mirror_zfs/lib/libzfs/libzfs_sendrecv.c
LOLi faa97c1619 Want 'zfs send -b'
This change implements 'zfs send -b' which can be used to send only
received property values whether or not they are overridden by local
settings.

This can be very useful during "restore" operations from a backup pool
because it allows to send only the property values originally sent
from the backup source, even though they were later modified on the
destination either by a 'zfs set' operation, explicit 'zfs inherit' or
overridden during the receive process via 'zfs receive -o|-x'.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #7156
2018-02-21 12:32:06 -08:00

4579 lines
121 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
* Copyright (c) 2012, Joyent, Inc. All rights reserved.
* Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>.
* All rights reserved
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
* Copyright (c) 2017, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
*/
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <stddef.h>
#include <fcntl.h>
#include <sys/mount.h>
#include <sys/mntent.h>
#include <sys/mnttab.h>
#include <sys/avl.h>
#include <sys/debug.h>
#include <sys/stat.h>
#include <stddef.h>
#include <pthread.h>
#include <umem.h>
#include <time.h>
#include <libzfs.h>
#include <libzfs_core.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
#include "zfs_fletcher.h"
#include "libzfs_impl.h"
#include <zlib.h>
#include <sys/zio_checksum.h>
#include <sys/dsl_crypt.h>
#include <sys/ddt.h>
#include <sys/socket.h>
#include <sys/sha2.h>
/* in libzfs_dataset.c */
extern void zfs_setprop_error(libzfs_handle_t *, zfs_prop_t, int, char *);
static int zfs_receive_impl(libzfs_handle_t *, const char *, const char *,
recvflags_t *, int, const char *, nvlist_t *, avl_tree_t *, char **, int,
uint64_t *, const char *, nvlist_t *);
static int guid_to_name(libzfs_handle_t *, const char *,
uint64_t, boolean_t, char *);
static const zio_cksum_t zero_cksum = { { 0 } };
typedef struct dedup_arg {
int inputfd;
int outputfd;
libzfs_handle_t *dedup_hdl;
} dedup_arg_t;
typedef struct progress_arg {
zfs_handle_t *pa_zhp;
int pa_fd;
boolean_t pa_parsable;
} progress_arg_t;
typedef struct dataref {
uint64_t ref_guid;
uint64_t ref_object;
uint64_t ref_offset;
} dataref_t;
typedef struct dedup_entry {
struct dedup_entry *dde_next;
zio_cksum_t dde_chksum;
uint64_t dde_prop;
dataref_t dde_ref;
} dedup_entry_t;
#define MAX_DDT_PHYSMEM_PERCENT 20
#define SMALLEST_POSSIBLE_MAX_DDT_MB 128
typedef struct dedup_table {
dedup_entry_t **dedup_hash_array;
umem_cache_t *ddecache;
uint64_t max_ddt_size; /* max dedup table size in bytes */
uint64_t cur_ddt_size; /* current dedup table size in bytes */
uint64_t ddt_count;
int numhashbits;
boolean_t ddt_full;
} dedup_table_t;
static int
high_order_bit(uint64_t n)
{
int count;
for (count = 0; n != 0; count++)
n >>= 1;
return (count);
}
static size_t
ssread(void *buf, size_t len, FILE *stream)
{
size_t outlen;
if ((outlen = fread(buf, len, 1, stream)) == 0)
return (0);
return (outlen);
}
static void
ddt_hash_append(libzfs_handle_t *hdl, dedup_table_t *ddt, dedup_entry_t **ddepp,
zio_cksum_t *cs, uint64_t prop, dataref_t *dr)
{
dedup_entry_t *dde;
if (ddt->cur_ddt_size >= ddt->max_ddt_size) {
if (ddt->ddt_full == B_FALSE) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Dedup table full. Deduplication will continue "
"with existing table entries"));
ddt->ddt_full = B_TRUE;
}
return;
}
if ((dde = umem_cache_alloc(ddt->ddecache, UMEM_DEFAULT))
!= NULL) {
assert(*ddepp == NULL);
dde->dde_next = NULL;
dde->dde_chksum = *cs;
dde->dde_prop = prop;
dde->dde_ref = *dr;
*ddepp = dde;
ddt->cur_ddt_size += sizeof (dedup_entry_t);
ddt->ddt_count++;
}
}
/*
* Using the specified dedup table, do a lookup for an entry with
* the checksum cs. If found, return the block's reference info
* in *dr. Otherwise, insert a new entry in the dedup table, using
* the reference information specified by *dr.
*
* return value: true - entry was found
* false - entry was not found
*/
static boolean_t
ddt_update(libzfs_handle_t *hdl, dedup_table_t *ddt, zio_cksum_t *cs,
uint64_t prop, dataref_t *dr)
{
uint32_t hashcode;
dedup_entry_t **ddepp;
hashcode = BF64_GET(cs->zc_word[0], 0, ddt->numhashbits);
for (ddepp = &(ddt->dedup_hash_array[hashcode]); *ddepp != NULL;
ddepp = &((*ddepp)->dde_next)) {
if (ZIO_CHECKSUM_EQUAL(((*ddepp)->dde_chksum), *cs) &&
(*ddepp)->dde_prop == prop) {
*dr = (*ddepp)->dde_ref;
return (B_TRUE);
}
}
ddt_hash_append(hdl, ddt, ddepp, cs, prop, dr);
return (B_FALSE);
}
static int
dump_record(dmu_replay_record_t *drr, void *payload, int payload_len,
zio_cksum_t *zc, int outfd)
{
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
fletcher_4_incremental_native(drr,
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), zc);
if (drr->drr_type != DRR_BEGIN) {
ASSERT(ZIO_CHECKSUM_IS_ZERO(&drr->drr_u.
drr_checksum.drr_checksum));
drr->drr_u.drr_checksum.drr_checksum = *zc;
}
fletcher_4_incremental_native(&drr->drr_u.drr_checksum.drr_checksum,
sizeof (zio_cksum_t), zc);
if (write(outfd, drr, sizeof (*drr)) == -1)
return (errno);
if (payload_len != 0) {
fletcher_4_incremental_native(payload, payload_len, zc);
if (write(outfd, payload, payload_len) == -1)
return (errno);
}
return (0);
}
/*
* This function is started in a separate thread when the dedup option
* has been requested. The main send thread determines the list of
* snapshots to be included in the send stream and makes the ioctl calls
* for each one. But instead of having the ioctl send the output to the
* the output fd specified by the caller of zfs_send()), the
* ioctl is told to direct the output to a pipe, which is read by the
* alternate thread running THIS function. This function does the
* dedup'ing by:
* 1. building a dedup table (the DDT)
* 2. doing checksums on each data block and inserting a record in the DDT
* 3. looking for matching checksums, and
* 4. sending a DRR_WRITE_BYREF record instead of a write record whenever
* a duplicate block is found.
* The output of this function then goes to the output fd requested
* by the caller of zfs_send().
*/
static void *
cksummer(void *arg)
{
dedup_arg_t *dda = arg;
char *buf = zfs_alloc(dda->dedup_hdl, SPA_MAXBLOCKSIZE);
dmu_replay_record_t thedrr = { 0 };
dmu_replay_record_t *drr = &thedrr;
FILE *ofp;
int outfd;
dedup_table_t ddt;
zio_cksum_t stream_cksum;
uint64_t numbuckets;
#ifdef _ILP32
ddt.max_ddt_size = SMALLEST_POSSIBLE_MAX_DDT_MB << 20;
#else
uint64_t physmem = sysconf(_SC_PHYS_PAGES) * sysconf(_SC_PAGESIZE);
ddt.max_ddt_size =
MAX((physmem * MAX_DDT_PHYSMEM_PERCENT) / 100,
SMALLEST_POSSIBLE_MAX_DDT_MB << 20);
#endif
numbuckets = ddt.max_ddt_size / (sizeof (dedup_entry_t));
/*
* numbuckets must be a power of 2. Increase number to
* a power of 2 if necessary.
*/
if (!ISP2(numbuckets))
numbuckets = 1ULL << high_order_bit(numbuckets);
ddt.dedup_hash_array = calloc(numbuckets, sizeof (dedup_entry_t *));
ddt.ddecache = umem_cache_create("dde", sizeof (dedup_entry_t), 0,
NULL, NULL, NULL, NULL, NULL, 0);
ddt.cur_ddt_size = numbuckets * sizeof (dedup_entry_t *);
ddt.numhashbits = high_order_bit(numbuckets) - 1;
ddt.ddt_full = B_FALSE;
outfd = dda->outputfd;
ofp = fdopen(dda->inputfd, "r");
while (ssread(drr, sizeof (*drr), ofp) != 0) {
/*
* kernel filled in checksum, we are going to write same
* record, but need to regenerate checksum.
*/
if (drr->drr_type != DRR_BEGIN) {
bzero(&drr->drr_u.drr_checksum.drr_checksum,
sizeof (drr->drr_u.drr_checksum.drr_checksum));
}
switch (drr->drr_type) {
case DRR_BEGIN:
{
struct drr_begin *drrb = &drr->drr_u.drr_begin;
int fflags;
int sz = 0;
ZIO_SET_CHECKSUM(&stream_cksum, 0, 0, 0, 0);
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
/* set the DEDUP feature flag for this stream */
fflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
fflags |= (DMU_BACKUP_FEATURE_DEDUP |
DMU_BACKUP_FEATURE_DEDUPPROPS);
DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, fflags);
if (drr->drr_payloadlen != 0) {
sz = drr->drr_payloadlen;
if (sz > SPA_MAXBLOCKSIZE) {
buf = zfs_realloc(dda->dedup_hdl, buf,
SPA_MAXBLOCKSIZE, sz);
}
(void) ssread(buf, sz, ofp);
if (ferror(stdin))
perror("fread");
}
if (dump_record(drr, buf, sz, &stream_cksum,
outfd) != 0)
goto out;
break;
}
case DRR_END:
{
struct drr_end *drre = &drr->drr_u.drr_end;
/* use the recalculated checksum */
drre->drr_checksum = stream_cksum;
if (dump_record(drr, NULL, 0, &stream_cksum,
outfd) != 0)
goto out;
break;
}
case DRR_OBJECT:
{
struct drr_object *drro = &drr->drr_u.drr_object;
if (drro->drr_bonuslen > 0) {
(void) ssread(buf,
DRR_OBJECT_PAYLOAD_SIZE(drro), ofp);
}
if (dump_record(drr, buf, DRR_OBJECT_PAYLOAD_SIZE(drro),
&stream_cksum, outfd) != 0)
goto out;
break;
}
case DRR_SPILL:
{
struct drr_spill *drrs = &drr->drr_u.drr_spill;
(void) ssread(buf, DRR_SPILL_PAYLOAD_SIZE(drrs), ofp);
if (dump_record(drr, buf, DRR_SPILL_PAYLOAD_SIZE(drrs),
&stream_cksum, outfd) != 0)
goto out;
break;
}
case DRR_FREEOBJECTS:
{
if (dump_record(drr, NULL, 0, &stream_cksum,
outfd) != 0)
goto out;
break;
}
case DRR_WRITE:
{
struct drr_write *drrw = &drr->drr_u.drr_write;
dataref_t dataref;
uint64_t payload_size;
payload_size = DRR_WRITE_PAYLOAD_SIZE(drrw);
(void) ssread(buf, payload_size, ofp);
/*
* Use the existing checksum if it's dedup-capable,
* else calculate a SHA256 checksum for it.
*/
if (ZIO_CHECKSUM_EQUAL(drrw->drr_key.ddk_cksum,
zero_cksum) ||
!DRR_IS_DEDUP_CAPABLE(drrw->drr_flags)) {
SHA2_CTX ctx;
zio_cksum_t tmpsha256;
SHA2Init(SHA256, &ctx);
SHA2Update(&ctx, buf, payload_size);
SHA2Final(&tmpsha256, &ctx);
drrw->drr_key.ddk_cksum.zc_word[0] =
BE_64(tmpsha256.zc_word[0]);
drrw->drr_key.ddk_cksum.zc_word[1] =
BE_64(tmpsha256.zc_word[1]);
drrw->drr_key.ddk_cksum.zc_word[2] =
BE_64(tmpsha256.zc_word[2]);
drrw->drr_key.ddk_cksum.zc_word[3] =
BE_64(tmpsha256.zc_word[3]);
drrw->drr_checksumtype = ZIO_CHECKSUM_SHA256;
drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
}
dataref.ref_guid = drrw->drr_toguid;
dataref.ref_object = drrw->drr_object;
dataref.ref_offset = drrw->drr_offset;
if (ddt_update(dda->dedup_hdl, &ddt,
&drrw->drr_key.ddk_cksum, drrw->drr_key.ddk_prop,
&dataref)) {
dmu_replay_record_t wbr_drr = {0};
struct drr_write_byref *wbr_drrr =
&wbr_drr.drr_u.drr_write_byref;
/* block already present in stream */
wbr_drr.drr_type = DRR_WRITE_BYREF;
wbr_drrr->drr_object = drrw->drr_object;
wbr_drrr->drr_offset = drrw->drr_offset;
wbr_drrr->drr_length = drrw->drr_logical_size;
wbr_drrr->drr_toguid = drrw->drr_toguid;
wbr_drrr->drr_refguid = dataref.ref_guid;
wbr_drrr->drr_refobject =
dataref.ref_object;
wbr_drrr->drr_refoffset =
dataref.ref_offset;
wbr_drrr->drr_checksumtype =
drrw->drr_checksumtype;
wbr_drrr->drr_flags = drrw->drr_flags;
wbr_drrr->drr_key.ddk_cksum =
drrw->drr_key.ddk_cksum;
wbr_drrr->drr_key.ddk_prop =
drrw->drr_key.ddk_prop;
if (dump_record(&wbr_drr, NULL, 0,
&stream_cksum, outfd) != 0)
goto out;
} else {
/* block not previously seen */
if (dump_record(drr, buf, payload_size,
&stream_cksum, outfd) != 0)
goto out;
}
break;
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&drr->drr_u.drr_write_embedded;
(void) ssread(buf,
P2ROUNDUP((uint64_t)drrwe->drr_psize, 8), ofp);
if (dump_record(drr, buf,
P2ROUNDUP((uint64_t)drrwe->drr_psize, 8),
&stream_cksum, outfd) != 0)
goto out;
break;
}
case DRR_FREE:
{
if (dump_record(drr, NULL, 0, &stream_cksum,
outfd) != 0)
goto out;
break;
}
case DRR_OBJECT_RANGE:
{
if (dump_record(drr, NULL, 0, &stream_cksum,
outfd) != 0)
goto out;
break;
}
default:
(void) fprintf(stderr, "INVALID record type 0x%x\n",
drr->drr_type);
/* should never happen, so assert */
assert(B_FALSE);
}
}
out:
umem_cache_destroy(ddt.ddecache);
free(ddt.dedup_hash_array);
free(buf);
(void) fclose(ofp);
return (NULL);
}
/*
* Routines for dealing with the AVL tree of fs-nvlists
*/
typedef struct fsavl_node {
avl_node_t fn_node;
nvlist_t *fn_nvfs;
char *fn_snapname;
uint64_t fn_guid;
} fsavl_node_t;
static int
fsavl_compare(const void *arg1, const void *arg2)
{
const fsavl_node_t *fn1 = (const fsavl_node_t *)arg1;
const fsavl_node_t *fn2 = (const fsavl_node_t *)arg2;
return (AVL_CMP(fn1->fn_guid, fn2->fn_guid));
}
/*
* Given the GUID of a snapshot, find its containing filesystem and
* (optionally) name.
*/
static nvlist_t *
fsavl_find(avl_tree_t *avl, uint64_t snapguid, char **snapname)
{
fsavl_node_t fn_find;
fsavl_node_t *fn;
fn_find.fn_guid = snapguid;
fn = avl_find(avl, &fn_find, NULL);
if (fn) {
if (snapname)
*snapname = fn->fn_snapname;
return (fn->fn_nvfs);
}
return (NULL);
}
static void
fsavl_destroy(avl_tree_t *avl)
{
fsavl_node_t *fn;
void *cookie;
if (avl == NULL)
return;
cookie = NULL;
while ((fn = avl_destroy_nodes(avl, &cookie)) != NULL)
free(fn);
avl_destroy(avl);
free(avl);
}
/*
* Given an nvlist, produce an avl tree of snapshots, ordered by guid
*/
static avl_tree_t *
fsavl_create(nvlist_t *fss)
{
avl_tree_t *fsavl;
nvpair_t *fselem = NULL;
if ((fsavl = malloc(sizeof (avl_tree_t))) == NULL)
return (NULL);
avl_create(fsavl, fsavl_compare, sizeof (fsavl_node_t),
offsetof(fsavl_node_t, fn_node));
while ((fselem = nvlist_next_nvpair(fss, fselem)) != NULL) {
nvlist_t *nvfs, *snaps;
nvpair_t *snapelem = NULL;
VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs));
VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps));
while ((snapelem =
nvlist_next_nvpair(snaps, snapelem)) != NULL) {
fsavl_node_t *fn;
uint64_t guid;
VERIFY(0 == nvpair_value_uint64(snapelem, &guid));
if ((fn = malloc(sizeof (fsavl_node_t))) == NULL) {
fsavl_destroy(fsavl);
return (NULL);
}
fn->fn_nvfs = nvfs;
fn->fn_snapname = nvpair_name(snapelem);
fn->fn_guid = guid;
/*
* Note: if there are multiple snaps with the
* same GUID, we ignore all but one.
