mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 02:20:59 +03:00
02c7f16494
This was a false positive the callpath being walked is impossible because the splat_kmem_cache_test_kcp_alloc() function will ensure kcp->kcp_kcd[0] is initialized to NULL. However, there is no harm is making this explicit for the test case so I'm adding a line to clearly set it to correct the analysis.
1097 lines
29 KiB
C
1097 lines
29 KiB
C
/*
|
|
* This file is part of the SPL: Solaris Porting Layer.
|
|
*
|
|
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory
|
|
* Written by:
|
|
* Brian Behlendorf <behlendorf1@llnl.gov>,
|
|
* Herb Wartens <wartens2@llnl.gov>,
|
|
* Jim Garlick <garlick@llnl.gov>
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "splat-internal.h"
|
|
|
|
#define SPLAT_SUBSYSTEM_KMEM 0x0100
|
|
#define SPLAT_KMEM_NAME "kmem"
|
|
#define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests"
|
|
|
|
#define SPLAT_KMEM_TEST1_ID 0x0101
|
|
#define SPLAT_KMEM_TEST1_NAME "kmem_alloc"
|
|
#define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)"
|
|
|
|
#define SPLAT_KMEM_TEST2_ID 0x0102
|
|
#define SPLAT_KMEM_TEST2_NAME "kmem_zalloc"
|
|
#define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)"
|
|
|
|
#define SPLAT_KMEM_TEST3_ID 0x0103
|
|
#define SPLAT_KMEM_TEST3_NAME "vmem_alloc"
|
|
#define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)"
|
|
|
|
#define SPLAT_KMEM_TEST4_ID 0x0104
|
|
#define SPLAT_KMEM_TEST4_NAME "vmem_zalloc"
|
|
#define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)"
|
|
|
|
#define SPLAT_KMEM_TEST5_ID 0x0105
|
|
#define SPLAT_KMEM_TEST5_NAME "slab_small"
|
|
#define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)"
|
|
|
|
#define SPLAT_KMEM_TEST6_ID 0x0106
|
|
#define SPLAT_KMEM_TEST6_NAME "slab_large"
|
|
#define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)"
|
|
|
|
#define SPLAT_KMEM_TEST7_ID 0x0107
|
|
#define SPLAT_KMEM_TEST7_NAME "slab_align"
|
|
#define SPLAT_KMEM_TEST7_DESC "Slab alignment test"
|
|
|
|
#define SPLAT_KMEM_TEST8_ID 0x0108
|
|
#define SPLAT_KMEM_TEST8_NAME "slab_reap"
|
|
#define SPLAT_KMEM_TEST8_DESC "Slab reaping test"
|
|
|
|
#define SPLAT_KMEM_TEST9_ID 0x0109
|
|
#define SPLAT_KMEM_TEST9_NAME "slab_age"
|
|
#define SPLAT_KMEM_TEST9_DESC "Slab aging test"
|
|
|
|
#define SPLAT_KMEM_TEST10_ID 0x010a
|
|
#define SPLAT_KMEM_TEST10_NAME "slab_lock"
|
|
#define SPLAT_KMEM_TEST10_DESC "Slab locking test"
|
|
|
|
#define SPLAT_KMEM_TEST11_ID 0x010b
|
|
#define SPLAT_KMEM_TEST11_NAME "slab_overcommit"
|
|
#define SPLAT_KMEM_TEST11_DESC "Slab memory overcommit test"
|
|
|
|
#define SPLAT_KMEM_ALLOC_COUNT 10
|
|
#define SPLAT_VMEM_ALLOC_COUNT 10
|
|
|
|
|
|
static int
|
|
splat_kmem_test1(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_KMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, count, rc = 0;
|
|
|
|
/* We are intentionally going to push kmem_alloc to its max
|
|
* allocation size, so suppress the console warnings for now */
|
|
kmem_set_warning(0);
|
|
|
|
while ((!rc) && (size <= (PAGE_SIZE * 32))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = kmem_alloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
kmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_KMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_KMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
kmem_set_warning(1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test2(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_KMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, j, count, rc = 0;
|
|
|
|
/* We are intentionally going to push kmem_alloc to its max
|
|
* allocation size, so suppress the console warnings for now */
|
|
kmem_set_warning(0);
|
|
|
|
while ((!rc) && (size <= (PAGE_SIZE * 32))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = kmem_zalloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
/* Ensure buffer has been zero filled */
