/*
|
|
* If the vdev is closed, it's likely in the REMOVED or FAULTED state.
|
|
* Nothing to be done here but return failure.
|
|
*/
|
|
if (vd == NULL) {
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
rw_enter(&vd->vd_lock, RW_READER);
|
|
|
|
/*
|
|
* If the vdev is closed, it's likely due to a failed reopen and is
|
|
* in the UNAVAIL state. Nothing to be done here but return failure.
|
|
*/
|
|
if (vd->vd_bdev == NULL) {
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
switch (zio->io_type) {
|
|
case ZIO_TYPE_IOCTL:
|
|
|
|
if (!vdev_readable(v)) {
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = SET_ERROR(ENXIO);
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
switch (zio->io_cmd) {
|
|
case DKIOCFLUSHWRITECACHE:
|
|
|
|
if (zfs_nocacheflush)
|
|
break;
|
|
|
|
if (v->vdev_nowritecache) {
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
error = vdev_disk_io_flush(vd->vd_bdev, zio);
|
|
if (error == 0) {
|
|
rw_exit(&vd->vd_lock);
|
|
return;
|
|
}
|
|
|
|
zio->io_error = error;
|
|
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
}
|
|
|
|
rw_exit(&vd->vd_lock);
|
|
zio_execute(zio);
|
|
return;
|
|
case ZIO_TYPE_WRITE:
|
|
rw = WRITE;
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG)
|
|
flags = (1 << BIO_RW_UNPLUG);
|
|
#elif defined(REQ_UNPLUG)
|
|
flags = REQ_UNPLUG;
|
|
#else
|
|
flags = 0;
|
|
#endif
|
|
break;
|
|
|
|
case ZIO_TYPE_READ:
|
|
rw = READ;
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG)
|
|
flags = (1 << BIO_RW_UNPLUG);
|
|
#elif defined(REQ_UNPLUG)
|
|
flags = REQ_UNPLUG;
|
|
#else
|
|
flags = 0;
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
zio->io_target_timestamp = zio_handle_io_delay(zio);
|
|
error = __vdev_disk_physio(vd->vd_bdev, zio,
|
|
zio->io_size, zio->io_offset, rw, flags);
|
|
rw_exit(&vd->vd_lock);
|
|
|
|
if (error) {
|
|
zio->io_error = error;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_done(zio_t *zio)
|
|
{
|
|
/*
|
|
* If the device returned EIO, we revalidate the media. If it is
|
|
* determined the media has changed this triggers the asynchronous
|
|
* removal of the device from the configuration.
|
|
*/
|
|
if (zio->io_error == EIO) {
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (check_disk_change(vd->vd_bdev)) {
|
|
vdev_bdev_invalidate(vd->vd_bdev);
|
|
v->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_hold(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* We must have a pathname, and it must be absolute. */
|
|
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
|
|
return;
|
|
|
|
/*
|
|
* Only prefetch path and devid info if the device has
|
|
* never been opened.
|
|
*/
|
|
if (vd->vdev_tsd != NULL)
|
|
return;
|
|
|
|
/* XXX: Implement me as a vnode lookup for the device */
|
|
vd->vdev_name_vp = NULL;
|
|
vd->vdev_devid_vp = NULL;
|
|
}
|
|
|
|
static void
|
|
vdev_disk_rele(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* XXX: Implement me as a vnode rele for the device */
|
|
}
|
|
|
|
static int
|
|
param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
|
|
{
|
|
spa_t *spa = NULL;
|
|
char *p;
|
|
|
|
if (val == NULL)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
if ((p = strchr(val, '\n')) != NULL)
|
|
*p = '\0';
|
|
|
|
if (spa_mode_global != 0) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
if (spa_state(spa) != POOL_STATE_ACTIVE ||
|
|
!spa_writeable(spa) || spa_suspended(spa))
|
|
continue;
|
|
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
vdev_elevator_switch(spa->spa_root_vdev, (char *)val);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (param_set_charp(val, kp));
|
|
}
|
|
|
|
vdev_ops_t vdev_disk_ops = {
|
|
vdev_disk_open,
|
|
vdev_disk_close,
|
|
vdev_default_asize,
|
|
vdev_disk_io_start,
|
|
vdev_disk_io_done,
|
|
NULL,
|
|
NULL,
|
|
vdev_disk_hold,
|
|
vdev_disk_rele,
|
|
NULL,
|
|
VDEV_TYPE_DISK, /* name of this vdev type */
|
|
B_TRUE /* leaf vdev */
|
|
};
|
|
|
|
module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
|
|
param_get_charp, &zfs_vdev_scheduler, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
|