*/
if (avl_find(fsavl, fn, NULL) == NULL)
avl_add(fsavl, fn);
else
free(fn);
}
}
return (fsavl);
}
/*
* Routines for dealing with the giant nvlist of fs-nvlists, etc.
*/
typedef struct send_data {
/*
* assigned inside every recursive call,
* restored from *_save on return:
*
* guid of fromsnap snapshot in parent dataset
* txg of fromsnap snapshot in current dataset
* txg of tosnap snapshot in current dataset
*/
uint64_t parent_fromsnap_guid;
uint64_t fromsnap_txg;
uint64_t tosnap_txg;
/* the nvlists get accumulated during depth-first traversal */
nvlist_t *parent_snaps;
nvlist_t *fss;
nvlist_t *snapprops;
/* send-receive configuration, does not change during traversal */
const char *fsname;
const char *fromsnap;
const char *tosnap;
boolean_t raw;
boolean_t backup;
boolean_t recursive;
boolean_t verbose;
boolean_t seenfrom;
boolean_t seento;
/*
* The header nvlist is of the following format:
* {
* "tosnap" -> string
* "fromsnap" -> string (if incremental)
* "fss" -> {
* id -> {
*
* "name" -> string (full name; for debugging)
* "parentfromsnap" -> number (guid of fromsnap in parent)
*
* "props" -> { name -> value (only if set here) }
* "snaps" -> { name (lastname) -> number (guid) }
* "snapprops" -> { name (lastname) -> { name -> value } }
*
* "origin" -> number (guid) (if clone)
* "is_encroot" -> boolean
* "sent" -> boolean (not on-disk)
* }
* }
* }
*
*/
} send_data_t;
static void
send_iterate_prop(zfs_handle_t *zhp, boolean_t received_only, nvlist_t *nv);
static int
send_iterate_snap(zfs_handle_t *zhp, void *arg)
{
send_data_t *sd = arg;
uint64_t guid = zhp->zfs_dmustats.dds_guid;
uint64_t txg = zhp->zfs_dmustats.dds_creation_txg;
char *snapname;
nvlist_t *nv;
boolean_t isfromsnap, istosnap, istosnapwithnofrom;
snapname = strrchr(zhp->zfs_name, '@')+1;
isfromsnap = (sd->fromsnap != NULL &&
strcmp(sd->fromsnap, snapname) == 0);
istosnap = (sd->tosnap != NULL && (strcmp(sd->tosnap, snapname) == 0));
istosnapwithnofrom = (istosnap && sd->fromsnap == NULL);
if (sd->tosnap_txg != 0 && txg > sd->tosnap_txg) {
if (sd->verbose) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"skipping snapshot %s because it was created "
"after the destination snapshot (%s)\n"),
zhp->zfs_name, sd->tosnap);
}
zfs_close(zhp);
return (0);
}
VERIFY(0 == nvlist_add_uint64(sd->parent_snaps, snapname, guid));
/*
* NB: if there is no fromsnap here (it's a newly created fs in
* an incremental replication), we will substitute the tosnap.
*/
if (isfromsnap || (sd->parent_fromsnap_guid == 0 && istosnap)) {
sd->parent_fromsnap_guid = guid;
}
if (!sd->recursive) {
if (!sd->seenfrom && isfromsnap) {
sd->seenfrom = B_TRUE;
zfs_close(zhp);
return (0);
}
if ((sd->seento || !sd->seenfrom) && !istosnapwithnofrom) {
zfs_close(zhp);
return (0);
}
if (istosnap)
sd->seento = B_TRUE;
}
VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0));
send_iterate_prop(zhp, sd->backup, nv);
VERIFY(0 == nvlist_add_nvlist(sd->snapprops, snapname, nv));
nvlist_free(nv);
zfs_close(zhp);
return (0);
}
static void
send_iterate_prop(zfs_handle_t *zhp, boolean_t received_only, nvlist_t *nv)
{
nvlist_t *props = NULL;
nvpair_t *elem = NULL;
if (received_only)
props = zfs_get_recvd_props(zhp);
else
props = zhp->zfs_props;
while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
char *propname = nvpair_name(elem);
zfs_prop_t prop = zfs_name_to_prop(propname);
nvlist_t *propnv;
if (!zfs_prop_user(propname)) {
/*
* Realistically, this should never happen. However,
* we want the ability to add DSL properties without
* needing to make incompatible version changes. We
* need to ignore unknown properties to allow older
* software to still send datasets containing these
* properties, with the unknown properties elided.
*/
if (prop == ZPROP_INVAL)
continue;
if (zfs_prop_readonly(prop))
continue;
}
verify(nvpair_value_nvlist(elem, &propnv) == 0);
if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION ||
prop == ZFS_PROP_REFQUOTA ||
prop == ZFS_PROP_REFRESERVATION) {
char *source;
uint64_t value;
verify(nvlist_lookup_uint64(propnv,
ZPROP_VALUE, &value) == 0);
if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT)
continue;
/*
* May have no source before SPA_VERSION_RECVD_PROPS,
* but is still modifiable.
*/
if (nvlist_lookup_string(propnv,
ZPROP_SOURCE, &source) == 0) {
if ((strcmp(source, zhp->zfs_name) != 0) &&
(strcmp(source,
ZPROP_SOURCE_VAL_RECVD) != 0))
continue;
}
} else {
char *source;
if (nvlist_lookup_string(propnv,
ZPROP_SOURCE, &source) != 0)
continue;
if ((strcmp(source, zhp->zfs_name) != 0) &&
(strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0))
continue;
}
if (zfs_prop_user(propname) ||
zfs_prop_get_type(prop) == PROP_TYPE_STRING) {
char *value;
verify(nvlist_lookup_string(propnv,
ZPROP_VALUE, &value) == 0);
VERIFY(0 == nvlist_add_string(nv, propname, value));
} else {
uint64_t value;
verify(nvlist_lookup_uint64(propnv,
ZPROP_VALUE, &value) == 0);
VERIFY(0 == nvlist_add_uint64(nv, propname, value));
}
}
}
/*
* returns snapshot creation txg
* and returns 0 if the snapshot does not exist
*/
static uint64_t
get_snap_txg(libzfs_handle_t *hdl, const char *fs, const char *snap)
{
char name[ZFS_MAX_DATASET_NAME_LEN];
uint64_t txg = 0;
if (fs == NULL || fs[0] == '\0' || snap == NULL || snap[0] == '\0')
return (txg);
(void) snprintf(name, sizeof (name), "%s@%s", fs, snap);
if (zfs_dataset_exists(hdl, name, ZFS_TYPE_SNAPSHOT)) {
zfs_handle_t *zhp = zfs_open(hdl, name, ZFS_TYPE_SNAPSHOT);
if (zhp != NULL) {
txg = zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG);
zfs_close(zhp);
}
}
return (txg);
}
/*
* recursively generate nvlists describing datasets. See comment
* for the data structure send_data_t above for description of contents
* of the nvlist.
*/
static int
send_iterate_fs(zfs_handle_t *zhp, void *arg)
{
send_data_t *sd = arg;
nvlist_t *nvfs = NULL, *nv = NULL;
int rv = 0;
uint64_t parent_fromsnap_guid_save = sd->parent_fromsnap_guid;
uint64_t fromsnap_txg_save = sd->fromsnap_txg;
uint64_t tosnap_txg_save = sd->tosnap_txg;
uint64_t txg = zhp->zfs_dmustats.dds_creation_txg;
uint64_t guid = zhp->zfs_dmustats.dds_guid;
uint64_t fromsnap_txg, tosnap_txg;
char guidstring[64];
fromsnap_txg = get_snap_txg(zhp->zfs_hdl, zhp->zfs_name, sd->fromsnap);
if (fromsnap_txg != 0)
sd->fromsnap_txg = fromsnap_txg;
tosnap_txg = get_snap_txg(zhp->zfs_hdl, zhp->zfs_name, sd->tosnap);
if (tosnap_txg != 0)
sd->tosnap_txg = tosnap_txg;
/*
* on the send side, if the current dataset does not have tosnap,
* perform two additional checks:
*
* - skip sending the current dataset if it was created later than
* the parent tosnap
* - return error if the current dataset was created earlier than
* the parent tosnap
*/
if (sd->tosnap != NULL && tosnap_txg == 0) {
if (sd->tosnap_txg != 0 && txg > sd->tosnap_txg) {
if (sd->verbose) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"skipping dataset %s: snapshot %s does "
"not exist\n"), zhp->zfs_name, sd->tosnap);
}
} else {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"cannot send %s@%s%s: snapshot %s@%s does not "
"exist\n"), sd->fsname, sd->tosnap, sd->recursive ?
dgettext(TEXT_DOMAIN, " recursively") : "",
zhp->zfs_name, sd->tosnap);
rv = -1;
}
goto out;
}
VERIFY(0 == nvlist_alloc(&nvfs, NV_UNIQUE_NAME, 0));
VERIFY(0 == nvlist_add_string(nvfs, "name", zhp->zfs_name));
VERIFY(0 == nvlist_add_uint64(nvfs, "parentfromsnap",
sd->parent_fromsnap_guid));
if (zhp->zfs_dmustats.dds_origin[0]) {
zfs_handle_t *origin = zfs_open(zhp->zfs_hdl,
zhp->zfs_dmustats.dds_origin, ZFS_TYPE_SNAPSHOT);
if (origin == NULL) {
rv = -1;
goto out;
}
VERIFY(0 == nvlist_add_uint64(nvfs, "origin",
origin->zfs_dmustats.dds_guid));
zfs_close(origin);
}
/* iterate over props */
VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0));
send_iterate_prop(zhp, sd->backup, nv);
if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
boolean_t encroot;
/* determine if this dataset is an encryption root */
if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0) {
rv = -1;
goto out;
}
if (encroot)
VERIFY(0 == nvlist_add_boolean(nvfs, "is_encroot"));
/*
* Encrypted datasets can only be sent with properties if
* the raw flag is specified because the receive side doesn't
* currently have a mechanism for recursively asking the user
* for new encryption parameters.
*/
if (!sd->raw) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"cannot send %s@%s: encrypted dataset %s may not "
"be sent with properties without the raw flag\n"),
sd->fsname, sd->tosnap, zhp->zfs_name);
rv = -1;
goto out;
}
}
VERIFY(0 == nvlist_add_nvlist(nvfs, "props", nv));
/* iterate over snaps, and set sd->parent_fromsnap_guid */
sd->parent_fromsnap_guid = 0;
VERIFY(0 == nvlist_alloc(&sd->parent_snaps, NV_UNIQUE_NAME, 0));
VERIFY(0 == nvlist_alloc(&sd->snapprops, NV_UNIQUE_NAME, 0));
(void) zfs_iter_snapshots_sorted(zhp, send_iterate_snap, sd);
VERIFY(0 == nvlist_add_nvlist(nvfs, "snaps", sd->parent_snaps));
VERIFY(0 == nvlist_add_nvlist(nvfs, "snapprops", sd->snapprops));
nvlist_free(sd->parent_snaps);
nvlist_free(sd->snapprops);
/* add this fs to nvlist */
(void) snprintf(guidstring, sizeof (guidstring),
"0x%llx", (longlong_t)guid);
VERIFY(0 == nvlist_add_nvlist(sd->fss, guidstring, nvfs));
/* iterate over children */
if (sd->recursive)
rv = zfs_iter_filesystems(zhp, send_iterate_fs, sd);
out:
sd->parent_fromsnap_guid = parent_fromsnap_guid_save;
sd->fromsnap_txg = fromsnap_txg_save;
sd->tosnap_txg = tosnap_txg_save;
nvlist_free(nv);
nvlist_free(nvfs);
zfs_close(zhp);
return (rv);
}
static int
gather_nvlist(libzfs_handle_t *hdl, const char *fsname, const char *fromsnap,
const char *tosnap, boolean_t recursive, boolean_t raw, boolean_t verbose,
boolean_t backup, nvlist_t **nvlp, avl_tree_t **avlp)
{
zfs_handle_t *zhp;
send_data_t sd = { 0 };
int error;
zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL)
return (EZFS_BADTYPE);
VERIFY(0 == nvlist_alloc(&sd.fss, NV_UNIQUE_NAME, 0));
sd.fsname = fsname;
sd.fromsnap = fromsnap;
sd.tosnap = tosnap;
sd.recursive = recursive;
sd.raw = raw;
sd.verbose = verbose;
sd.backup = backup;
if ((error = send_iterate_fs(zhp, &sd)) != 0) {
nvlist_free(sd.fss);
if (avlp != NULL)
*avlp = NULL;
*nvlp = NULL;
return (error);
}
if (avlp != NULL && (*avlp = fsavl_create(sd.fss)) == NULL) {
nvlist_free(sd.fss);
*nvlp = NULL;
return (EZFS_NOMEM);
}
*nvlp = sd.fss;
return (0);
}
/*
* Routines specific to "zfs send"
*/
typedef struct send_dump_data {
/* these are all just the short snapname (the part after the @) */
const char *fromsnap;
const char *tosnap;
char prevsnap[ZFS_MAX_DATASET_NAME_LEN];
uint64_t prevsnap_obj;
boolean_t seenfrom, seento, replicate, doall, fromorigin;
boolean_t verbose, dryrun, parsable, progress, embed_data, std_out;
boolean_t large_block, compress, raw;
int outfd;
boolean_t err;
nvlist_t *fss;
nvlist_t *snapholds;
avl_tree_t *fsavl;
snapfilter_cb_t *filter_cb;
void *filter_cb_arg;
nvlist_t *debugnv;
char holdtag[ZFS_MAX_DATASET_NAME_LEN];
int cleanup_fd;
uint64_t size;
} send_dump_data_t;
static int
zfs_send_space(zfs_handle_t *zhp, const char *snapname, const char *from,
enum lzc_send_flags flags, uint64_t *spacep)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
int error;
assert(snapname != NULL);
error = lzc_send_space(snapname, from, flags, spacep);
if (error != 0) {
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"warning: cannot estimate space for '%s'"), snapname);
switch (error) {
case EXDEV:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"not an earlier snapshot from the same fs"));
return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));
case ENOENT:
if (zfs_dataset_exists(hdl, snapname,
ZFS_TYPE_SNAPSHOT)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"incremental source (%s) does not exist"),
snapname);
}
return (zfs_error(hdl, EZFS_NOENT, errbuf));
case EDQUOT:
case EFBIG:
case EIO:
case ENOLINK:
case ENOSPC:
case ENOSTR:
case ENXIO:
case EPIPE:
case ERANGE:
case EFAULT:
case EROFS:
case EINVAL:
zfs_error_aux(hdl, strerror(error));
return (zfs_error(hdl, EZFS_BADBACKUP, errbuf));
default:
return (zfs_standard_error(hdl, error, errbuf));
}
}
return (0);
}
/*
* Dumps a backup of the given snapshot (incremental from fromsnap if it's not
* NULL) to the file descriptor specified by outfd.
*/
static int
dump_ioctl(zfs_handle_t *zhp, const char *fromsnap, uint64_t fromsnap_obj,
boolean_t fromorigin, int outfd, enum lzc_send_flags flags,
nvlist_t *debugnv)
{
zfs_cmd_t zc = {"\0"};
libzfs_handle_t *hdl = zhp->zfs_hdl;
nvlist_t *thisdbg;
assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT);
assert(fromsnap_obj == 0 || !fromorigin);
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
zc.zc_cookie = outfd;
zc.zc_obj = fromorigin;
zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
zc.zc_fromobj = fromsnap_obj;
zc.zc_flags = flags;
VERIFY(0 == nvlist_alloc(&thisdbg, NV_UNIQUE_NAME, 0));
if (fromsnap && fromsnap[0] != '\0') {
VERIFY(0 == nvlist_add_string(thisdbg,
"fromsnap", fromsnap));
}
if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) {
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"warning: cannot send '%s'"), zhp->zfs_name);
VERIFY(0 == nvlist_add_uint64(thisdbg, "error", errno));
if (debugnv) {
VERIFY(0 == nvlist_add_nvlist(debugnv,
zhp->zfs_name, thisdbg));
}
nvlist_free(thisdbg);
switch (errno) {
case EXDEV:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"not an earlier snapshot from the same fs"));
return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));
case EACCES:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"source key must be loaded"));
return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf));
case ENOENT:
if (zfs_dataset_exists(hdl, zc.zc_name,
ZFS_TYPE_SNAPSHOT)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"incremental source (@%s) does not exist"),
zc.zc_value);
}
return (zfs_error(hdl, EZFS_NOENT, errbuf));
case EDQUOT:
case EFBIG:
case EIO:
case ENOLINK:
case ENOSPC:
case ENOSTR:
case ENXIO:
case EPIPE:
case ERANGE:
case EFAULT:
case EROFS:
zfs_error_aux(hdl, strerror(errno));
return (zfs_error(hdl, EZFS_BADBACKUP, errbuf));
default:
return (zfs_standard_error(hdl, errno, errbuf));
}
}
if (debugnv)
VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg));
nvlist_free(thisdbg);
return (0);
}
static void
gather_holds(zfs_handle_t *zhp, send_dump_data_t *sdd)
{
assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT);
/*
* zfs_send() only sets snapholds for sends that need them,
* e.g. replication and doall.