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (((char *)ptr[i])[j] != '\0') {
|
|
splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
|
|
"%d-byte allocation was "
|
|
"not zeroed\n", size);
|
|
rc = -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
kmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_KMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_KMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
kmem_set_warning(1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test3(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_VMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, count, rc = 0;
|
|
|
|
while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = vmem_alloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
vmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_VMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_VMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test4(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_VMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, j, count, rc = 0;
|
|
|
|
while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = vmem_zalloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
/* Ensure buffer has been zero filled */
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (((char *)ptr[i])[j] != '\0') {
|
|
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
|
|
"%d-byte allocation was "
|
|
"not zeroed\n", size);
|
|
rc = -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
vmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_VMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_VMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL
|
|
#define SPLAT_KMEM_CACHE_NAME "kmem_test"
|
|
#define SPLAT_KMEM_OBJ_COUNT 1024
|
|
#define SPLAT_KMEM_OBJ_RECLAIM 20 /* percent */
|
|
#define SPLAT_KMEM_THREADS 32
|
|
|
|
#define KCP_FLAG_READY 0x01
|
|
|
|
typedef struct kmem_cache_data {
|
|
unsigned long kcd_magic;
|
|
int kcd_flag;
|
|
char kcd_buf[0];
|
|
} kmem_cache_data_t;
|
|
|
|
typedef struct kmem_cache_thread {
|
|
kmem_cache_t *kct_cache;
|
|
spinlock_t kct_lock;
|
|
int kct_id;
|
|
int kct_kcd_count;
|
|
kmem_cache_data_t *kct_kcd[0];
|
|
} kmem_cache_thread_t;
|
|
|
|
typedef struct kmem_cache_priv {
|
|
unsigned long kcp_magic;
|
|
struct file *kcp_file;
|
|
kmem_cache_t *kcp_cache;
|
|
spinlock_t kcp_lock;
|
|
wait_queue_head_t kcp_ctl_waitq;
|
|
wait_queue_head_t kcp_thr_waitq;
|
|
int kcp_flags;
|
|
int kcp_kct_count;
|
|
kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
|
|
int kcp_size;
|
|
int kcp_align;
|
|
int kcp_count;
|
|
int kcp_alloc;
|
|
int kcp_rc;
|
|
int kcp_kcd_count;
|
|
kmem_cache_data_t *kcp_kcd[0];
|
|
} kmem_cache_priv_t;
|
|
|
|
static kmem_cache_priv_t *
|
|
splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
|
|
int size, int align, int alloc, int count)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
|
|
kcp = vmem_zalloc(sizeof(kmem_cache_priv_t) +
|
|
count * sizeof(kmem_cache_data_t *), KM_SLEEP);
|
|
if (!kcp)
|
|
return NULL;
|
|
|
|
kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
|
|
kcp->kcp_file = file;
|
|
kcp->kcp_cache = NULL;
|
|
spin_lock_init(&kcp->kcp_lock);
|
|
init_waitqueue_head(&kcp->kcp_ctl_waitq);
|
|
init_waitqueue_head(&kcp->kcp_thr_waitq);
|
|
kcp->kcp_flags = 0;
|
|
kcp->kcp_kct_count = -1;
|
|
kcp->kcp_size = size;
|
|
kcp->kcp_align = align;
|
|
kcp->kcp_count = 0;
|
|
kcp->kcp_alloc = alloc;
|
|
kcp->kcp_rc = 0;
|
|
kcp->kcp_kcd_count = count;
|
|
|
|
return kcp;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
|
|
{
|
|
vmem_free(kcp, sizeof(kmem_cache_priv_t) +
|
|
kcp->kcp_kcd_count * sizeof(kmem_cache_data_t *));
|
|
}
|
|
|
|
static kmem_cache_thread_t *
|
|
splat_kmem_cache_test_kct_alloc(int id, int count)
|
|
{
|
|
kmem_cache_thread_t *kct;
|
|
|
|
ASSERTF(id < SPLAT_KMEM_THREADS, "id=%d\n", id);
|
|
kct = vmem_zalloc(sizeof(kmem_cache_thread_t) +
|
|
count * sizeof(kmem_cache_data_t *), KM_SLEEP);
