mirror_zfs/config/kernel-vfs-direct_IO.m4
Brian Behlendorf ff3e2e3c70 Perform KABI checks in parallel
Reduce the time required for ./configure to perform the needed
KABI checks by allowing kbuild to compile multiple test cases in
parallel.  This was accomplished by splitting each test's source
code from the logic handling whether that code could be compiled
or not.

By introducing this split it's possible to minimize the number of
times kbuild needs to be invoked.  As importantly, it means all of
the tests can be built in parallel.  This does require a little extra
care since we expect some tests to fail, so the --keep-going (-k)
option must be provided otherwise some tests may not get compiled.
Furthermore, since a failure during the kbuild modpost phase will
result in an early exit; the final linking phase is limited to tests
which passed the initial compilation and produced an object file.

Once everything has been built the configure script proceeds as
previously.  The only significant difference is that it now merely
needs to test for the existence of a .ko file to determine the
result of a given test.  This vastly speeds up the entire process.

New test cases should use ZFS_LINUX_TEST_SRC to declare their test
source code and ZFS_LINUX_TEST_RESULT to check the result.  All of
the existing kernel-*.m4 files have been updated accordingly, see
config/kernel-current-time.m4 for a basic example.  The legacy
ZFS_LINUX_TRY_COMPILE macro has been kept to handle special cases
but it's use is not encouraged.

                  master (secs)   patched (secs)
                  -------------   ----------------
autogen.sh        61              68
configure         137             24  (~17% of current run time)
make -j $(nproc)  44              44
make rpms         287             150

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8547
Closes #9132
Closes #9341
Conflicts:
	Makefile.am
	config/kernel-fpu.m4
2020-01-22 13:49:01 -08:00

110 lines
2.7 KiB
Plaintext

dnl #
dnl # Check for direct IO interfaces.
dnl #
AC_DEFUN([ZFS_AC_KERNEL_SRC_VFS_DIRECT_IO], [
ZFS_LINUX_TEST_SRC([direct_io_iter], [
#include <linux/fs.h>
ssize_t test_direct_IO(struct kiocb *kiocb,
struct iov_iter *iter) { return 0; }
static const struct address_space_operations
aops __attribute__ ((unused)) = {
.direct_IO = test_direct_IO,
};
],[])
ZFS_LINUX_TEST_SRC([direct_io_iter_offset], [
#include <linux/fs.h>
ssize_t test_direct_IO(struct kiocb *kiocb,
struct iov_iter *iter, loff_t offset) { return 0; }
static const struct address_space_operations
aops __attribute__ ((unused)) = {
.direct_IO = test_direct_IO,
};
],[])
ZFS_LINUX_TEST_SRC([direct_io_iter_rw_offset], [
#include <linux/fs.h>
ssize_t test_direct_IO(int rw, struct kiocb *kiocb,
struct iov_iter *iter, loff_t offset) { return 0; }
static const struct address_space_operations
aops __attribute__ ((unused)) = {
.direct_IO = test_direct_IO,
};
],[])
ZFS_LINUX_TEST_SRC([direct_io_iovec], [
#include <linux/fs.h>
ssize_t test_direct_IO(int rw, struct kiocb *kiocb,
const struct iovec *iov, loff_t offset,
unsigned long nr_segs) { return 0; }
static const struct address_space_operations
aops __attribute__ ((unused)) = {
.direct_IO = test_direct_IO,
};
],[])
])
AC_DEFUN([ZFS_AC_KERNEL_VFS_DIRECT_IO], [
dnl #
dnl # Linux 4.6.x API change
dnl #
AC_MSG_CHECKING([whether aops->direct_IO() uses iov_iter])
ZFS_LINUX_TEST_RESULT([direct_io_iter], [
AC_MSG_RESULT([yes])
AC_DEFINE(HAVE_VFS_DIRECT_IO_ITER, 1,
[aops->direct_IO() uses iov_iter without rw])
],[
AC_MSG_RESULT([no])
dnl #
dnl # Linux 4.1.x API change
dnl #
AC_MSG_CHECKING(
[whether aops->direct_IO() uses offset])
ZFS_LINUX_TEST_RESULT([direct_io_iter_offset], [
AC_MSG_RESULT([yes])
AC_DEFINE(HAVE_VFS_DIRECT_IO_ITER_OFFSET, 1,
[aops->direct_IO() uses iov_iter with offset])
],[
AC_MSG_RESULT([no])
dnl #
dnl # Linux 3.16.x API change
dnl #
AC_MSG_CHECKING(
[whether aops->direct_IO() uses rw and offset])
ZFS_LINUX_TEST_RESULT([direct_io_iter_rw_offset], [
AC_MSG_RESULT([yes])
AC_DEFINE(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET, 1,
[aops->direct_IO() uses iov_iter with ]
[rw and offset])
],[
AC_MSG_RESULT([no])
dnl #
dnl # Ancient Linux API (predates git)
dnl #
AC_MSG_CHECKING(
[whether aops->direct_IO() uses iovec])
ZFS_LINUX_TEST_RESULT([direct_io_iovec], [
AC_MSG_RESULT([yes])
AC_DEFINE(HAVE_VFS_DIRECT_IO_IOVEC, 1,
[aops->direct_IO() uses iovec])
],[
ZFS_LINUX_TEST_ERROR([direct IO])
AC_MSG_RESULT([no])
])
])
])
])
])