*/
if (sdd->snapholds == NULL)
return;
fnvlist_add_string(sdd->snapholds, zhp->zfs_name, sdd->holdtag);
}
static void *
send_progress_thread(void *arg)
{
progress_arg_t *pa = arg;
zfs_cmd_t zc = {"\0"};
zfs_handle_t *zhp = pa->pa_zhp;
libzfs_handle_t *hdl = zhp->zfs_hdl;
unsigned long long bytes;
char buf[16];
time_t t;
struct tm *tm;
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (!pa->pa_parsable)
(void) fprintf(stderr, "TIME SENT SNAPSHOT\n");
/*
* Print the progress from ZFS_IOC_SEND_PROGRESS every second.
*/
for (;;) {
(void) sleep(1);
zc.zc_cookie = pa->pa_fd;
if (zfs_ioctl(hdl, ZFS_IOC_SEND_PROGRESS, &zc) != 0)
return ((void *)-1);
(void) time(&t);
tm = localtime(&t);
bytes = zc.zc_cookie;
if (pa->pa_parsable) {
(void) fprintf(stderr, "%02d:%02d:%02d\t%llu\t%s\n",
tm->tm_hour, tm->tm_min, tm->tm_sec,
bytes, zhp->zfs_name);
} else {
zfs_nicebytes(bytes, buf, sizeof (buf));
(void) fprintf(stderr, "%02d:%02d:%02d %5s %s\n",
tm->tm_hour, tm->tm_min, tm->tm_sec,
buf, zhp->zfs_name);
}
}
}
static void
send_print_verbose(FILE *fout, const char *tosnap, const char *fromsnap,
uint64_t size, boolean_t parsable)
{
if (parsable) {
if (fromsnap != NULL) {
(void) fprintf(fout, "incremental\t%s\t%s",
fromsnap, tosnap);
} else {
(void) fprintf(fout, "full\t%s",
tosnap);
}
} else {
if (fromsnap != NULL) {
if (strchr(fromsnap, '@') == NULL &&
strchr(fromsnap, '#') == NULL) {
(void) fprintf(fout, dgettext(TEXT_DOMAIN,
"send from @%s to %s"),
fromsnap, tosnap);
} else {
(void) fprintf(fout, dgettext(TEXT_DOMAIN,
"send from %s to %s"),
fromsnap, tosnap);
}
} else {
(void) fprintf(fout, dgettext(TEXT_DOMAIN,
"full send of %s"),
tosnap);
}
}
if (parsable) {
(void) fprintf(fout, "\t%llu",
(longlong_t)size);
} else if (size != 0) {
char buf[16];
zfs_nicebytes(size, buf, sizeof (buf));
(void) fprintf(fout, dgettext(TEXT_DOMAIN,
" estimated size is %s"), buf);
}
(void) fprintf(fout, "\n");
}
static int
dump_snapshot(zfs_handle_t *zhp, void *arg)
{
send_dump_data_t *sdd = arg;
progress_arg_t pa = { 0 };
pthread_t tid;
char *thissnap;
enum lzc_send_flags flags = 0;
int err;
boolean_t isfromsnap, istosnap, fromorigin;
boolean_t exclude = B_FALSE;
FILE *fout = sdd->std_out ? stdout : stderr;
err = 0;
thissnap = strchr(zhp->zfs_name, '@') + 1;
isfromsnap = (sdd->fromsnap != NULL &&
strcmp(sdd->fromsnap, thissnap) == 0);
if (!sdd->seenfrom && isfromsnap) {
gather_holds(zhp, sdd);
sdd->seenfrom = B_TRUE;
(void) strlcpy(sdd->prevsnap, thissnap,
sizeof (sdd->prevsnap));
sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
zfs_close(zhp);
return (0);
}
if (sdd->seento || !sdd->seenfrom) {
zfs_close(zhp);
return (0);
}
istosnap = (strcmp(sdd->tosnap, thissnap) == 0);
if (istosnap)
sdd->seento = B_TRUE;
if (sdd->large_block)
flags |= LZC_SEND_FLAG_LARGE_BLOCK;
if (sdd->embed_data)
flags |= LZC_SEND_FLAG_EMBED_DATA;
if (sdd->compress)
flags |= LZC_SEND_FLAG_COMPRESS;
if (sdd->raw)
flags |= LZC_SEND_FLAG_RAW;
if (!sdd->doall && !isfromsnap && !istosnap) {
if (sdd->replicate) {
char *snapname;
nvlist_t *snapprops;
/*
* Filter out all intermediate snapshots except origin
* snapshots needed to replicate clones.
*/
nvlist_t *nvfs = fsavl_find(sdd->fsavl,
zhp->zfs_dmustats.dds_guid, &snapname);
VERIFY(0 == nvlist_lookup_nvlist(nvfs,
"snapprops", &snapprops));
VERIFY(0 == nvlist_lookup_nvlist(snapprops,
thissnap, &snapprops));
exclude = !nvlist_exists(snapprops, "is_clone_origin");
} else {
exclude = B_TRUE;
}
}
/*
* If a filter function exists, call it to determine whether
* this snapshot will be sent.
*/
if (exclude || (sdd->filter_cb != NULL &&
sdd->filter_cb(zhp, sdd->filter_cb_arg) == B_FALSE)) {
/*
* This snapshot is filtered out. Don't send it, and don't
* set prevsnap_obj, so it will be as if this snapshot didn't
* exist, and the next accepted snapshot will be sent as
* an incremental from the last accepted one, or as the
* first (and full) snapshot in the case of a replication,
* non-incremental send.
*/
zfs_close(zhp);
return (0);
}
gather_holds(zhp, sdd);
fromorigin = sdd->prevsnap[0] == '\0' &&
(sdd->fromorigin || sdd->replicate);
if (sdd->verbose) {
uint64_t size = 0;
char fromds[ZFS_MAX_DATASET_NAME_LEN];
if (sdd->prevsnap[0] != '\0') {
(void) strlcpy(fromds, zhp->zfs_name, sizeof (fromds));
*(strchr(fromds, '@') + 1) = '\0';
(void) strlcat(fromds, sdd->prevsnap, sizeof (fromds));
}
if (zfs_send_space(zhp, zhp->zfs_name,
sdd->prevsnap[0] ? fromds : NULL, flags, &size) != 0) {
size = 0; /* cannot estimate send space */
} else {
send_print_verbose(fout, zhp->zfs_name,
sdd->prevsnap[0] ? sdd->prevsnap : NULL,
size, sdd->parsable);
}
sdd->size += size;
}
if (!sdd->dryrun) {
/*
* If progress reporting is requested, spawn a new thread to
* poll ZFS_IOC_SEND_PROGRESS at a regular interval.
*/
if (sdd->progress) {
pa.pa_zhp = zhp;
pa.pa_fd = sdd->outfd;
pa.pa_parsable = sdd->parsable;
if ((err = pthread_create(&tid, NULL,
send_progress_thread, &pa)) != 0) {
zfs_close(zhp);
return (err);
}
}
err = dump_ioctl(zhp, sdd->prevsnap, sdd->prevsnap_obj,
fromorigin, sdd->outfd, flags, sdd->debugnv);
if (sdd->progress) {
(void) pthread_cancel(tid);
(void) pthread_join(tid, NULL);
}
}
(void) strcpy(sdd->prevsnap, thissnap);
sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
zfs_close(zhp);
return (err);
}
static int
dump_filesystem(zfs_handle_t *zhp, void *arg)
{
int rv = 0;
send_dump_data_t *sdd = arg;
boolean_t missingfrom = B_FALSE;
zfs_cmd_t zc = {"\0"};
(void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s",
zhp->zfs_name, sdd->tosnap);
if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"WARNING: could not send %s@%s: does not exist\n"),
zhp->zfs_name, sdd->tosnap);
sdd->err = B_TRUE;
return (0);
}
if (sdd->replicate && sdd->fromsnap) {
/*
* If this fs does not have fromsnap, and we're doing
* recursive, we need to send a full stream from the
* beginning (or an incremental from the origin if this
* is a clone). If we're doing non-recursive, then let
* them get the error.
*/
(void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s",
zhp->zfs_name, sdd->fromsnap);
if (ioctl(zhp->zfs_hdl->libzfs_fd,
ZFS_IOC_OBJSET_STATS, &zc) != 0) {
missingfrom = B_TRUE;
}
}
sdd->seenfrom = sdd->seento = sdd->prevsnap[0] = 0;
sdd->prevsnap_obj = 0;
if (sdd->fromsnap == NULL || missingfrom)
sdd->seenfrom = B_TRUE;
rv = zfs_iter_snapshots_sorted(zhp, dump_snapshot, arg);
if (!sdd->seenfrom) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"WARNING: could not send %s@%s:\n"
"incremental source (%s@%s) does not exist\n"),
zhp->zfs_name, sdd->tosnap,
zhp->zfs_name, sdd->fromsnap);
sdd->err = B_TRUE;
} else if (!sdd->seento) {
if (sdd->fromsnap) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"WARNING: could not send %s@%s:\n"
"incremental source (%s@%s) "
"is not earlier than it\n"),
zhp->zfs_name, sdd->tosnap,
zhp->zfs_name, sdd->fromsnap);
} else {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"WARNING: "
"could not send %s@%s: does not exist\n"),
zhp->zfs_name, sdd->tosnap);
}
sdd->err = B_TRUE;
}
return (rv);
}
static int
dump_filesystems(zfs_handle_t *rzhp, void *arg)
{
send_dump_data_t *sdd = arg;
nvpair_t *fspair;
boolean_t needagain, progress;
if (!sdd->replicate)
return (dump_filesystem(rzhp, sdd));
/* Mark the clone origin snapshots. */
for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair;
fspair = nvlist_next_nvpair(sdd->fss, fspair)) {
nvlist_t *nvfs;
uint64_t origin_guid = 0;
VERIFY(0 == nvpair_value_nvlist(fspair, &nvfs));
(void) nvlist_lookup_uint64(nvfs, "origin", &origin_guid);
if (origin_guid != 0) {
char *snapname;
nvlist_t *origin_nv = fsavl_find(sdd->fsavl,
origin_guid, &snapname);
if (origin_nv != NULL) {
nvlist_t *snapprops;
VERIFY(0 == nvlist_lookup_nvlist(origin_nv,
"snapprops", &snapprops));
VERIFY(0 == nvlist_lookup_nvlist(snapprops,
snapname, &snapprops));
VERIFY(0 == nvlist_add_boolean(
snapprops, "is_clone_origin"));
}
}
}
again:
needagain = progress = B_FALSE;
for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair;
fspair = nvlist_next_nvpair(sdd->fss, fspair)) {
nvlist_t *fslist, *parent_nv;
char *fsname;
zfs_handle_t *zhp;
int err;
uint64_t origin_guid = 0;
uint64_t parent_guid = 0;
VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0);
if (nvlist_lookup_boolean(fslist, "sent") == 0)
continue;
VERIFY(nvlist_lookup_string(fslist, "name", &fsname) == 0);
(void) nvlist_lookup_uint64(fslist, "origin", &origin_guid);
(void) nvlist_lookup_uint64(fslist, "parentfromsnap",
&parent_guid);
if (parent_guid != 0) {
parent_nv = fsavl_find(sdd->fsavl, parent_guid, NULL);
if (!nvlist_exists(parent_nv, "sent")) {
/* parent has not been sent; skip this one */
needagain = B_TRUE;
continue;
}
}
if (origin_guid != 0) {
nvlist_t *origin_nv = fsavl_find(sdd->fsavl,
origin_guid, NULL);
if (origin_nv != NULL &&
!nvlist_exists(origin_nv, "sent")) {
/*
* origin has not been sent yet;
* skip this clone.
*/
needagain = B_TRUE;
continue;
}
}
zhp = zfs_open(rzhp->zfs_hdl, fsname, ZFS_TYPE_DATASET);
if (zhp == NULL)
return (-1);
err = dump_filesystem(zhp, sdd);
VERIFY(nvlist_add_boolean(fslist, "sent") == 0);
progress = B_TRUE;
zfs_close(zhp);
if (err)
return (err);
}
if (needagain) {
assert(progress);
goto again;
}
/* clean out the sent flags in case we reuse this fss */
for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair;
fspair = nvlist_next_nvpair(sdd->fss, fspair)) {
nvlist_t *fslist;
VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0);
(void) nvlist_remove_all(fslist, "sent");
}
return (0);
}
nvlist_t *
zfs_send_resume_token_to_nvlist(libzfs_handle_t *hdl, const char *token)
{
unsigned int version;
int nread, i;
unsigned long long checksum, packed_len;
/*
* Decode token header, which is:
* <token version>-<checksum of payload>-<uncompressed payload length>
* Note that the only supported token version is 1.
*/
nread = sscanf(token, "%u-%llx-%llx-",
&version, &checksum, &packed_len);
if (nread != 3) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"resume token is corrupt (invalid format)"));
return (NULL);
}
if (version != ZFS_SEND_RESUME_TOKEN_VERSION) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"resume token is corrupt (invalid version %u)"),
version);
return (NULL);
}
/* convert hexadecimal representation to binary */
token = strrchr(token, '-') + 1;
int len = strlen(token) / 2;
unsigned char *compressed = zfs_alloc(hdl, len);
for (i = 0; i < len; i++) {
nread = sscanf(token + i * 2, "%2hhx", compressed + i);
if (nread != 1) {
free(compressed);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"resume token is corrupt "
"(payload is not hex-encoded)"));
return (NULL);
}
}
/* verify checksum */
zio_cksum_t cksum;
fletcher_4_native_varsize(compressed, len, &cksum);
if (cksum.zc_word[0] != checksum) {
free(compressed);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"resume token is corrupt (incorrect checksum)"));
return (NULL);
}
/* uncompress */
void *packed = zfs_alloc(hdl, packed_len);
uLongf packed_len_long = packed_len;
if (uncompress(packed, &packed_len_long, compressed, len) != Z_OK ||
packed_len_long != packed_len) {
free(packed);
free(compressed);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"resume token is corrupt (decompression failed)"));
return (NULL);
}
/* unpack nvlist */
nvlist_t *nv;
int error = nvlist_unpack(packed, packed_len, &nv, KM_SLEEP);
free(packed);
free(compressed);
if (error != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"resume token is corrupt (nvlist_unpack failed)"));
return (NULL);
}
return (nv);
}
int
zfs_send_resume(libzfs_handle_t *hdl, sendflags_t *flags, int outfd,
const char *resume_token)
{
char errbuf[1024];
char *toname;
char *fromname = NULL;
uint64_t resumeobj, resumeoff, toguid, fromguid, bytes;
zfs_handle_t *zhp;
int error = 0;
char name[ZFS_MAX_DATASET_NAME_LEN];
enum lzc_send_flags lzc_flags = 0;
FILE *fout = (flags->verbose && flags->dryrun) ? stdout : stderr;
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot resume send"));
nvlist_t *resume_nvl =
zfs_send_resume_token_to_nvlist(hdl, resume_token);
if (resume_nvl == NULL) {
/*
* zfs_error_aux has already been set by
* zfs_send_resume_token_to_nvlist
*/
return (zfs_error(hdl, EZFS_FAULT, errbuf));
}
if (flags->verbose) {
(void) fprintf(fout, dgettext(TEXT_DOMAIN,
"resume token contents:\n"));
nvlist_print(fout, resume_nvl);
}
if (nvlist_lookup_string(resume_nvl, "toname", &toname) != 0 ||
nvlist_lookup_uint64(resume_nvl, "object", &resumeobj) != 0 ||
nvlist_lookup_uint64(resume_nvl, "offset", &resumeoff) != 0 ||
nvlist_lookup_uint64(resume_nvl, "bytes", &bytes) != 0 ||
nvlist_lookup_uint64(resume_nvl, "toguid", &toguid) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"resume token is corrupt"));
return (zfs_error(hdl, EZFS_FAULT, errbuf));
}
fromguid = 0;
(void) nvlist_lookup_uint64(resume_nvl, "fromguid", &fromguid);
if (flags->largeblock || nvlist_exists(resume_nvl, "largeblockok"))
lzc_flags |= LZC_SEND_FLAG_LARGE_BLOCK;
if (flags->embed_data || nvlist_exists(resume_nvl, "embedok"))
lzc_flags |= LZC_SEND_FLAG_EMBED_DATA;
if (flags->compress || nvlist_exists(resume_nvl, "compressok"))
lzc_flags |= LZC_SEND_FLAG_COMPRESS;
if (flags->raw || nvlist_exists(resume_nvl, "rawok"))
lzc_flags |= LZC_SEND_FLAG_RAW;
if (guid_to_name(hdl, toname, toguid, B_FALSE, name) != 0) {
if (zfs_dataset_exists(hdl, toname, ZFS_TYPE_DATASET)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' is no longer the same snapshot used in "
"the initial send"), toname);
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' used in the initial send no longer exists"),
toname);
}
return (zfs_error(hdl, EZFS_BADPATH, errbuf));
}
zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET);
if (zhp == NULL) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"unable to access '%s'"), name);
return (zfs_error(hdl, EZFS_BADPATH, errbuf));
}
if (fromguid != 0) {
if (guid_to_name(hdl, toname, fromguid, B_TRUE, name) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"incremental source %#llx no longer exists"),
(longlong_t)fromguid);
return (zfs_error(hdl, EZFS_BADPATH, errbuf));
}
fromname = name;
}
if (flags->verbose) {
uint64_t size = 0;
error = lzc_send_space(zhp->zfs_name, fromname,
lzc_flags, &size);
if (error == 0)
size = MAX(0, (int64_t)(size - bytes));
send_print_verbose(fout, zhp->zfs_name, fromname,
size, flags->parsable);
}
if (!flags->dryrun) {
progress_arg_t pa = { 0 };
pthread_t tid;
/*
* If progress reporting is requested, spawn a new thread to
* poll ZFS_IOC_SEND_PROGRESS at a regular interval.