|
|
if (!kct)
|
|
return NULL;
|
|
|
|
spin_lock_init(&kct->kct_lock);
|
|
kct->kct_cache = NULL;
|
|
kct->kct_id = id;
|
|
kct->kct_kcd_count = count;
|
|
|
|
return kct;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_kct_free(kmem_cache_thread_t *kct)
|
|
{
|
|
vmem_free(kct, sizeof(kmem_cache_thread_t) +
|
|
kct->kct_kcd_count * sizeof(kmem_cache_data_t *));
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
|
|
|
|
if (kcd && kcp) {
|
|
kcd->kcd_magic = kcp->kcp_magic;
|
|
kcd->kcd_flag = 1;
|
|
memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
|
|
kcp->kcp_count++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_destructor(void *ptr, void *priv)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
|
|
|
|
if (kcd && kcp) {
|
|
kcd->kcd_magic = 0;
|
|
kcd->kcd_flag = 0;
|
|
memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
|
|
kcp->kcp_count--;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Generic reclaim function which assumes that all objects may
|
|
* be reclaimed at any time. We free a small percentage of the
|
|
* objects linked off the kcp or kct[] every time we are called.
|
|
*/
|
|
static void
|
|
splat_kmem_cache_test_reclaim(void *priv)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_thread_t *kct;
|
|
int i, j, count;
|
|
|
|
ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
|
|
count = kcp->kcp_kcd_count * SPLAT_KMEM_OBJ_RECLAIM / 100;
|
|
|
|
/* Objects directly attached to the kcp */
|
|
spin_lock(&kcp->kcp_lock);
|
|
for (i = 0; i < kcp->kcp_kcd_count; i++) {
|
|
if (kcp->kcp_kcd[i]) {
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]);
|
|
kcp->kcp_kcd[i] = NULL;
|
|
|
|
if ((--count) == 0)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* No threads containing objects to consider */
|
|
if (kcp->kcp_kct_count == -1)
|
|
return;
|
|
|
|
/* Objects attached to a kct thread */
|
|
for (i = 0; i < kcp->kcp_kct_count; i++) {
|
|
spin_lock(&kcp->kcp_lock);
|
|
kct = kcp->kcp_kct[i];
|
|
spin_unlock(&kcp->kcp_lock);
|
|
if (!kct)
|
|
continue;
|
|
|
|
spin_lock(&kct->kct_lock);
|
|
count = kct->kct_kcd_count * SPLAT_KMEM_OBJ_RECLAIM / 100;
|
|
|
|
for (j = 0; j < kct->kct_kcd_count; j++) {
|
|
if (kct->kct_kcd[j]) {
|
|
kmem_cache_free(kcp->kcp_cache,kct->kct_kcd[j]);
|
|
kct->kct_kcd[j] = NULL;
|
|
|
|
if ((--count) == 0)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&kct->kct_lock);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
|
|
{
|
|
int rc;
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
rc = (kcp->kcp_kct_count == threads);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
|
|
{
|
|
int rc;
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
rc = (kcp->kcp_flags & flags);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_thread(void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
|
|
kmem_cache_thread_t *kct;
|
|
int rc = 0, id, i;
|
|
void *obj;
|
|
|
|
ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
|
|
|
|
/* Assign thread ids */
|
|
spin_lock(&kcp->kcp_lock);
|
|
if (kcp->kcp_kct_count == -1)
|
|
kcp->kcp_kct_count = 0;
|
|
|
|
id = kcp->kcp_kct_count;
|
|
kcp->kcp_kct_count++;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
kct = splat_kmem_cache_test_kct_alloc(id, kcp->kcp_alloc);
|
|
if (!kct) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kct[id] = kct;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* Wait for all threads to have started and report they are ready */
|
|
if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
|
|
wake_up(&kcp->kcp_ctl_waitq);
|
|
|
|
wait_event(kcp->kcp_thr_waitq,
|
|
splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));
|
|
|
|
/*
|
|
* Updates to kct->kct_kcd[] are performed under a spin_lock so
|
|
* they may safely run concurrent with the reclaim function. If
|
|
* we are not in a low memory situation we have one lock per-
|
|
* thread so they are not expected to be contended.