*/
if (flags->progress) {
pa.pa_zhp = zhp;
pa.pa_fd = outfd;
pa.pa_parsable = flags->parsable;
error = pthread_create(&tid, NULL,
send_progress_thread, &pa);
if (error != 0) {
zfs_close(zhp);
return (error);
}
}
error = lzc_send_resume(zhp->zfs_name, fromname, outfd,
lzc_flags, resumeobj, resumeoff);
if (flags->progress) {
(void) pthread_cancel(tid);
(void) pthread_join(tid, NULL);
}
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"warning: cannot send '%s'"), zhp->zfs_name);
zfs_close(zhp);
switch (error) {
case 0:
return (0);
case EACCES:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"source key must be loaded"));
return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf));
case EXDEV:
case ENOENT:
case EDQUOT:
case EFBIG:
case EIO:
case ENOLINK:
case ENOSPC:
case ENOSTR:
case ENXIO:
case EPIPE:
case ERANGE:
case EFAULT:
case EROFS:
zfs_error_aux(hdl, strerror(errno));
return (zfs_error(hdl, EZFS_BADBACKUP, errbuf));
default:
return (zfs_standard_error(hdl, errno, errbuf));
}
}
zfs_close(zhp);
return (error);
}
/*
* Generate a send stream for the dataset identified by the argument zhp.
*
* The content of the send stream is the snapshot identified by
* 'tosnap'. Incremental streams are requested in two ways:
* - from the snapshot identified by "fromsnap" (if non-null) or
* - from the origin of the dataset identified by zhp, which must
* be a clone. In this case, "fromsnap" is null and "fromorigin"
* is TRUE.
*
* The send stream is recursive (i.e. dumps a hierarchy of snapshots) and
* uses a special header (with a hdrtype field of DMU_COMPOUNDSTREAM)
* if "replicate" is set. If "doall" is set, dump all the intermediate
* snapshots. The DMU_COMPOUNDSTREAM header is used in the "doall"
* case too. If "props" is set, send properties.
*/
int
zfs_send(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap,
sendflags_t *flags, int outfd, snapfilter_cb_t filter_func,
void *cb_arg, nvlist_t **debugnvp)
{
char errbuf[1024];
send_dump_data_t sdd = { 0 };
int err = 0;
nvlist_t *fss = NULL;
avl_tree_t *fsavl = NULL;
static uint64_t holdseq;
int spa_version;
pthread_t tid = 0;
int pipefd[2];
dedup_arg_t dda = { 0 };
int featureflags = 0;
FILE *fout;
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot send '%s'"), zhp->zfs_name);
if (fromsnap && fromsnap[0] == '\0') {
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"zero-length incremental source"));
return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf));
}
if (zhp->zfs_type == ZFS_TYPE_FILESYSTEM) {
uint64_t version;
version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
if (version >= ZPL_VERSION_SA) {
featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
}
}
/*
* Start the dedup thread if this is a dedup stream. We do not bother
* doing this if this a raw send of an encrypted dataset with dedup off
* because normal encrypted blocks won't dedup.
*/
if (flags->dedup && !flags->dryrun && !(flags->raw &&
zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF &&
zfs_prop_get_int(zhp, ZFS_PROP_DEDUP) == ZIO_CHECKSUM_OFF)) {
featureflags |= (DMU_BACKUP_FEATURE_DEDUP |
DMU_BACKUP_FEATURE_DEDUPPROPS);
if ((err = socketpair(AF_UNIX, SOCK_STREAM, 0, pipefd)) != 0) {
zfs_error_aux(zhp->zfs_hdl, strerror(errno));
return (zfs_error(zhp->zfs_hdl, EZFS_PIPEFAILED,
errbuf));
}
dda.outputfd = outfd;
dda.inputfd = pipefd[1];
dda.dedup_hdl = zhp->zfs_hdl;
if ((err = pthread_create(&tid, NULL, cksummer, &dda)) != 0) {
(void) close(pipefd[0]);
(void) close(pipefd[1]);
zfs_error_aux(zhp->zfs_hdl, strerror(errno));
return (zfs_error(zhp->zfs_hdl,
EZFS_THREADCREATEFAILED, errbuf));
}
}
if (flags->replicate || flags->doall || flags->props || flags->backup) {
dmu_replay_record_t drr = { 0 };
char *packbuf = NULL;
size_t buflen = 0;
zio_cksum_t zc;
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
if (flags->replicate || flags->props || flags->backup) {
nvlist_t *hdrnv;
VERIFY(0 == nvlist_alloc(&hdrnv, NV_UNIQUE_NAME, 0));
if (fromsnap) {
VERIFY(0 == nvlist_add_string(hdrnv,
"fromsnap", fromsnap));
}
VERIFY(0 == nvlist_add_string(hdrnv, "tosnap", tosnap));
if (!flags->replicate) {
VERIFY(0 == nvlist_add_boolean(hdrnv,
"not_recursive"));
}
if (flags->raw) {
VERIFY(0 == nvlist_add_boolean(hdrnv, "raw"));
}
err = gather_nvlist(zhp->zfs_hdl, zhp->zfs_name,
fromsnap, tosnap, flags->replicate, flags->raw,
flags->verbose, flags->backup, &fss, &fsavl);
if (err)
goto err_out;
VERIFY(0 == nvlist_add_nvlist(hdrnv, "fss", fss));
err = nvlist_pack(hdrnv, &packbuf, &buflen,
NV_ENCODE_XDR, 0);
if (debugnvp)
*debugnvp = hdrnv;
else
nvlist_free(hdrnv);
if (err)
goto stderr_out;
}
if (!flags->dryrun) {
/* write first begin record */
drr.drr_type = DRR_BEGIN;
drr.drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
DMU_SET_STREAM_HDRTYPE(drr.drr_u.drr_begin.
drr_versioninfo, DMU_COMPOUNDSTREAM);
DMU_SET_FEATUREFLAGS(drr.drr_u.drr_begin.
drr_versioninfo, featureflags);
if (snprintf(drr.drr_u.drr_begin.drr_toname,
sizeof (drr.drr_u.drr_begin.drr_toname),
"%s@%s", zhp->zfs_name, tosnap) >=
sizeof (drr.drr_u.drr_begin.drr_toname)) {
err = EINVAL;
goto stderr_out;
}
drr.drr_payloadlen = buflen;
err = dump_record(&drr, packbuf, buflen, &zc, outfd);
free(packbuf);
if (err != 0)
goto stderr_out;
/* write end record */
bzero(&drr, sizeof (drr));
drr.drr_type = DRR_END;
drr.drr_u.drr_end.drr_checksum = zc;
err = write(outfd, &drr, sizeof (drr));
if (err == -1) {
err = errno;
goto stderr_out;
}
err = 0;
}
}
/* dump each stream */
sdd.fromsnap = fromsnap;
sdd.tosnap = tosnap;
if (tid != 0)
sdd.outfd = pipefd[0];
else
sdd.outfd = outfd;
sdd.replicate = flags->replicate;
sdd.doall = flags->doall;
sdd.fromorigin = flags->fromorigin;
sdd.fss = fss;
sdd.fsavl = fsavl;
sdd.verbose = flags->verbose;
sdd.parsable = flags->parsable;
sdd.progress = flags->progress;
sdd.dryrun = flags->dryrun;
sdd.large_block = flags->largeblock;
sdd.embed_data = flags->embed_data;
sdd.compress = flags->compress;
sdd.raw = flags->raw;
sdd.filter_cb = filter_func;
sdd.filter_cb_arg = cb_arg;
if (debugnvp)
sdd.debugnv = *debugnvp;
if (sdd.verbose && sdd.dryrun)
sdd.std_out = B_TRUE;
fout = sdd.std_out ? stdout : stderr;
/*
* Some flags require that we place user holds on the datasets that are
* being sent so they don't get destroyed during the send. We can skip
* this step if the pool is imported read-only since the datasets cannot
* be destroyed.
*/
if (!flags->dryrun && !zpool_get_prop_int(zfs_get_pool_handle(zhp),
ZPOOL_PROP_READONLY, NULL) &&
zfs_spa_version(zhp, &spa_version) == 0 &&
spa_version >= SPA_VERSION_USERREFS &&
(flags->doall || flags->replicate)) {
++holdseq;
(void) snprintf(sdd.holdtag, sizeof (sdd.holdtag),
".send-%d-%llu", getpid(), (u_longlong_t)holdseq);
sdd.cleanup_fd = open(ZFS_DEV, O_RDWR);
if (sdd.cleanup_fd < 0) {
err = errno;
goto stderr_out;
}
sdd.snapholds = fnvlist_alloc();
} else {
sdd.cleanup_fd = -1;
sdd.snapholds = NULL;
}
if (flags->verbose || sdd.snapholds != NULL) {
/*
* Do a verbose no-op dry run to get all the verbose output
* or to gather snapshot hold's before generating any data,
* then do a non-verbose real run to generate the streams.
*/
sdd.dryrun = B_TRUE;
err = dump_filesystems(zhp, &sdd);
if (err != 0)
goto stderr_out;
if (flags->verbose) {
if (flags->parsable) {
(void) fprintf(fout, "size\t%llu\n",
(longlong_t)sdd.size);
} else {
char buf[16];
zfs_nicebytes(sdd.size, buf, sizeof (buf));
(void) fprintf(fout, dgettext(TEXT_DOMAIN,
"total estimated size is %s\n"), buf);
}
}
/* Ensure no snaps found is treated as an error. */
if (!sdd.seento) {
err = ENOENT;
goto err_out;
}
/* Skip the second run if dryrun was requested. */
if (flags->dryrun)
goto err_out;
if (sdd.snapholds != NULL) {
err = zfs_hold_nvl(zhp, sdd.cleanup_fd, sdd.snapholds);
if (err != 0)
goto stderr_out;
fnvlist_free(sdd.snapholds);
sdd.snapholds = NULL;
}
sdd.dryrun = B_FALSE;
sdd.verbose = B_FALSE;
}
err = dump_filesystems(zhp, &sdd);
fsavl_destroy(fsavl);
nvlist_free(fss);
/* Ensure no snaps found is treated as an error. */
if (err == 0 && !sdd.seento)
err = ENOENT;
if (tid != 0) {
if (err != 0)
(void) pthread_cancel(tid);
(void) close(pipefd[0]);
(void) pthread_join(tid, NULL);
}
if (sdd.cleanup_fd != -1) {
VERIFY(0 == close(sdd.cleanup_fd));
sdd.cleanup_fd = -1;
}
if (!flags->dryrun && (flags->replicate || flags->doall ||
flags->props || flags->backup)) {
/*
* write final end record. NB: want to do this even if
* there was some error, because it might not be totally
* failed.
*/
dmu_replay_record_t drr = { 0 };
drr.drr_type = DRR_END;
if (write(outfd, &drr, sizeof (drr)) == -1) {
return (zfs_standard_error(zhp->zfs_hdl,
errno, errbuf));
}
}
return (err || sdd.err);
stderr_out:
err = zfs_standard_error(zhp->zfs_hdl, err, errbuf);
err_out:
fsavl_destroy(fsavl);
nvlist_free(fss);
fnvlist_free(sdd.snapholds);
if (sdd.cleanup_fd != -1)
VERIFY(0 == close(sdd.cleanup_fd));
if (tid != 0) {
(void) pthread_cancel(tid);
(void) close(pipefd[0]);
(void) pthread_join(tid, NULL);
}
return (err);
}
int
zfs_send_one(zfs_handle_t *zhp, const char *from, int fd, sendflags_t flags)
{
int err = 0;
libzfs_handle_t *hdl = zhp->zfs_hdl;
enum lzc_send_flags lzc_flags = 0;
FILE *fout = (flags.verbose && flags.dryrun) ? stdout : stderr;
char errbuf[1024];
if (flags.largeblock)
lzc_flags |= LZC_SEND_FLAG_LARGE_BLOCK;
if (flags.embed_data)
lzc_flags |= LZC_SEND_FLAG_EMBED_DATA;
if (flags.compress)
lzc_flags |= LZC_SEND_FLAG_COMPRESS;
if (flags.raw)
lzc_flags |= LZC_SEND_FLAG_RAW;
if (flags.verbose) {
uint64_t size = 0;
err = lzc_send_space(zhp->zfs_name, from, lzc_flags, &size);
if (err == 0) {
send_print_verbose(fout, zhp->zfs_name, from, size,
flags.parsable);
} else {
(void) fprintf(stderr, "Cannot estimate send size: "
"%s\n", strerror(errno));
}
}
if (flags.dryrun)
return (err);
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"warning: cannot send '%s'"), zhp->zfs_name);
err = lzc_send(zhp->zfs_name, from, fd, lzc_flags);
if (err != 0) {
switch (errno) {
case EXDEV:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"not an earlier snapshot from the same fs"));
return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));
case ENOENT:
case ESRCH:
if (lzc_exists(zhp->zfs_name)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"incremental source (%s) does not exist"),
from);
}
return (zfs_error(hdl, EZFS_NOENT, errbuf));
case EACCES:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset key must be loaded"));
return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf));
case EBUSY:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"target is busy; if a filesystem, "
"it must not be mounted"));
return (zfs_error(hdl, EZFS_BUSY, errbuf));
case EDQUOT:
case EFBIG:
case EIO:
case ENOLINK:
case ENOSPC:
case ENOSTR:
case ENXIO:
case EPIPE:
case ERANGE:
case EFAULT:
case EROFS:
zfs_error_aux(hdl, strerror(errno));
return (zfs_error(hdl, EZFS_BADBACKUP, errbuf));
default:
return (zfs_standard_error(hdl, errno, errbuf));
}
}
return (err != 0);
}
/*
* Routines specific to "zfs recv"
*/
static int
recv_read(libzfs_handle_t *hdl, int fd, void *buf, int ilen,
boolean_t byteswap, zio_cksum_t *zc)
{
char *cp = buf;
int rv;
int len = ilen;
assert(ilen <= SPA_MAXBLOCKSIZE);
do {
rv = read(fd, cp, len);
cp += rv;
len -= rv;
} while (rv > 0);
if (rv < 0 || len != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"failed to read from stream"));
return (zfs_error(hdl, EZFS_BADSTREAM, dgettext(TEXT_DOMAIN,
"cannot receive")));
}
if (zc) {
if (byteswap)
fletcher_4_incremental_byteswap(buf, ilen, zc);
else
fletcher_4_incremental_native(buf, ilen, zc);
}
return (0);
}
static int
recv_read_nvlist(libzfs_handle_t *hdl, int fd, int len, nvlist_t **nvp,
boolean_t byteswap, zio_cksum_t *zc)
{
char *buf;
int err;
buf = zfs_alloc(hdl, len);
if (buf == NULL)
return (ENOMEM);
err = recv_read(hdl, fd, buf, len, byteswap, zc);
if (err != 0) {
free(buf);
return (err);
}
err = nvlist_unpack(buf, len, nvp, 0);
free(buf);
if (err != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid "
"stream (malformed nvlist)"));
return (EINVAL);
}
return (0);
}
/*
* Returns the grand origin (origin of origin of origin...) of a given handle.
* If this dataset is not a clone, it simply returns a copy of the original
* handle.
*/
static zfs_handle_t *
recv_open_grand_origin(zfs_handle_t *zhp)
{
char origin[ZFS_MAX_DATASET_NAME_LEN];
zprop_source_t src;
zfs_handle_t *ozhp = zfs_handle_dup(zhp);
while (ozhp != NULL) {
if (zfs_prop_get(ozhp, ZFS_PROP_ORIGIN, origin,
sizeof (origin), &src, NULL, 0, B_FALSE) != 0)
break;
(void) zfs_close(ozhp);
ozhp = zfs_open(zhp->zfs_hdl, origin, ZFS_TYPE_FILESYSTEM);
}
return (ozhp);
}
static int
recv_rename_impl(zfs_handle_t *zhp, zfs_cmd_t *zc)
{
int err;
zfs_handle_t *ozhp = NULL;
/*
* Attempt to rename the dataset. If it fails with EACCES we have
* attempted to rename the dataset outside of its encryption root.
* Force the dataset to become an encryption root and try again.
*/
err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_RENAME, &zc);
if (err == EACCES) {
ozhp = recv_open_grand_origin(zhp);
if (ozhp == NULL) {
err = ENOENT;
goto out;
}
err = lzc_change_key(ozhp->zfs_name, DCP_CMD_FORCE_NEW_KEY,
NULL, NULL, 0);
if (err != 0)
goto out;
err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_RENAME, &zc);
}
out:
if (ozhp != NULL)
zfs_close(ozhp);
return (err);
}
static int
recv_rename(libzfs_handle_t *hdl, const char *name, const char *tryname,
int baselen, char *newname, recvflags_t *flags)
{
static int seq;
zfs_cmd_t zc = {"\0"};
int err;
prop_changelist_t *clp = NULL;
zfs_handle_t *zhp = NULL;
zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET);
if (zhp == NULL) {
err = -1;
goto out;
}
clp = changelist_gather(zhp, ZFS_PROP_NAME, 0,
flags->force ? MS_FORCE : 0);
if (clp == NULL) {
err = -1;
goto out;
}
err = changelist_prefix(clp);
if (err)
goto out;
zc.zc_objset_type = DMU_OST_ZFS;
(void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name));
if (tryname) {
(void) strcpy(newname, tryname);
(void) strlcpy(zc.zc_value, tryname, sizeof (zc.zc_value));
if (flags->verbose) {
(void) printf("attempting rename %s to %s\n",
zc.zc_name, zc.zc_value);
}
err = recv_rename_impl(zhp, &zc);
if (err == 0)
changelist_rename(clp, name, tryname);
} else {
err = ENOENT;
}
if (err != 0 && strncmp(name + baselen, "recv-", 5) != 0) {
seq++;
(void) snprintf(newname, ZFS_MAX_DATASET_NAME_LEN,
"%.*srecv-%u-%u", baselen, name, getpid(), seq);
(void) strlcpy(zc.zc_value, newname, sizeof (zc.zc_value));
if (flags->verbose) {
(void) printf("failed - trying rename %s to %s\n",
zc.zc_name, zc.zc_value);
}
err = recv_rename_impl(zhp, &zc);
if (err == 0)
changelist_rename(clp, name, newname);
if (err && flags->verbose) {
(void) printf("failed (%u) - "
"will try again on next pass\n", errno);
}
err = EAGAIN;
} else if (flags->verbose) {
if (err == 0)
(void) printf("success\n");
else
(void) printf("failed (%u)\n", errno);
}
(void) changelist_postfix(clp);
out:
if (clp != NULL)
changelist_free(clp);
if (zhp != NULL)
zfs_close(zhp);
return (err);
}
static int
recv_promote(libzfs_handle_t *hdl, const char *fsname,
const char *origin_fsname, recvflags_t *flags)
{
int err;
zfs_cmd_t zc = {"\0"};
zfs_handle_t *zhp = NULL, *ozhp = NULL;
if (flags->verbose)
(void) printf("promoting %s\n", fsname);
(void) strlcpy(zc.zc_value, origin_fsname, sizeof (zc.zc_value));
(void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name));
/*
* Attempt to promote the dataset. If it fails with EACCES the
* promotion would cause this dataset to leave its encryption root.
* Force the origin to become an encryption root and try again.
*/
err = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc);
if (err == EACCES) {
zhp = zfs_open(hdl, fsname, ZFS_TYPE_DATASET);
if (zhp == NULL) {
err = -1;
goto out;
}
ozhp = recv_open_grand_origin(zhp);
if (ozhp == NULL) {
err = -1;
goto out;
}
err = lzc_change_key(ozhp->zfs_name, DCP_CMD_FORCE_NEW_KEY,
NULL, NULL, 0);
if (err != 0)
goto out;
err = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc);
}
out:
if (zhp != NULL)
zfs_close(zhp);
if (ozhp != NULL)
zfs_close(ozhp);
return (err);
}
static int
recv_destroy(libzfs_handle_t *hdl, const char *name, int baselen,
char *newname, recvflags_t *flags)
{
zfs_cmd_t zc = {"\0"};
int err = 0;
prop_changelist_t *clp;
zfs_handle_t *zhp;
boolean_t defer = B_FALSE;
int spa_version;
zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET);
if (zhp == NULL)
return (-1);
clp = changelist_gather(zhp, ZFS_PROP_NAME, 0,
flags->force ? MS_FORCE : 0);
if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT &&
zfs_spa_version(zhp, &spa_version) == 0 &&
spa_version >= SPA_VERSION_USERREFS)
defer = B_TRUE;
zfs_close(zhp);
if (clp == NULL)
return (-1);
err = changelist_prefix(clp);
if (err)
return (err);
zc.zc_objset_type = DMU_OST_ZFS;
zc.zc_defer_destroy = defer;
(void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name));
if (flags->verbose)
(void) printf("attempting destroy %s\n", zc.zc_name);
err = ioctl(hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc);
if (err == 0) {
if (flags->verbose)
(void) printf("success\n");
changelist_remove(clp, zc.zc_name);
}
(void) changelist_postfix(clp);
changelist_free(clp);
/*
* Deferred destroy might destroy the snapshot or only mark it to be
* destroyed later, and it returns success in either case.
*/
if (err != 0 || (defer && zfs_dataset_exists(hdl, name,
ZFS_TYPE_SNAPSHOT))) {
err = recv_rename(hdl, name, NULL, baselen, newname, flags);
}
return (err);
}
typedef struct guid_to_name_data {
uint64_t guid;
boolean_t bookmark_ok;
char *name;
char *skip;
} guid_to_name_data_t;
static int
guid_to_name_cb(zfs_handle_t *zhp, void *arg)
{
guid_to_name_data_t *gtnd = arg;
const char *slash;
int err;
if (gtnd->skip != NULL &&
(slash = strrchr(zhp->zfs_name, '/')) != NULL &&
strcmp(slash + 1, gtnd->skip) == 0) {
zfs_close(zhp);
return (0);
}
if (zfs_prop_get_int(zhp, ZFS_PROP_GUID) == gtnd->guid) {
(void) strcpy(gtnd->name, zhp->zfs_name);
zfs_close(zhp);
return (EEXIST);
}
err = zfs_iter_children(zhp, guid_to_name_cb, gtnd);
if (err != EEXIST && gtnd->bookmark_ok)
err = zfs_iter_bookmarks(zhp, guid_to_name_cb, gtnd);
zfs_close(zhp);
return (err);
}
/*
* Attempt to find the local dataset associated with this guid. In the case of
* multiple matches, we attempt to find the "best" match by searching
* progressively larger portions of the hierarchy. This allows one to send a
* tree of datasets individually and guarantee that we will find the source
* guid within that hierarchy, even if there are multiple matches elsewhere.
*/
static int
guid_to_name(libzfs_handle_t *hdl, const char *parent, uint64_t guid,
boolean_t bookmark_ok, char *name)
{
char pname[ZFS_MAX_DATASET_NAME_LEN];
guid_to_name_data_t gtnd;
gtnd.guid = guid;
gtnd.bookmark_ok = bookmark_ok;
gtnd.name = name;
gtnd.skip = NULL;
/*
* Search progressively larger portions of the hierarchy, starting
* with the filesystem specified by 'parent'. This will
* select the "most local" version of the origin snapshot in the case
* that there are multiple matching snapshots in the system.
*/
(void) strlcpy(pname, parent, sizeof (pname));
char *cp = strrchr(pname, '@');
if (cp == NULL)
cp = strchr(pname, '\0');
for (; cp != NULL; cp = strrchr(pname, '/')) {
/* Chop off the last component and open the parent */
*cp = '\0';
zfs_handle_t *zhp = make_dataset_handle(hdl, pname);
if (zhp == NULL)
continue;
int err = guid_to_name_cb(zfs_handle_dup(zhp), &gtnd);
if (err != EEXIST)
err = zfs_iter_children(zhp, guid_to_name_cb, &gtnd);
if (err != EEXIST && bookmark_ok)
err = zfs_iter_bookmarks(zhp, guid_to_name_cb, &gtnd);
zfs_close(zhp);
if (err == EEXIST)
return (0);
/*
* Remember the last portion of the dataset so we skip it next
* time through (as we've already searched that portion of the
* hierarchy).
*/
gtnd.skip = strrchr(pname, '/') + 1;
}
return (ENOENT);
}
/*
* Return +1 if guid1 is before guid2, 0 if they are the same, and -1 if
* guid1 is after guid2.
*/
static int
created_before(libzfs_handle_t *hdl, avl_tree_t *avl,
uint64_t guid1, uint64_t guid2)
{
nvlist_t *nvfs;
char *fsname = NULL, *snapname = NULL;
char buf[ZFS_MAX_DATASET_NAME_LEN];
int rv;
zfs_handle_t *guid1hdl, *guid2hdl;
uint64_t create1, create2;
if (guid2 == 0)
return (0);
if (guid1 == 0)
return (1);
nvfs = fsavl_find(avl, guid1, &snapname);
VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname));
(void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname);
guid1hdl = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT);
if (guid1hdl == NULL)
return (-1);
nvfs = fsavl_find(avl, guid2, &snapname);
VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname));
(void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname);
guid2hdl = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT);
if (guid2hdl == NULL) {
zfs_close(guid1hdl);
return (-1);
}
create1 = zfs_prop_get_int(guid1hdl, ZFS_PROP_CREATETXG);
create2 = zfs_prop_get_int(guid2hdl, ZFS_PROP_CREATETXG);
if (create1 < create2)
rv = -1;
else if (create1 > create2)
rv = +1;
else
rv = 0;
zfs_close(guid1hdl);
zfs_close(guid2hdl);
return (rv);
}
/*
* This function reestablishes the heirarchy of encryption roots after a
* recursive incremental receive has completed. This must be done after the
* second call to recv_incremental_replication() has renamed and promoted all
* sent datasets to their final locations in the dataset heriarchy.
*/
static int
recv_fix_encryption_heirarchy(libzfs_handle_t *hdl, const char *destname,
nvlist_t *stream_nv, avl_tree_t *stream_avl)
{
int err;
nvpair_t *fselem = NULL;
nvlist_t *stream_fss;
char *cp;
char top_zfs[ZFS_MAX_DATASET_NAME_LEN];
(void) strcpy(top_zfs, destname);
cp = strrchr(top_zfs, '@');
if (cp != NULL)
*cp = '\0';
VERIFY(0 == nvlist_lookup_nvlist(stream_nv, "fss", &stream_fss));
while ((fselem = nvlist_next_nvpair(stream_fss, fselem)) != NULL) {
zfs_handle_t *zhp = NULL;
uint64_t crypt;
nvlist_t *snaps, *props, *stream_nvfs = NULL;
nvpair_t *snapel = NULL;
boolean_t is_encroot, is_clone, stream_encroot;
char *cp;
char *stream_keylocation = NULL;
char keylocation[MAXNAMELEN];
char fsname[ZFS_MAX_DATASET_NAME_LEN];
keylocation[0] = '\0';
VERIFY(0 == nvpair_value_nvlist(fselem, &stream_nvfs));
VERIFY(0 == nvlist_lookup_nvlist(stream_nvfs, "snaps", &snaps));
VERIFY(0 == nvlist_lookup_nvlist(stream_nvfs, "props", &props));
stream_encroot = nvlist_exists(stream_nvfs, "is_encroot");
/* find a snapshot from the stream that exists locally */
err = ENOENT;
while ((snapel = nvlist_next_nvpair(snaps, snapel)) != NULL) {
uint64_t guid;
VERIFY(0 == nvpair_value_uint64(snapel, &guid));
err = guid_to_name(hdl, destname, guid, B_FALSE,
fsname);
if (err == 0)
break;
}
if (err != 0)
continue;
cp = strchr(fsname, '@');
if (cp != NULL)
*cp = '\0';
zhp = zfs_open(hdl, fsname, ZFS_TYPE_DATASET);
if (zhp == NULL) {
err = ENOENT;
goto error;
}
crypt = zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION);
is_clone = zhp->zfs_dmustats.dds_origin[0] != '\0';
(void) zfs_crypto_get_encryption_root(zhp, &is_encroot, NULL);
/* we don't need to do anything for unencrypted filesystems */
if (crypt == ZIO_CRYPT_OFF) {
zfs_close(zhp);
continue;
}
/*
* If the dataset is flagged as an encryption root, was not
* received as a clone and is not currently an encryption root,
* force it to become one. Fixup the keylocation if necessary.
*/
if (stream_encroot) {
if (!is_clone && !is_encroot) {
err = lzc_change_key(fsname,
DCP_CMD_FORCE_NEW_KEY, NULL, NULL, 0);
if (err != 0) {
zfs_close(zhp);
goto error;
}
}
VERIFY(0 == nvlist_lookup_string(props,
zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
&stream_keylocation));
/*
* Refresh the properties in case the call to
* lzc_change_key() changed the value.
*/
zfs_refresh_properties(zhp);
err = zfs_prop_get(zhp, ZFS_PROP_KEYLOCATION,
keylocation, sizeof (keylocation), NULL, NULL,
0, B_TRUE);
if (err != 0) {
zfs_close(zhp);
goto error;
}
if (strcmp(keylocation, stream_keylocation) != 0) {
err = zfs_prop_set(zhp,
zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
stream_keylocation);
if (err != 0) {
zfs_close(zhp);
goto error;
}
}
}
/*
* If the dataset is not flagged as an encryption root and is
* currently an encryption root, force it to inherit from its
* parent. The root of a raw send should never be
* force-inherited.
*/
if (!stream_encroot && is_encroot &&
strcmp(top_zfs, fsname) != 0) {
err = lzc_change_key(fsname, DCP_CMD_FORCE_INHERIT,
NULL, NULL, 0);
if (err != 0) {
zfs_close(zhp);
goto error;
}
}
zfs_close(zhp);
}
return (0);
error:
return (err);
}
static int
recv_incremental_replication(libzfs_handle_t *hdl, const char *tofs,
recvflags_t *flags, nvlist_t *stream_nv, avl_tree_t *stream_avl,
nvlist_t *renamed)
{
nvlist_t *local_nv, *deleted = NULL;
avl_tree_t *local_avl;
nvpair_t *fselem, *nextfselem;
char *fromsnap;
char newname[ZFS_MAX_DATASET_NAME_LEN];
char guidname[32];
int error;
boolean_t needagain, progress, recursive;
char *s1, *s2;
VERIFY(0 == nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap));
recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") ==
ENOENT);
if (flags->dryrun)
return (0);
again:
needagain = progress = B_FALSE;
VERIFY(0 == nvlist_alloc(&deleted, NV_UNIQUE_NAME, 0));
if ((error = gather_nvlist(hdl, tofs, fromsnap, NULL,
recursive, B_TRUE, B_FALSE, B_FALSE, &local_nv, &local_avl)) != 0)
return (error);
/*
* Process deletes and renames
*/
for (fselem = nvlist_next_nvpair(local_nv, NULL);
fselem; fselem = nextfselem) {
nvlist_t *nvfs, *snaps;
nvlist_t *stream_nvfs = NULL;
nvpair_t *snapelem, *nextsnapelem;
uint64_t fromguid = 0;
uint64_t originguid = 0;
uint64_t stream_originguid = 0;
uint64_t parent_fromsnap_guid, stream_parent_fromsnap_guid;
char *fsname, *stream_fsname;
nextfselem = nvlist_next_nvpair(local_nv, fselem);
VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs));
VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps));
VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname));
VERIFY(0 == nvlist_lookup_uint64(nvfs, "parentfromsnap",
&parent_fromsnap_guid));
(void) nvlist_lookup_uint64(nvfs, "origin", &originguid);
/*
* First find the stream's fs, so we can check for
* a different origin (due to "zfs promote")
*/
for (snapelem = nvlist_next_nvpair(snaps, NULL);
snapelem; snapelem = nvlist_next_nvpair(snaps, snapelem)) {
uint64_t thisguid;
VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid));
stream_nvfs = fsavl_find(stream_avl, thisguid, NULL);
if (stream_nvfs != NULL)
break;
}
/* check for promote */
(void) nvlist_lookup_uint64(stream_nvfs, "origin",
&stream_originguid);
if (stream_nvfs && originguid != stream_originguid) {
switch (created_before(hdl, local_avl,
stream_originguid, originguid)) {
case 1: {
/* promote it! */
nvlist_t *origin_nvfs;
char *origin_fsname;
origin_nvfs = fsavl_find(local_avl, originguid,
NULL);
VERIFY(0 == nvlist_lookup_string(origin_nvfs,
"name", &origin_fsname));
error = recv_promote(hdl, fsname, origin_fsname,
flags);
if (error == 0)
progress = B_TRUE;
break;
}
default:
break;
case -1:
fsavl_destroy(local_avl);
nvlist_free(local_nv);
return (-1);
}
/*
* We had/have the wrong origin, therefore our
* list of snapshots is wrong. Need to handle
* them on the next pass.