|
|
*/
|
|
for (i = 0; i < kct->kct_kcd_count; i++) {
|
|
obj = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
spin_lock(&kct->kct_lock);
|
|
kct->kct_kcd[i] = obj;
|
|
spin_unlock(&kct->kct_lock);
|
|
}
|
|
|
|
for (i = 0; i < kct->kct_kcd_count; i++) {
|
|
spin_lock(&kct->kct_lock);
|
|
if (kct->kct_kcd[i]) {
|
|
kmem_cache_free(kcp->kcp_cache, kct->kct_kcd[i]);
|
|
kct->kct_kcd[i] = NULL;
|
|
}
|
|
spin_unlock(&kct->kct_lock);
|
|
}
|
|
out:
|
|
spin_lock(&kcp->kcp_lock);
|
|
if (kct) {
|
|
splat_kmem_cache_test_kct_free(kct);
|
|
kcp->kcp_kct[id] = kct = NULL;
|
|
}
|
|
|
|
if (!kcp->kcp_rc)
|
|
kcp->kcp_rc = rc;
|
|
|
|
if ((--kcp->kcp_kct_count) == 0)
|
|
wake_up(&kcp->kcp_ctl_waitq);
|
|
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
thread_exit();
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test(struct file *file, void *arg, char *name,
|
|
int size, int align, int flags)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_data_t *kcd;
|
|
int rc = 0, max;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0, 1);
|
|
if (!kcp) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
kcp->kcp_kcd[0] = NULL;
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
|
|
kcp->kcp_size, kcp->kcp_align,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
NULL, kcp, NULL, flags);
|
|
if (!kcp->kcp_cache) {
|
|
splat_vprint(file, name,
|
|
"Unable to create '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
if (!kcd) {
|
|
splat_vprint(file, name,
|
|
"Unable to allocate from '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kcd[0] = kcd;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
if (!kcp->kcp_kcd[0]->kcd_flag) {
|
|
splat_vprint(file, name,
|
|
"Failed to run contructor for '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
if (kcp->kcp_kcd[0]->kcd_magic != kcp->kcp_magic) {
|
|
splat_vprint(file, name,
|
|
"Failed to pass private data to constructor "
|
|
"for '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
max = kcp->kcp_count;
|
|
spin_lock(&kcp->kcp_lock);
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[0]);
|
|
kcp->kcp_kcd[0] = NULL;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* Destroy the entire cache which will force destructors to
|
|
* run and we can verify one was called for every object */
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
if (kcp->kcp_count) {
|
|
splat_vprint(file, name,
|
|
"Failed to run destructor on all slab objects "
|
|
"for '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
splat_vprint(file, name,
|
|
"Successfully ran ctors/dtors for %d elements in '%s'\n",
|
|
max, SPLAT_KMEM_CACHE_NAME);
|
|
|
|
return rc;
|
|
|
|
out_free:
|
|
if (kcp->kcp_kcd[0]) {
|
|
spin_lock(&kcp->kcp_lock);
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[0]);
|
|
kcp->kcp_kcd[0] = NULL;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
}
|
|
|
|
if (kcp->kcp_cache)
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
|
|
int size, int alloc, int max_time)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kthread_t *thr;
|
|
struct timespec start, stop, delta;
|
|
char cache_name[32];
|
|
int i, rc = 0;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc, 0);
|
|
if (!kcp) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
(void)snprintf(cache_name, 32, "%s-%d-%d",
|
|
SPLAT_KMEM_CACHE_NAME, size, alloc);
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(cache_name, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
splat_kmem_cache_test_reclaim,
|
|
kcp, NULL, KMC_VMEM);
|
|
if (!kcp->kcp_cache) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
|
|
rc = -ENOMEM;
|
|
goto out_kcp;
|
|
}
|
|
|
|
start = current_kernel_time();
|
|
|
|
for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
|
|
thr = thread_create(NULL, 0,