*/
needagain = B_TRUE;
continue;
}
for (snapelem = nvlist_next_nvpair(snaps, NULL);
snapelem; snapelem = nextsnapelem) {
uint64_t thisguid;
char *stream_snapname;
nvlist_t *found, *props;
nextsnapelem = nvlist_next_nvpair(snaps, snapelem);
VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid));
found = fsavl_find(stream_avl, thisguid,
&stream_snapname);
/* check for delete */
if (found == NULL) {
char name[ZFS_MAX_DATASET_NAME_LEN];
if (!flags->force)
continue;
(void) snprintf(name, sizeof (name), "%s@%s",
fsname, nvpair_name(snapelem));
error = recv_destroy(hdl, name,
strlen(fsname)+1, newname, flags);
if (error)
needagain = B_TRUE;
else
progress = B_TRUE;
sprintf(guidname, "%llu",
(u_longlong_t)thisguid);
nvlist_add_boolean(deleted, guidname);
continue;
}
stream_nvfs = found;
if (0 == nvlist_lookup_nvlist(stream_nvfs, "snapprops",
&props) && 0 == nvlist_lookup_nvlist(props,
stream_snapname, &props)) {
zfs_cmd_t zc = {"\0"};
zc.zc_cookie = B_TRUE; /* received */
(void) snprintf(zc.zc_name, sizeof (zc.zc_name),
"%s@%s", fsname, nvpair_name(snapelem));
if (zcmd_write_src_nvlist(hdl, &zc,
props) == 0) {
(void) zfs_ioctl(hdl,
ZFS_IOC_SET_PROP, &zc);
zcmd_free_nvlists(&zc);
}
}
/* check for different snapname */
if (strcmp(nvpair_name(snapelem),
stream_snapname) != 0) {
char name[ZFS_MAX_DATASET_NAME_LEN];
char tryname[ZFS_MAX_DATASET_NAME_LEN];
(void) snprintf(name, sizeof (name), "%s@%s",
fsname, nvpair_name(snapelem));
(void) snprintf(tryname, sizeof (name), "%s@%s",
fsname, stream_snapname);
error = recv_rename(hdl, name, tryname,
strlen(fsname)+1, newname, flags);
if (error)
needagain = B_TRUE;
else
progress = B_TRUE;
}
if (strcmp(stream_snapname, fromsnap) == 0)
fromguid = thisguid;
}
/* check for delete */
if (stream_nvfs == NULL) {
if (!flags->force)
continue;
error = recv_destroy(hdl, fsname, strlen(tofs)+1,
newname, flags);
if (error)
needagain = B_TRUE;
else
progress = B_TRUE;
sprintf(guidname, "%llu",
(u_longlong_t)parent_fromsnap_guid);
nvlist_add_boolean(deleted, guidname);
continue;
}
if (fromguid == 0) {
if (flags->verbose) {
(void) printf("local fs %s does not have "
"fromsnap (%s in stream); must have "
"been deleted locally; ignoring\n",
fsname, fromsnap);
}
continue;
}
VERIFY(0 == nvlist_lookup_string(stream_nvfs,
"name", &stream_fsname));
VERIFY(0 == nvlist_lookup_uint64(stream_nvfs,
"parentfromsnap", &stream_parent_fromsnap_guid));
s1 = strrchr(fsname, '/');
s2 = strrchr(stream_fsname, '/');
/*
* Check if we're going to rename based on parent guid change
* and the current parent guid was also deleted. If it was then
* rename will fail and is likely unneeded, so avoid this and
* force an early retry to determine the new
* parent_fromsnap_guid.
*/
if (stream_parent_fromsnap_guid != 0 &&
parent_fromsnap_guid != 0 &&
stream_parent_fromsnap_guid != parent_fromsnap_guid) {
sprintf(guidname, "%llu",
(u_longlong_t)parent_fromsnap_guid);
if (nvlist_exists(deleted, guidname)) {
progress = B_TRUE;
needagain = B_TRUE;
goto doagain;
}
}
/*
* Check for rename. If the exact receive path is specified, it
* does not count as a rename, but we still need to check the
* datasets beneath it.
*/
if ((stream_parent_fromsnap_guid != 0 &&
parent_fromsnap_guid != 0 &&
stream_parent_fromsnap_guid != parent_fromsnap_guid) ||
((flags->isprefix || strcmp(tofs, fsname) != 0) &&
(s1 != NULL) && (s2 != NULL) && strcmp(s1, s2) != 0)) {
nvlist_t *parent;
char tryname[ZFS_MAX_DATASET_NAME_LEN];
parent = fsavl_find(local_avl,
stream_parent_fromsnap_guid, NULL);
/*
* NB: parent might not be found if we used the
* tosnap for stream_parent_fromsnap_guid,
* because the parent is a newly-created fs;
* we'll be able to rename it after we recv the
* new fs.
*/
if (parent != NULL) {
char *pname;
VERIFY(0 == nvlist_lookup_string(parent, "name",
&pname));
(void) snprintf(tryname, sizeof (tryname),
"%s%s", pname, strrchr(stream_fsname, '/'));
} else {
tryname[0] = '\0';
if (flags->verbose) {
(void) printf("local fs %s new parent "
"not found\n", fsname);
}
}
newname[0] = '\0';
error = recv_rename(hdl, fsname, tryname,
strlen(tofs)+1, newname, flags);
if (renamed != NULL && newname[0] != '\0') {
VERIFY(0 == nvlist_add_boolean(renamed,
newname));
}
if (error)
needagain = B_TRUE;
else
progress = B_TRUE;
}
}
doagain:
fsavl_destroy(local_avl);
nvlist_free(local_nv);
nvlist_free(deleted);
if (needagain && progress) {
/* do another pass to fix up temporary names */
if (flags->verbose)
(void) printf("another pass:\n");
goto again;
}
return (needagain || error != 0);
}
static int
zfs_receive_package(libzfs_handle_t *hdl, int fd, const char *destname,
recvflags_t *flags, dmu_replay_record_t *drr, zio_cksum_t *zc,
char **top_zfs, int cleanup_fd, uint64_t *action_handlep,
nvlist_t *cmdprops)
{
nvlist_t *stream_nv = NULL;
avl_tree_t *stream_avl = NULL;
char *fromsnap = NULL;
char *sendsnap = NULL;
char *cp;
char tofs[ZFS_MAX_DATASET_NAME_LEN];
char sendfs[ZFS_MAX_DATASET_NAME_LEN];
char errbuf[1024];
dmu_replay_record_t drre;
int error;
boolean_t anyerr = B_FALSE;
boolean_t softerr = B_FALSE;
boolean_t recursive, raw;
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot receive"));
assert(drr->drr_type == DRR_BEGIN);
assert(drr->drr_u.drr_begin.drr_magic == DMU_BACKUP_MAGIC);
assert(DMU_GET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo) ==
DMU_COMPOUNDSTREAM);
/*
* Read in the nvlist from the stream.
*/
if (drr->drr_payloadlen != 0) {
error = recv_read_nvlist(hdl, fd, drr->drr_payloadlen,
&stream_nv, flags->byteswap, zc);
if (error) {
error = zfs_error(hdl, EZFS_BADSTREAM, errbuf);
goto out;
}
}
recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") ==
ENOENT);
raw = (nvlist_lookup_boolean(stream_nv, "raw") == 0);
if (recursive && strchr(destname, '@')) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"cannot specify snapshot name for multi-snapshot stream"));
error = zfs_error(hdl, EZFS_BADSTREAM, errbuf);
goto out;
}
/*
* Read in the end record and verify checksum.
*/
if (0 != (error = recv_read(hdl, fd, &drre, sizeof (drre),
flags->byteswap, NULL)))
goto out;
if (flags->byteswap) {
drre.drr_type = BSWAP_32(drre.drr_type);
drre.drr_u.drr_end.drr_checksum.zc_word[0] =
BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[0]);
drre.drr_u.drr_end.drr_checksum.zc_word[1] =
BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[1]);
drre.drr_u.drr_end.drr_checksum.zc_word[2] =
BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[2]);
drre.drr_u.drr_end.drr_checksum.zc_word[3] =
BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[3]);
}
if (drre.drr_type != DRR_END) {
error = zfs_error(hdl, EZFS_BADSTREAM, errbuf);
goto out;
}
if (!ZIO_CHECKSUM_EQUAL(drre.drr_u.drr_end.drr_checksum, *zc)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"incorrect header checksum"));
error = zfs_error(hdl, EZFS_BADSTREAM, errbuf);
goto out;
}
(void) nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap);
if (drr->drr_payloadlen != 0) {
nvlist_t *stream_fss;
VERIFY(0 == nvlist_lookup_nvlist(stream_nv, "fss",
&stream_fss));
if ((stream_avl = fsavl_create(stream_fss)) == NULL) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"couldn't allocate avl tree"));
error = zfs_error(hdl, EZFS_NOMEM, errbuf);
goto out;
}
if (fromsnap != NULL && recursive) {
nvlist_t *renamed = NULL;
nvpair_t *pair = NULL;
(void) strlcpy(tofs, destname, sizeof (tofs));
if (flags->isprefix) {
struct drr_begin *drrb = &drr->drr_u.drr_begin;
int i;
if (flags->istail) {
cp = strrchr(drrb->drr_toname, '/');
if (cp == NULL) {
(void) strlcat(tofs, "/",
sizeof (tofs));
i = 0;
} else {
i = (cp - drrb->drr_toname);
}
} else {
i = strcspn(drrb->drr_toname, "/@");
}
/* zfs_receive_one() will create_parents() */
(void) strlcat(tofs, &drrb->drr_toname[i],
sizeof (tofs));
*strchr(tofs, '@') = '\0';
}
if (!flags->dryrun && !flags->nomount) {
VERIFY(0 == nvlist_alloc(&renamed,
NV_UNIQUE_NAME, 0));
}
softerr = recv_incremental_replication(hdl, tofs, flags,
stream_nv, stream_avl, renamed);
/* Unmount renamed filesystems before receiving. */
while ((pair = nvlist_next_nvpair(renamed,
pair)) != NULL) {
zfs_handle_t *zhp;
prop_changelist_t *clp = NULL;
zhp = zfs_open(hdl, nvpair_name(pair),
ZFS_TYPE_FILESYSTEM);
if (zhp != NULL) {
clp = changelist_gather(zhp,
ZFS_PROP_MOUNTPOINT, 0, 0);
zfs_close(zhp);
if (clp != NULL) {
softerr |=
changelist_prefix(clp);
changelist_free(clp);
}
}
}
nvlist_free(renamed);
}
}
/*
* Get the fs specified by the first path in the stream (the top level
* specified by 'zfs send') and pass it to each invocation of
* zfs_receive_one().
*/
(void) strlcpy(sendfs, drr->drr_u.drr_begin.drr_toname,
sizeof (sendfs));
if ((cp = strchr(sendfs, '@')) != NULL) {
*cp = '\0';
/*
* Find the "sendsnap", the final snapshot in a replication
* stream. zfs_receive_one() handles certain errors
* differently, depending on if the contained stream is the
* last one or not.
*/
sendsnap = (cp + 1);
}
/* Finally, receive each contained stream */
do {
/*
* we should figure out if it has a recoverable
* error, in which case do a recv_skip() and drive on.
* Note, if we fail due to already having this guid,
* zfs_receive_one() will take care of it (ie,
* recv_skip() and return 0).
*/
error = zfs_receive_impl(hdl, destname, NULL, flags, fd,
sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd,
action_handlep, sendsnap, cmdprops);
if (error == ENODATA) {
error = 0;
break;
}
anyerr |= error;
} while (error == 0);
if (drr->drr_payloadlen != 0 && recursive && fromsnap != NULL) {
/*
* Now that we have the fs's they sent us, try the
* renames again.
*/
softerr = recv_incremental_replication(hdl, tofs, flags,
stream_nv, stream_avl, NULL);
}
if (raw && softerr == 0) {
softerr = recv_fix_encryption_heirarchy(hdl, destname,
stream_nv, stream_avl);
}
out:
fsavl_destroy(stream_avl);
nvlist_free(stream_nv);
if (softerr)
error = -2;
if (anyerr)
error = -1;
return (error);
}
static void
trunc_prop_errs(int truncated)
{
ASSERT(truncated != 0);
if (truncated == 1)
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"1 more property could not be set\n"));
else
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"%d more properties could not be set\n"), truncated);
}
static int
recv_skip(libzfs_handle_t *hdl, int fd, boolean_t byteswap)
{
dmu_replay_record_t *drr;
void *buf = zfs_alloc(hdl, SPA_MAXBLOCKSIZE);
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot receive:"));
/* XXX would be great to use lseek if possible... */
drr = buf;
while (recv_read(hdl, fd, drr, sizeof (dmu_replay_record_t),
byteswap, NULL) == 0) {
if (byteswap)
drr->drr_type = BSWAP_32(drr->drr_type);
switch (drr->drr_type) {
case DRR_BEGIN:
if (drr->drr_payloadlen != 0) {
(void) recv_read(hdl, fd, buf,
drr->drr_payloadlen, B_FALSE, NULL);
}
break;
case DRR_END:
free(buf);
return (0);
case DRR_OBJECT:
if (byteswap) {
drr->drr_u.drr_object.drr_bonuslen =
BSWAP_32(drr->drr_u.drr_object.
drr_bonuslen);
}
(void) recv_read(hdl, fd, buf,
P2ROUNDUP(drr->drr_u.drr_object.drr_bonuslen, 8),
B_FALSE, NULL);
break;
case DRR_WRITE:
if (byteswap) {
drr->drr_u.drr_write.drr_logical_size =
BSWAP_64(
drr->drr_u.drr_write.drr_logical_size);
drr->drr_u.drr_write.drr_compressed_size =
BSWAP_64(
drr->drr_u.drr_write.drr_compressed_size);
}
uint64_t payload_size =
DRR_WRITE_PAYLOAD_SIZE(&drr->drr_u.drr_write);
(void) recv_read(hdl, fd, buf,
payload_size, B_FALSE, NULL);
break;
case DRR_SPILL:
if (byteswap) {
drr->drr_u.drr_spill.drr_length =
BSWAP_64(drr->drr_u.drr_spill.drr_length);
}
(void) recv_read(hdl, fd, buf,
drr->drr_u.drr_spill.drr_length, B_FALSE, NULL);
break;
case DRR_WRITE_EMBEDDED:
if (byteswap) {
drr->drr_u.drr_write_embedded.drr_psize =
BSWAP_32(drr->drr_u.drr_write_embedded.
drr_psize);
}
(void) recv_read(hdl, fd, buf,
P2ROUNDUP(drr->drr_u.drr_write_embedded.drr_psize,
8), B_FALSE, NULL);
break;
case DRR_WRITE_BYREF:
case DRR_FREEOBJECTS:
case DRR_FREE:
break;
default:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid record type"));
free(buf);
return (zfs_error(hdl, EZFS_BADSTREAM, errbuf));
}
}
free(buf);
return (-1);
}
static void
recv_ecksum_set_aux(libzfs_handle_t *hdl, const char *target_snap,
boolean_t resumable)
{
char target_fs[ZFS_MAX_DATASET_NAME_LEN];
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"checksum mismatch or incomplete stream"));
if (!resumable)
return;
(void) strlcpy(target_fs, target_snap, sizeof (target_fs));
*strchr(target_fs, '@') = '\0';
zfs_handle_t *zhp = zfs_open(hdl, target_fs,
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL)
return;
char token_buf[ZFS_MAXPROPLEN];
int error = zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
token_buf, sizeof (token_buf),
NULL, NULL, 0, B_TRUE);
if (error == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"checksum mismatch or incomplete stream.\n"
"Partially received snapshot is saved.\n"
"A resuming stream can be generated on the sending "
"system by running:\n"
" zfs send -t %s"),
token_buf);
}
zfs_close(zhp);
}
/*
* Prepare a new nvlist of properties that are to override (-o) or be excluded
* (-x) from the received dataset
* recvprops: received properties from the send stream
* cmdprops: raw input properties from command line
* origprops: properties, both locally-set and received, currently set on the
* target dataset if it exists, NULL otherwise.