|
|
splat_kmem_cache_test_thread,
|
|
kcp, 0, &p0, TS_RUN, minclsyspri);
|
|
if (thr == NULL) {
|
|
rc = -ESRCH;
|
|
goto out_cache;
|
|
}
|
|
}
|
|
|
|
/* Sleep until all threads have started, then set the ready
|
|
* flag and wake them all up for maximum concurrency. */
|
|
wait_event(kcp->kcp_ctl_waitq,
|
|
splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_flags |= KCP_FLAG_READY;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
wake_up_all(&kcp->kcp_thr_waitq);
|
|
|
|
/* Sleep until all thread have finished */
|
|
wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));
|
|
|
|
stop = current_kernel_time();
|
|
delta = timespec_sub(stop, start);
|
|
|
|
splat_vprint(file, name,
|
|
"%-22s %2ld.%09ld\t"
|
|
"%lu/%lu/%lu\t%lu/%lu/%lu\n",
|
|
kcp->kcp_cache->skc_name,
|
|
delta.tv_sec, delta.tv_nsec,
|
|
(unsigned long)kcp->kcp_cache->skc_slab_total,
|
|
(unsigned long)kcp->kcp_cache->skc_slab_max,
|
|
(unsigned long)(kcp->kcp_alloc *
|
|
SPLAT_KMEM_THREADS /
|
|
SPL_KMEM_CACHE_OBJ_PER_SLAB),
|
|
(unsigned long)kcp->kcp_cache->skc_obj_total,
|
|
(unsigned long)kcp->kcp_cache->skc_obj_max,
|
|
(unsigned long)(kcp->kcp_alloc *
|
|
SPLAT_KMEM_THREADS));
|
|
|
|
if (delta.tv_sec >= max_time)
|
|
rc = -ETIME;
|
|
|
|
if (!rc && kcp->kcp_rc)
|
|
rc = kcp->kcp_rc;
|
|
|
|
out_cache:
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
out_kcp:
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
return rc;
|
|
}
|
|
|
|
/* Validate small object cache behavior for dynamic/kmem/vmem caches */
|
|
static int
|
|
splat_kmem_test5(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST5_NAME;
|
|
int rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM);
|
|
}
|
|
|
|
/* Validate large object cache behavior for dynamic/kmem/vmem caches */
|
|
static int
|
|
splat_kmem_test6(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST6_NAME;
|
|
int rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, 128*1024, 0, 0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, 128*1024, 0, KMC_KMEM);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return splat_kmem_cache_test(file, arg, name, 128*1028, 0, KMC_VMEM);
|
|
}
|
|
|
|
/* Validate object alignment cache behavior for caches */
|
|
static int
|
|
splat_kmem_test7(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST7_NAME;
|
|
int i, rc;
|
|
|
|
for (i = 8; i <= PAGE_SIZE; i *= 2) {
|
|
rc = splat_kmem_cache_test(file, arg, name, 157, i, 0);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test8(struct file *file, void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_data_t *kcd;
|
|
int i, j, rc = 0;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
|
|
256, 0, 0, SPLAT_KMEM_OBJ_COUNT);
|
|
if (!kcp) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
splat_kmem_cache_test_reclaim,
|
|
kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) {
|
|
kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kcd[i] = kcd;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
if (!kcd) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to allocate from '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
}
|
|
}
|
|
|
|
/* Request the slab cache free any objects it can. For a few reasons
|
|
* this may not immediately result in more free memory even if objects
|
|
* are freed. First off, due to fragmentation we may not be able to
|
|
* reclaim any slabs. Secondly, even if we do we fully clear some
|
|
* slabs we will not want to immedately reclaim all of them because
|
|
* we may contend with cache allocs and thrash. What we want to see
|
|
* is the slab size decrease more gradually as it becomes clear they
|
|
* will not be needed. This should be acheivable in less than minute
|
|
* if it takes longer than this something has gone wrong.
|
|
*/
|
|
for (i = 0; i < 60; i++) {
|
|
kmem_cache_reap_now(kcp->kcp_cache);
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"%s cache objects %d, slabs %u/%u objs %u/%u mags ",
|
|
SPLAT_KMEM_CACHE_NAME, kcp->kcp_count,
|
|
(unsigned)kcp->kcp_cache->skc_slab_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_slab_total,
|
|
(unsigned)kcp->kcp_cache->skc_obj_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_obj_total);
|
|
|
|
for_each_online_cpu(j)
|
|
splat_print(file, "%u/%u ",
|
|
kcp->kcp_cache->skc_mag[j]->skm_avail,
|
|
kcp->kcp_cache->skc_mag[j]->skm_size);
|
|
|
|
splat_print(file, "%s\n", "");
|
|
|
|
if (kcp->kcp_cache->skc_obj_total == 0)
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(HZ);
|
|
}
|
|
|
|
if (kcp->kcp_cache->skc_obj_total == 0) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Successfully created %d objects "
|
|
"in cache %s and reclaimed them\n",
|
|
SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
|
|
} else {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Failed to reclaim %u/%d objects from cache %s\n",
|
|
(unsigned)kcp->kcp_cache->skc_obj_total,
|
|
SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
}
|
|
|
|
/* Cleanup our mess (for failure case of time expiring) */
|
|
spin_lock(&kcp->kcp_lock);
|
|
for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++)
|
|
if (kcp->kcp_kcd[i])
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test9(struct file *file, void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_data_t *kcd;
|
|
int i, j, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
|
|
256, 0, 0, count);
|
|
if (!kcp) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
NULL, kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kcd[i] = kcd;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
if (!kcd) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Unable to allocate from '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
}
|
|
}
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
for (i = 0; i < count; i++)
|
|
if (kcp->kcp_kcd[i])
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* We have allocated a large number of objects thus creating a
|
|
* large number of slabs and then free'd them all. However since
|
|
* there should be little memory pressure at the moment those
|
|
* slabs have not been freed. What we want to see is the slab
|
|
* size decrease gradually as it becomes clear they will not be
|
|
* be needed. This should be acheivable in less than minute
|
|
* if it takes longer than this something has gone wrong.
|
|
*/
|
|
for (i = 0; i < 60; i++) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"%s cache objects %d, slabs %u/%u objs %u/%u mags ",
|
|
SPLAT_KMEM_CACHE_NAME, kcp->kcp_count,
|
|
(unsigned)kcp->kcp_cache->skc_slab_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_slab_total,
|
|
(unsigned)kcp->kcp_cache->skc_obj_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_obj_total);
|
|
|
|
for_each_online_cpu(j)
|
|
splat_print(file, "%u/%u ",
|
|
kcp->kcp_cache->skc_mag[j]->skm_avail,
|
|
kcp->kcp_cache->skc_mag[j]->skm_size);
|
|
|
|
splat_print(file, "%s\n", "");
|
|
|
|
if (kcp->kcp_cache->skc_obj_total == 0)
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(HZ);
|
|
}
|
|
|
|
if (kcp->kcp_cache->skc_obj_total == 0) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Successfully created %d objects "
|
|
"in cache %s and reclaimed them\n",
|
|
count, SPLAT_KMEM_CACHE_NAME);
|
|
} else {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Failed to reclaim %u/%d objects from cache %s\n",
|
|
(unsigned)kcp->kcp_cache->skc_obj_total, count,
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
}
|
|
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* This test creates N threads with a shared kmem cache. They then all
|
|
* concurrently allocate and free from the cache to stress the locking and
|
|
* concurrent cache performance. If any one test takes longer than 5
|
|
* seconds to complete it is treated as a failure and may indicate a
|
|
* performance regression. On my test system no one test takes more
|
|
* than 1 second to complete so a 5x slowdown likely a problem.