* oxprops: valid output override (-o) and excluded (-x) properties
*/
static int
zfs_setup_cmdline_props(libzfs_handle_t *hdl, zfs_type_t type, boolean_t zoned,
boolean_t recursive, boolean_t toplevel, nvlist_t *recvprops,
nvlist_t *cmdprops, nvlist_t *origprops, nvlist_t **oxprops,
const char *errbuf)
{
nvpair_t *nvp;
nvlist_t *oprops, *voprops;
zfs_handle_t *zhp = NULL;
zpool_handle_t *zpool_hdl = NULL;
int ret = 0;
if (nvlist_empty(cmdprops))
return (0); /* No properties to override or exclude */
*oxprops = fnvlist_alloc();
oprops = fnvlist_alloc();
/*
* first iteration: process excluded (-x) properties now and gather
* added (-o) properties to be later processed by zfs_valid_proplist()
*/
nvp = NULL;
while ((nvp = nvlist_next_nvpair(cmdprops, nvp)) != NULL) {
const char *name = nvpair_name(nvp);
zfs_prop_t prop = zfs_name_to_prop(name);
/* "origin" is processed separately, don't handle it here */
if (prop == ZFS_PROP_ORIGIN)
continue;
/*
* we're trying to override or exclude a property that does not
* make sense for this type of dataset, but we don't want to
* fail if the receive is recursive: this comes in handy when
* the send stream contains, for instance, a child ZVOL and
* we're trying to receive it with "-o atime=on"
*/
if (!zfs_prop_valid_for_type(prop, type, B_FALSE) &&
!zfs_prop_user(name)) {
if (recursive)
continue;
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"property '%s' does not apply to datasets of this "
"type"), name);
ret = zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
switch (nvpair_type(nvp)) {
case DATA_TYPE_BOOLEAN: /* -x property */
/*
* DATA_TYPE_BOOLEAN is the way we're asked to "exclude"
* a property: this is done by forcing an explicit
* inherit on the destination so the effective value is
* not the one we received from the send stream.
* We do this only if the property is not already
* locally-set, in which case its value will take
* priority over the received anyway.
*/
if (nvlist_exists(origprops, name)) {
nvlist_t *attrs;
attrs = fnvlist_lookup_nvlist(origprops, name);
if (strcmp(fnvlist_lookup_string(attrs,
ZPROP_SOURCE), ZPROP_SOURCE_VAL_RECVD) != 0)
continue;
}
/*
* We can't force an explicit inherit on non-inheritable
* properties: if we're asked to exclude this kind of
* values we remove them from "recvprops" input nvlist.
*/
if (!zfs_prop_inheritable(prop) &&
!zfs_prop_user(name) && /* can be inherited too */
nvlist_exists(recvprops, name))
fnvlist_remove(recvprops, name);
else
fnvlist_add_nvpair(*oxprops, nvp);
break;
case DATA_TYPE_STRING: /* -o property=value */
fnvlist_add_nvpair(oprops, nvp);
break;
default:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"property '%s' must be a string or boolean"), name);
ret = zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
}
if (toplevel) {
/* convert override strings properties to native */
if ((voprops = zfs_valid_proplist(hdl, ZFS_TYPE_DATASET,
oprops, zoned, zhp, zpool_hdl, B_FALSE, errbuf)) == NULL) {
ret = zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
/* second pass: process "-o" properties */
fnvlist_merge(*oxprops, voprops);
fnvlist_free(voprops);
} else {
/* override props on child dataset are inherited */
nvp = NULL;
while ((nvp = nvlist_next_nvpair(oprops, nvp)) != NULL) {
const char *name = nvpair_name(nvp);
fnvlist_add_boolean(*oxprops, name);
}
}
error:
fnvlist_free(oprops);
return (ret);
}
/*
* Restores a backup of tosnap from the file descriptor specified by infd.
*/
static int
zfs_receive_one(libzfs_handle_t *hdl, int infd, const char *tosnap,
const char *originsnap, recvflags_t *flags, dmu_replay_record_t *drr,
dmu_replay_record_t *drr_noswap, const char *sendfs, nvlist_t *stream_nv,
avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd,
uint64_t *action_handlep, const char *finalsnap, nvlist_t *cmdprops)
{
time_t begin_time;
int ioctl_err, ioctl_errno, err;
char *cp;
struct drr_begin *drrb = &drr->drr_u.drr_begin;
char errbuf[1024];
const char *chopprefix;
boolean_t newfs = B_FALSE;
boolean_t stream_wantsnewfs;
boolean_t newprops = B_FALSE;
uint64_t read_bytes = 0;
uint64_t errflags = 0;
uint64_t parent_snapguid = 0;
prop_changelist_t *clp = NULL;
nvlist_t *snapprops_nvlist = NULL;
zprop_errflags_t prop_errflags;
nvlist_t *prop_errors = NULL;
boolean_t recursive;
char *snapname = NULL;
char destsnap[MAXPATHLEN * 2];
char origin[MAXNAMELEN];
char name[MAXPATHLEN];
char tmp_keylocation[MAXNAMELEN];
nvlist_t *rcvprops = NULL; /* props received from the send stream */
nvlist_t *oxprops = NULL; /* override (-o) and exclude (-x) props */
nvlist_t *origprops = NULL; /* original props (if destination exists) */
zfs_type_t type;
boolean_t toplevel = B_FALSE;
boolean_t zoned = B_FALSE;
boolean_t hastoken = B_FALSE;
begin_time = time(NULL);
bzero(origin, MAXNAMELEN);
bzero(tmp_keylocation, MAXNAMELEN);
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot receive"));
recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") ==
ENOENT);
if (stream_avl != NULL) {
char *keylocation = NULL;
nvlist_t *lookup = NULL;
nvlist_t *fs = fsavl_find(stream_avl, drrb->drr_toguid,
&snapname);
(void) nvlist_lookup_uint64(fs, "parentfromsnap",
&parent_snapguid);
err = nvlist_lookup_nvlist(fs, "props", &rcvprops);
if (err) {
VERIFY(0 == nvlist_alloc(&rcvprops, NV_UNIQUE_NAME, 0));
newprops = B_TRUE;
}
/*
* The keylocation property may only be set on encryption roots,
* but this dataset might not become an encryption root until
* recv_fix_encryption_heirarchy() is called. That function
* will fixup the keylocation anyway, so we temporarily unset
* the keylocation for now to avoid any errors from the receive
* ioctl.
*/
err = nvlist_lookup_string(rcvprops,
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
if (err == 0) {
strcpy(tmp_keylocation, keylocation);
(void) nvlist_remove_all(rcvprops,
zfs_prop_to_name(ZFS_PROP_KEYLOCATION));
}
if (flags->canmountoff) {
VERIFY(0 == nvlist_add_uint64(rcvprops,
zfs_prop_to_name(ZFS_PROP_CANMOUNT), 0));
}
if (0 == nvlist_lookup_nvlist(fs, "snapprops", &lookup)) {
VERIFY(0 == nvlist_lookup_nvlist(lookup,
snapname, &snapprops_nvlist));
}
}
cp = NULL;
/*
* Determine how much of the snapshot name stored in the stream
* we are going to tack on to the name they specified on the
* command line, and how much we are going to chop off.
*
* If they specified a snapshot, chop the entire name stored in
* the stream.
*/
if (flags->istail) {
/*
* A filesystem was specified with -e. We want to tack on only
* the tail of the sent snapshot path.
*/
if (strchr(tosnap, '@')) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid "
"argument - snapshot not allowed with -e"));
err = zfs_error(hdl, EZFS_INVALIDNAME, errbuf);
goto out;
}
chopprefix = strrchr(sendfs, '/');
if (chopprefix == NULL) {
/*
* The tail is the poolname, so we need to
* prepend a path separator.
*/
int len = strlen(drrb->drr_toname);
cp = malloc(len + 2);
cp[0] = '/';
(void) strcpy(&cp[1], drrb->drr_toname);
chopprefix = cp;
} else {
chopprefix = drrb->drr_toname + (chopprefix - sendfs);
}
} else if (flags->isprefix) {
/*
* A filesystem was specified with -d. We want to tack on
* everything but the first element of the sent snapshot path
* (all but the pool name).
*/
if (strchr(tosnap, '@')) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid "
"argument - snapshot not allowed with -d"));
err = zfs_error(hdl, EZFS_INVALIDNAME, errbuf);
goto out;
}
chopprefix = strchr(drrb->drr_toname, '/');
if (chopprefix == NULL)
chopprefix = strchr(drrb->drr_toname, '@');
} else if (strchr(tosnap, '@') == NULL) {
/*
* If a filesystem was specified without -d or -e, we want to
* tack on everything after the fs specified by 'zfs send'.
*/
chopprefix = drrb->drr_toname + strlen(sendfs);
} else {
/* A snapshot was specified as an exact path (no -d or -e). */
if (recursive) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"cannot specify snapshot name for multi-snapshot "
"stream"));
err = zfs_error(hdl, EZFS_BADSTREAM, errbuf);
goto out;
}
chopprefix = drrb->drr_toname + strlen(drrb->drr_toname);
}
ASSERT(strstr(drrb->drr_toname, sendfs) == drrb->drr_toname);
ASSERT(chopprefix > drrb->drr_toname);
ASSERT(chopprefix <= drrb->drr_toname + strlen(drrb->drr_toname));
ASSERT(chopprefix[0] == '/' || chopprefix[0] == '@' ||
chopprefix[0] == '\0');
/*
* Determine name of destination snapshot.
*/
(void) strlcpy(destsnap, tosnap, sizeof (destsnap));
(void) strlcat(destsnap, chopprefix, sizeof (destsnap));
free(cp);
if (!zfs_name_valid(destsnap, ZFS_TYPE_SNAPSHOT)) {
err = zfs_error(hdl, EZFS_INVALIDNAME, errbuf);
goto out;
}
/*
* Determine the name of the origin snapshot.
*/
if (originsnap) {
(void) strncpy(origin, originsnap, sizeof (origin));
if (flags->verbose)
(void) printf("using provided clone origin %s\n",
origin);
} else if (drrb->drr_flags & DRR_FLAG_CLONE) {
if (guid_to_name(hdl, destsnap,
drrb->drr_fromguid, B_FALSE, origin) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"local origin for clone %s does not exist"),
destsnap);
err = zfs_error(hdl, EZFS_NOENT, errbuf);
goto out;
}
if (flags->verbose)
(void) printf("found clone origin %s\n", origin);
}
boolean_t resuming = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
DMU_BACKUP_FEATURE_RESUMING;
boolean_t raw = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
DMU_BACKUP_FEATURE_RAW;
boolean_t embedded = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
DMU_BACKUP_FEATURE_EMBED_DATA;
stream_wantsnewfs = (drrb->drr_fromguid == 0 ||
(drrb->drr_flags & DRR_FLAG_CLONE) || originsnap) && !resuming;
if (stream_wantsnewfs) {
/*
* if the parent fs does not exist, look for it based on
* the parent snap GUID
*/
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot receive new filesystem stream"));
(void) strcpy(name, destsnap);
cp = strrchr(name, '/');
if (cp)
*cp = '\0';
if (cp &&
!zfs_dataset_exists(hdl, name, ZFS_TYPE_DATASET)) {
char suffix[ZFS_MAX_DATASET_NAME_LEN];
(void) strcpy(suffix, strrchr(destsnap, '/'));
if (guid_to_name(hdl, name, parent_snapguid,
B_FALSE, destsnap) == 0) {
*strchr(destsnap, '@') = '\0';
(void) strcat(destsnap, suffix);
}
}
} else {
/*
* if the fs does not exist, look for it based on the
* fromsnap GUID
*/
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot receive incremental stream"));
(void) strcpy(name, destsnap);
*strchr(name, '@') = '\0';
/*
* If the exact receive path was specified and this is the
* topmost path in the stream, then if the fs does not exist we
* should look no further.
*/
if ((flags->isprefix || (*(chopprefix = drrb->drr_toname +
strlen(sendfs)) != '\0' && *chopprefix != '@')) &&
!zfs_dataset_exists(hdl, name, ZFS_TYPE_DATASET)) {
char snap[ZFS_MAX_DATASET_NAME_LEN];
(void) strcpy(snap, strchr(destsnap, '@'));
if (guid_to_name(hdl, name, drrb->drr_fromguid,
B_FALSE, destsnap) == 0) {
*strchr(destsnap, '@') = '\0';
(void) strcat(destsnap, snap);
}
}
}
(void) strcpy(name, destsnap);
*strchr(name, '@') = '\0';
if (zfs_dataset_exists(hdl, name, ZFS_TYPE_DATASET)) {
zfs_cmd_t zc = {"\0"};
zfs_handle_t *zhp;
boolean_t encrypted;
(void) strcpy(zc.zc_name, name);
/*
* Destination fs exists. It must be one of these cases:
* - an incremental send stream
* - the stream specifies a new fs (full stream or clone)
* and they want us to blow away the existing fs (and
* have therefore specified -F and removed any snapshots)
* - we are resuming a failed receive.
*/
if (stream_wantsnewfs) {
if (!flags->force) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"destination '%s' exists\n"
"must specify -F to overwrite it"), name);
err = zfs_error(hdl, EZFS_EXISTS, errbuf);
goto out;
}
if (ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT,
&zc) == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"destination has snapshots (eg. %s)\n"
"must destroy them to overwrite it"),
name);
err = zfs_error(hdl, EZFS_EXISTS, errbuf);
goto out;
}
}
if ((zhp = zfs_open(hdl, name,
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) {
err = -1;
goto out;
}
if (stream_wantsnewfs &&
zhp->zfs_dmustats.dds_origin[0]) {
zfs_close(zhp);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"destination '%s' is a clone\n"
"must destroy it to overwrite it"), name);
err = zfs_error(hdl, EZFS_EXISTS, errbuf);
goto out;
}
/*
* Raw sends can not be performed as an incremental on top
* of existing unencryppted datasets. zfs recv -F cant be
* used to blow away an existing encrypted filesystem. This
* is because it would require the dsl dir to point to the
* new key (or lack of a key) and the old key at the same
* time. The -F flag may still be used for deleting
* intermediate snapshots that would otherwise prevent the
* receive from working.
*/
encrypted = zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) !=
ZIO_CRYPT_OFF;
if (!stream_wantsnewfs && !encrypted && raw) {
zfs_close(zhp);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"cannot perform raw receive on top of "
"existing unencrypted dataset"));
err = zfs_error(hdl, EZFS_BADRESTORE, errbuf);
goto out;
}
if (stream_wantsnewfs && flags->force &&
((raw && !encrypted) || encrypted)) {
zfs_close(zhp);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"zfs receive -F cannot be used to destroy an "
"encrypted filesystem or overwrite an "
"unencrypted one with an encrypted one"));
err = zfs_error(hdl, EZFS_BADRESTORE, errbuf);
goto out;
}
if (!flags->dryrun && zhp->zfs_type == ZFS_TYPE_FILESYSTEM &&
stream_wantsnewfs) {
/* We can't do online recv in this case */
clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0);
if (clp == NULL) {
zfs_close(zhp);
err = -1;
goto out;
}
if (changelist_prefix(clp) != 0) {
changelist_free(clp);
zfs_close(zhp);
err = -1;
goto out;
}
}
/*
* If we are resuming a newfs, set newfs here so that we will
* mount it if the recv succeeds this time. We can tell
* that it was a newfs on the first recv because the fs
* itself will be inconsistent (if the fs existed when we
* did the first recv, we would have received it into
* .../%recv).
*/
if (resuming && zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT))
newfs = B_TRUE;
/* we want to know if we're zoned when validating -o|-x props */
zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
/* may need this info later, get it now we have zhp around */
if (zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, NULL, 0,
NULL, NULL, 0, B_TRUE) == 0)
hastoken = B_TRUE;
/* gather existing properties on destination */
origprops = fnvlist_alloc();
fnvlist_merge(origprops, zhp->zfs_props);
fnvlist_merge(origprops, zhp->zfs_user_props);
zfs_close(zhp);
} else {
zfs_handle_t *zhp;
/*
* Destination filesystem does not exist. Therefore we better
* be creating a new filesystem (either from a full backup, or
* a clone). It would therefore be invalid if the user
* specified only the pool name (i.e. if the destination name
* contained no slash character).
*/
cp = strrchr(name, '/');
if (!stream_wantsnewfs || cp == NULL) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"destination '%s' does not exist"), name);
err = zfs_error(hdl, EZFS_NOENT, errbuf);
goto out;
}
/*
* Trim off the final dataset component so we perform the
* recvbackup ioctl to the filesystems's parent.
*/
*cp = '\0';
if (flags->isprefix && !flags->istail && !flags->dryrun &&
create_parents(hdl, destsnap, strlen(tosnap)) != 0) {
err = zfs_error(hdl, EZFS_BADRESTORE, errbuf);
goto out;
}
/*
* It is invalid to receive a properties stream that was
* unencrypted on the send side as a child of an encrypted
* parent. Technically there is nothing preventing this, but
* it would mean that the encryption=off property which is
* locally set on the send side would not be received correctly.
* We can infer encryption=off if the stream is not raw and
* properties were included since the send side will only ever
* send the encryption property in a raw nvlist header.