|
|
*/
|
|
static int
|
|
splat_kmem_test10(struct file *file, void *arg)
|
|
{
|
|
uint64_t size, alloc, free_mem, rc = 0;
|
|
|
|
free_mem = nr_free_pages() * PAGE_SIZE;
|
|
for (size = 16; size <= 1024*1024; size *= 2) {
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name",
|
|
"time (sec)\tslabs \tobjs \thash\n");
|
|
splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "",
|
|
" \ttot/max/calc\ttot/max/calc\n");
|
|
|
|
for (alloc = 1; alloc <= 1024; alloc *= 2) {
|
|
|
|
/* Skip tests which exceed free memory */
|
|
if (size * alloc * SPLAT_KMEM_THREADS > free_mem / 2)
|
|
continue;
|
|
|
|
rc = splat_kmem_cache_thread_test(file, arg,
|
|
SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
|
|
if (rc)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* This test creates N threads with a shared kmem cache which overcommits
|
|
* memory by 4x. This makes it impossible for the slab to satify the
|
|
* thread requirements without having its reclaim hook run which will
|
|
* free objects back for use. This behavior is triggered by the linum VM
|
|
* detecting a low memory condition on the node and invoking the shrinkers.
|
|
* This should allow all the threads to complete while avoiding deadlock
|
|
* and for the most part out of memory events. This is very tough on the
|
|
* system so it is possible the test app may get oom'ed.
|
|
*/
|
|
static int
|
|
splat_kmem_test11(struct file *file, void *arg)
|
|
{
|
|
uint64_t size, alloc, rc;
|
|
|
|
size = 1024*1024;
|
|
alloc = ((4 * num_physpages * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name",
|
|
"time (sec)\tslabs \tobjs \thash\n");
|
|
splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "",
|
|
" \ttot/max/calc\ttot/max/calc\n");
|
|
|
|
rc = splat_kmem_cache_thread_test(file, arg,
|
|
SPLAT_KMEM_TEST11_NAME, size, alloc, 60);
|
|
|
|
return rc;
|
|
}
|
|
|
|
splat_subsystem_t *
|
|
splat_kmem_init(void)
|
|
{
|
|
splat_subsystem_t *sub;
|
|
|
|
sub = kmalloc(sizeof(*sub), GFP_KERNEL);
|
|
if (sub == NULL)
|
|
return NULL;
|
|
|
|
memset(sub, 0, sizeof(*sub));
|
|
strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
|
|
strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
|
|
INIT_LIST_HEAD(&sub->subsystem_list);
|
|
INIT_LIST_HEAD(&sub->test_list);
|
|
spin_lock_init(&sub->test_lock);
|
|
sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
|
|
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
|
|
SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
|
|
SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
|
|
SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
|
|
SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
|
|
SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
|
|
SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
|
|
SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
|
|
SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
|
|
SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
|
|
SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
|
|
SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
|
|
|
|
return sub;
|
|
}
|
|
|
|
void
|
|
splat_kmem_fini(splat_subsystem_t *sub)
|
|
{
|
|
ASSERT(sub);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
|
|
|
|
kfree(sub);
|
|
}
|
|
|
|
int
|
|
splat_kmem_id(void) {
|
|
return SPLAT_SUBSYSTEM_KMEM;
|
|
}
|