*/
if (!raw && rcvprops != NULL) {
uint64_t crypt;
zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET);
if (zhp == NULL) {
err = zfs_error(hdl, EZFS_BADRESTORE, errbuf);
goto out;
}
crypt = zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION);
zfs_close(zhp);
if (crypt != ZIO_CRYPT_OFF) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"parent '%s' must not be encrypted to "
"receive unenecrypted property"), name);
err = zfs_error(hdl, EZFS_BADPROP, errbuf);
goto out;
}
}
newfs = B_TRUE;
*cp = '/';
}
if (flags->verbose) {
(void) printf("%s %s stream of %s into %s\n",
flags->dryrun ? "would receive" : "receiving",
drrb->drr_fromguid ? "incremental" : "full",
drrb->drr_toname, destsnap);
(void) fflush(stdout);
}
if (flags->dryrun) {
err = recv_skip(hdl, infd, flags->byteswap);
goto out;
}
if (top_zfs && *top_zfs == NULL)
toplevel = B_TRUE;
if (drrb->drr_type == DMU_OST_ZVOL) {
type = ZFS_TYPE_VOLUME;
} else if (drrb->drr_type == DMU_OST_ZFS) {
type = ZFS_TYPE_FILESYSTEM;
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid record type: 0x%d"), drrb->drr_type);
err = zfs_error(hdl, EZFS_BADSTREAM, errbuf);
goto out;
}
if ((err = zfs_setup_cmdline_props(hdl, type, zoned, recursive,
toplevel, rcvprops, cmdprops, origprops, &oxprops, errbuf)) != 0)
goto out;
err = ioctl_err = lzc_receive_with_cmdprops(destsnap, rcvprops, oxprops,
origin, flags->force, flags->resumable, raw, infd, drr_noswap,
cleanup_fd, &read_bytes, &errflags, action_handlep, &prop_errors);
ioctl_errno = ioctl_err;
prop_errflags = errflags;
if (err == 0) {
nvpair_t *prop_err = NULL;
while ((prop_err = nvlist_next_nvpair(prop_errors,
prop_err)) != NULL) {
char tbuf[1024];
zfs_prop_t prop;
int intval;
prop = zfs_name_to_prop(nvpair_name(prop_err));
(void) nvpair_value_int32(prop_err, &intval);
if (strcmp(nvpair_name(prop_err),
ZPROP_N_MORE_ERRORS) == 0) {
trunc_prop_errs(intval);
break;
} else if (snapname == NULL || finalsnap == NULL ||
strcmp(finalsnap, snapname) == 0 ||
strcmp(nvpair_name(prop_err),
zfs_prop_to_name(ZFS_PROP_REFQUOTA)) != 0) {
/*
* Skip the special case of, for example,
* "refquota", errors on intermediate
* snapshots leading up to a final one.
* That's why we have all of the checks above.
*
* See zfs_ioctl.c's extract_delay_props() for
* a list of props which can fail on
* intermediate snapshots, but shouldn't
* affect the overall receive.
*/
(void) snprintf(tbuf, sizeof (tbuf),
dgettext(TEXT_DOMAIN,
"cannot receive %s property on %s"),
nvpair_name(prop_err), name);
zfs_setprop_error(hdl, prop, intval, tbuf);
}
}
}
if (err == 0 && snapprops_nvlist) {
zfs_cmd_t zc = {"\0"};
(void) strcpy(zc.zc_name, destsnap);
zc.zc_cookie = B_TRUE; /* received */
if (zcmd_write_src_nvlist(hdl, &zc, snapprops_nvlist) == 0) {
(void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc);
zcmd_free_nvlists(&zc);
}
}
if (err && (ioctl_errno == ENOENT || ioctl_errno == EEXIST)) {
/*
* It may be that this snapshot already exists,
* in which case we want to consume & ignore it
* rather than failing.
*/
avl_tree_t *local_avl;
nvlist_t *local_nv, *fs;
cp = strchr(destsnap, '@');
/*
* XXX Do this faster by just iterating over snaps in
* this fs. Also if zc_value does not exist, we will
* get a strange "does not exist" error message.
*/
*cp = '\0';
if (gather_nvlist(hdl, destsnap, NULL, NULL, B_FALSE, B_TRUE,
B_FALSE, B_FALSE, &local_nv, &local_avl) == 0) {
*cp = '@';
fs = fsavl_find(local_avl, drrb->drr_toguid, NULL);
fsavl_destroy(local_avl);
nvlist_free(local_nv);
if (fs != NULL) {
if (flags->verbose) {
(void) printf("snap %s already exists; "
"ignoring\n", destsnap);
}
err = ioctl_err = recv_skip(hdl, infd,
flags->byteswap);
}
}
*cp = '@';
}
if (ioctl_err != 0) {
switch (ioctl_errno) {
case ENODEV:
cp = strchr(destsnap, '@');
*cp = '\0';
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"most recent snapshot of %s does not\n"
"match incremental source"), destsnap);
(void) zfs_error(hdl, EZFS_BADRESTORE, errbuf);
*cp = '@';
break;
case ETXTBSY:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"destination %s has been modified\n"
"since most recent snapshot"), name);
(void) zfs_error(hdl, EZFS_BADRESTORE, errbuf);
break;
case EACCES:
if (raw && stream_wantsnewfs) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"failed to create encryption key"));
} else if (raw && !stream_wantsnewfs) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"encryption key does not match "
"existing key"));
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"inherited key must be loaded"));
}
(void) zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf);
break;
case EEXIST:
cp = strchr(destsnap, '@');
if (newfs) {
/* it's the containing fs that exists */
*cp = '\0';
}
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"destination already exists"));
(void) zfs_error_fmt(hdl, EZFS_EXISTS,
dgettext(TEXT_DOMAIN, "cannot restore to %s"),
destsnap);
*cp = '@';
break;
case EINVAL:
if (flags->resumable)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"kernel modules must be upgraded to "
"receive this stream."));
if (embedded && !raw)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"incompatible embedded data stream "
"feature with encrypted receive."));
(void) zfs_error(hdl, EZFS_BADSTREAM, errbuf);
break;
case ECKSUM:
recv_ecksum_set_aux(hdl, destsnap, flags->resumable);
(void) zfs_error(hdl, EZFS_BADSTREAM, errbuf);
break;
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool must be upgraded to receive this stream."));
(void) zfs_error(hdl, EZFS_BADVERSION, errbuf);
break;
case EDQUOT:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"destination %s space quota exceeded."), name);
(void) zfs_error(hdl, EZFS_NOSPC, errbuf);
break;
case EBUSY:
if (hastoken) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"destination %s contains "
"partially-complete state from "
"\"zfs receive -s\"."), name);
(void) zfs_error(hdl, EZFS_BUSY, errbuf);
break;
}
/* fallthru */
default:
(void) zfs_standard_error(hdl, ioctl_errno, errbuf);
}
}
/*
* Mount the target filesystem (if created). Also mount any
* children of the target filesystem if we did a replication
* receive (indicated by stream_avl being non-NULL).
*/
cp = strchr(destsnap, '@');
if (cp && (ioctl_err == 0 || !newfs)) {
zfs_handle_t *h;
*cp = '\0';
h = zfs_open(hdl, destsnap,
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (h != NULL) {
if (h->zfs_type == ZFS_TYPE_VOLUME) {
*cp = '@';
} else if (newfs || stream_avl) {
/*
* Track the first/top of hierarchy fs,
* for mounting and sharing later.
*/
if (top_zfs && *top_zfs == NULL)
*top_zfs = zfs_strdup(hdl, destsnap);
}
zfs_close(h);
}
*cp = '@';
}
if (clp) {
if (!flags->nomount)
err |= changelist_postfix(clp);
changelist_free(clp);
}
if (prop_errflags & ZPROP_ERR_NOCLEAR) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: "
"failed to clear unreceived properties on %s"), name);
(void) fprintf(stderr, "\n");
}
if (prop_errflags & ZPROP_ERR_NORESTORE) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: "
"failed to restore original properties on %s"), name);
(void) fprintf(stderr, "\n");
}
if (err || ioctl_err) {
err = -1;
goto out;
}
if (flags->verbose) {
char buf1[64];
char buf2[64];
uint64_t bytes = read_bytes;
time_t delta = time(NULL) - begin_time;
if (delta == 0)
delta = 1;
zfs_nicebytes(bytes, buf1, sizeof (buf1));
zfs_nicebytes(bytes/delta, buf2, sizeof (buf1));
(void) printf("received %s stream in %lu seconds (%s/sec)\n",
buf1, delta, buf2);
}
err = 0;
out:
if (prop_errors != NULL)
nvlist_free(prop_errors);
if (tmp_keylocation[0] != '\0') {
VERIFY(0 == nvlist_add_string(rcvprops,
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), tmp_keylocation));
}
if (newprops)
nvlist_free(rcvprops);
nvlist_free(oxprops);
nvlist_free(origprops);
return (err);
}
/*
* Check properties we were asked to override (both -o|-x)
*/
static boolean_t
zfs_receive_checkprops(libzfs_handle_t *hdl, nvlist_t *props,
const char *errbuf)
{
nvpair_t *nvp;
zfs_prop_t prop;
const char *name;
nvp = NULL;
while ((nvp = nvlist_next_nvpair(props, nvp)) != NULL) {
name = nvpair_name(nvp);
prop = zfs_name_to_prop(name);
if (prop == ZPROP_INVAL) {
if (!zfs_prop_user(name)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property '%s'"), name);
return (B_FALSE);
}
continue;
}
/*
* "origin" is readonly but is used to receive datasets as
* clones so we don't raise an error here
*/
if (prop == ZFS_PROP_ORIGIN)
continue;
/*
* cannot override readonly, set-once and other specific
* settable properties
*/
if (zfs_prop_readonly(prop) || prop == ZFS_PROP_VERSION ||
prop == ZFS_PROP_VOLSIZE) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property '%s'"), name);
return (B_FALSE);
}
}
return (B_TRUE);
}
static int
zfs_receive_impl(libzfs_handle_t *hdl, const char *tosnap,
const char *originsnap, recvflags_t *flags, int infd, const char *sendfs,
nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd,
uint64_t *action_handlep, const char *finalsnap, nvlist_t *cmdprops)
{
int err;
dmu_replay_record_t drr, drr_noswap;
struct drr_begin *drrb = &drr.drr_u.drr_begin;
char errbuf[1024];
zio_cksum_t zcksum = { { 0 } };
uint64_t featureflags;
int hdrtype;
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot receive"));
/* check cmdline props, raise an error if they cannot be received */
if (!zfs_receive_checkprops(hdl, cmdprops, errbuf)) {
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
if (flags->isprefix &&
!zfs_dataset_exists(hdl, tosnap, ZFS_TYPE_DATASET)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "specified fs "
"(%s) does not exist"), tosnap);
return (zfs_error(hdl, EZFS_NOENT, errbuf));
}
if (originsnap &&
!zfs_dataset_exists(hdl, originsnap, ZFS_TYPE_DATASET)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "specified origin fs "
"(%s) does not exist"), originsnap);
return (zfs_error(hdl, EZFS_NOENT, errbuf));
}
/* read in the BEGIN record */
if (0 != (err = recv_read(hdl, infd, &drr, sizeof (drr), B_FALSE,
&zcksum)))
return (err);
if (drr.drr_type == DRR_END || drr.drr_type == BSWAP_32(DRR_END)) {
/* It's the double end record at the end of a package */
return (ENODATA);
}
/* the kernel needs the non-byteswapped begin record */
drr_noswap = drr;
flags->byteswap = B_FALSE;
if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
/*
* We computed the checksum in the wrong byteorder in
* recv_read() above; do it again correctly.
*/
bzero(&zcksum, sizeof (zio_cksum_t));
fletcher_4_incremental_byteswap(&drr, sizeof (drr), &zcksum);
flags->byteswap = B_TRUE;
drr.drr_type = BSWAP_32(drr.drr_type);
drr.drr_payloadlen = BSWAP_32(drr.drr_payloadlen);
drrb->drr_magic = BSWAP_64(drrb->drr_magic);
drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo);
drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time);
drrb->drr_type = BSWAP_32(drrb->drr_type);
drrb->drr_flags = BSWAP_32(drrb->drr_flags);
drrb->drr_toguid = BSWAP_64(drrb->drr_toguid);
drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid);
}
if (drrb->drr_magic != DMU_BACKUP_MAGIC || drr.drr_type != DRR_BEGIN) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid "
"stream (bad magic number)"));
return (zfs_error(hdl, EZFS_BADSTREAM, errbuf));
}
featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
hdrtype = DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo);
if (!DMU_STREAM_SUPPORTED(featureflags) ||
(hdrtype != DMU_SUBSTREAM && hdrtype != DMU_COMPOUNDSTREAM)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"stream has unsupported feature, feature flags = %lx"),
featureflags);
return (zfs_error(hdl, EZFS_BADSTREAM, errbuf));
}
if (strchr(drrb->drr_toname, '@') == NULL) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid "
"stream (bad snapshot name)"));
return (zfs_error(hdl, EZFS_BADSTREAM, errbuf));
}
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_SUBSTREAM) {
char nonpackage_sendfs[ZFS_MAX_DATASET_NAME_LEN];
if (sendfs == NULL) {
/*
* We were not called from zfs_receive_package(). Get
* the fs specified by 'zfs send'.
*/
char *cp;
(void) strlcpy(nonpackage_sendfs,
drr.drr_u.drr_begin.drr_toname,
sizeof (nonpackage_sendfs));
if ((cp = strchr(nonpackage_sendfs, '@')) != NULL)
*cp = '\0';
sendfs = nonpackage_sendfs;
VERIFY(finalsnap == NULL);
}
return (zfs_receive_one(hdl, infd, tosnap, originsnap, flags,
&drr, &drr_noswap, sendfs, stream_nv, stream_avl, top_zfs,
cleanup_fd, action_handlep, finalsnap, cmdprops));
} else {
assert(DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
DMU_COMPOUNDSTREAM);
return (zfs_receive_package(hdl, infd, tosnap, flags, &drr,
&zcksum, top_zfs, cleanup_fd, action_handlep, cmdprops));
}
}
/*
* Restores a backup of tosnap from the file descriptor specified by infd.
* Return 0 on total success, -2 if some things couldn't be
* destroyed/renamed/promoted, -1 if some things couldn't be received.
* (-1 will override -2, if -1 and the resumable flag was specified the
* transfer can be resumed if the sending side supports it).
*/
int
zfs_receive(libzfs_handle_t *hdl, const char *tosnap, nvlist_t *props,
recvflags_t *flags, int infd, avl_tree_t *stream_avl)
{
char *top_zfs = NULL;
int err;
int cleanup_fd;
uint64_t action_handle = 0;
struct stat sb;
char *originsnap = NULL;
/*
* The only way fstat can fail is if we do not have a valid file
* descriptor.
*/
if (fstat(infd, &sb) == -1) {
perror("fstat");
return (-2);
}
#ifdef __linux__
#ifndef F_SETPIPE_SZ
#define F_SETPIPE_SZ (F_SETLEASE + 7)
#endif /* F_SETPIPE_SZ */
#ifndef F_GETPIPE_SZ
#define F_GETPIPE_SZ (F_GETLEASE + 7)
#endif /* F_GETPIPE_SZ */
/*
* It is not uncommon for gigabytes to be processed in zfs receive.
* Speculatively increase the buffer size via Linux-specific fcntl()
* call.
*/
if (S_ISFIFO(sb.st_mode)) {
FILE *procf = fopen("/proc/sys/fs/pipe-max-size", "r");
if (procf != NULL) {
unsigned long max_psize;
long cur_psize;
if (fscanf(procf, "%lu", &max_psize) > 0) {
cur_psize = fcntl(infd, F_GETPIPE_SZ);
if (cur_psize > 0 &&
max_psize > (unsigned long) cur_psize)
(void) fcntl(infd, F_SETPIPE_SZ,
max_psize);
}
fclose(procf);
}
}
#endif /* __linux__ */
if (props) {
err = nvlist_lookup_string(props, "origin", &originsnap);
if (err && err != ENOENT)
return (err);
}
cleanup_fd = open(ZFS_DEV, O_RDWR);
VERIFY(cleanup_fd >= 0);
err = zfs_receive_impl(hdl, tosnap, originsnap, flags, infd, NULL, NULL,
stream_avl, &top_zfs, cleanup_fd, &action_handle, NULL, props);
VERIFY(0 == close(cleanup_fd));
if (err == 0 && !flags->nomount && top_zfs) {
zfs_handle_t *zhp = NULL;
prop_changelist_t *clp = NULL;
zhp = zfs_open(hdl, top_zfs, ZFS_TYPE_FILESYSTEM);
if (zhp != NULL) {
clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
CL_GATHER_MOUNT_ALWAYS, 0);
zfs_close(zhp);
if (clp != NULL) {
/* mount and share received datasets */
err = changelist_postfix(clp);
changelist_free(clp);
}
}
if (zhp == NULL || clp == NULL || err)
err = -1;
}
if (top_zfs)
free(top_zfs);
return (err);
}