mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-26 18:04:22 +03:00
01c8efdd59
We always call it twice with JUSTLOOKING and then FORREAL. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net> Closes #16225
1562 lines
40 KiB
C
1562 lines
40 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
|
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
|
|
* Copyright 2017 Nexenta Systems, Inc.
|
|
* Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
|
|
*/
|
|
|
|
/* Portions Copyright 2007 Jeremy Teo */
|
|
/* Portions Copyright 2010 Robert Milkowski */
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/uio_impl.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/cmn_err.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/zfs_dir.h>
|
|
#include <sys/zfs_acl.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dsl_crypt.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/policy.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zfs_vnops.h>
|
|
#include <sys/zfs_quota.h>
|
|
#include <sys/zfs_vfsops.h>
|
|
#include <sys/zfs_znode.h>
|
|
|
|
/*
|
|
* Enable the experimental block cloning feature. If this setting is 0, then
|
|
* even if feature@block_cloning is enabled, attempts to clone blocks will act
|
|
* as though the feature is disabled.
|
|
*/
|
|
int zfs_bclone_enabled = 1;
|
|
|
|
/*
|
|
* When set zfs_clone_range() waits for dirty data to be written to disk.
|
|
* This allows the clone operation to reliably succeed when a file is modified
|
|
* and then immediately cloned. For small files this may be slower than making
|
|
* a copy of the file and is therefore not the default. However, in certain
|
|
* scenarios this behavior may be desirable so a tunable is provided.
|
|
*/
|
|
static int zfs_bclone_wait_dirty = 0;
|
|
|
|
/*
|
|
* Maximum bytes to read per chunk in zfs_read().
|
|
*/
|
|
static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
|
|
|
|
int
|
|
zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
|
|
{
|
|
int error = 0;
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
|
|
if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
atomic_inc_32(&zp->z_sync_writes_cnt);
|
|
zil_commit(zfsvfs->z_log, zp->z_id);
|
|
atomic_dec_32(&zp->z_sync_writes_cnt);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
|
|
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
|
|
/*
|
|
* Lseek support for finding holes (cmd == SEEK_HOLE) and
|
|
* data (cmd == SEEK_DATA). "off" is an in/out parameter.
|
|
*/
|
|
static int
|
|
zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
|
|
{
|
|
zfs_locked_range_t *lr;
|
|
uint64_t noff = (uint64_t)*off; /* new offset */
|
|
uint64_t file_sz;
|
|
int error;
|
|
boolean_t hole;
|
|
|
|
file_sz = zp->z_size;
|
|
if (noff >= file_sz) {
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
if (cmd == F_SEEK_HOLE)
|
|
hole = B_TRUE;
|
|
else
|
|
hole = B_FALSE;
|
|
|
|
/* Flush any mmap()'d data to disk */
|
|
if (zn_has_cached_data(zp, 0, file_sz - 1))
|
|
zn_flush_cached_data(zp, B_TRUE);
|
|
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
|
|
error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
|
|
zfs_rangelock_exit(lr);
|
|
|
|
if (error == ESRCH)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
/* File was dirty, so fall back to using generic logic */
|
|
if (error == EBUSY) {
|
|
if (hole)
|
|
*off = file_sz;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* We could find a hole that begins after the logical end-of-file,
|
|
* because dmu_offset_next() only works on whole blocks. If the
|
|
* EOF falls mid-block, then indicate that the "virtual hole"
|
|
* at the end of the file begins at the logical EOF, rather than
|
|
* at the end of the last block.
|
|
*/
|
|
if (noff > file_sz) {
|
|
ASSERT(hole);
|
|
noff = file_sz;
|
|
}
|
|
|
|
if (noff < *off)
|
|
return (error);
|
|
*off = noff;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
|
|
{
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int error;
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
error = zfs_holey_common(zp, cmd, off);
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
#endif /* SEEK_HOLE && SEEK_DATA */
|
|
|
|
int
|
|
zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
|
|
{
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int error;
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
if (flag & V_ACE_MASK)
|
|
#if defined(__linux__)
|
|
error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
|
|
zfs_init_idmap);
|
|
#else
|
|
error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
|
|
NULL);
|
|
#endif
|
|
else
|
|
#if defined(__linux__)
|
|
error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
|
|
#else
|
|
error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
|
|
#endif
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Read bytes from specified file into supplied buffer.
|
|
*
|
|
* IN: zp - inode of file to be read from.
|
|
* uio - structure supplying read location, range info,
|
|
* and return buffer.
|
|
* ioflag - O_SYNC flags; used to provide FRSYNC semantics.
|
|
* O_DIRECT flag; used to bypass page cache.
|
|
* cr - credentials of caller.
|
|
*
|
|
* OUT: uio - updated offset and range, buffer filled.
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Side Effects:
|
|
* inode - atime updated if byte count > 0
|
|
*/
|
|
int
|
|
zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
|
|
{
|
|
(void) cr;
|
|
int error = 0;
|
|
boolean_t frsync = B_FALSE;
|
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
if (zp->z_pflags & ZFS_AV_QUARANTINED) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
|
|
/* We don't copy out anything useful for directories. */
|
|
if (Z_ISDIR(ZTOTYPE(zp))) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EISDIR));
|
|
}
|
|
|
|
/*
|
|
* Validate file offset
|
|
*/
|
|
if (zfs_uio_offset(uio) < (offset_t)0) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Fasttrack empty reads
|
|
*/
|
|
if (zfs_uio_resid(uio) == 0) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef FRSYNC
|
|
/*
|
|
* If we're in FRSYNC mode, sync out this znode before reading it.
|
|
* Only do this for non-snapshots.
|
|
*
|
|
* Some platforms do not support FRSYNC and instead map it
|
|
* to O_SYNC, which results in unnecessary calls to zil_commit. We
|
|
* only honor FRSYNC requests on platforms which support it.
|
|
*/
|
|
frsync = !!(ioflag & FRSYNC);
|
|
#endif
|
|
if (zfsvfs->z_log &&
|
|
(frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
|
|
zil_commit(zfsvfs->z_log, zp->z_id);
|
|
|
|
/*
|
|
* Lock the range against changes.
|
|
*/
|
|
zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
|
|
zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
|
|
|
|
/*
|
|
* If we are reading past end-of-file we can skip
|
|
* to the end; but we might still need to set atime.
|
|
*/
|
|
if (zfs_uio_offset(uio) >= zp->z_size) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(zfs_uio_offset(uio) < zp->z_size);
|
|
#if defined(__linux__)
|
|
ssize_t start_offset = zfs_uio_offset(uio);
|
|
#endif
|
|
ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
|
|
ssize_t start_resid = n;
|
|
|
|
while (n > 0) {
|
|
ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
|
|
P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
|
|
#ifdef UIO_NOCOPY
|
|
if (zfs_uio_segflg(uio) == UIO_NOCOPY)
|
|
error = mappedread_sf(zp, nbytes, uio);
|
|
else
|
|
#endif
|
|
if (zn_has_cached_data(zp, zfs_uio_offset(uio),
|
|
zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
|
|
error = mappedread(zp, nbytes, uio);
|
|
} else {
|
|
error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
|
|
uio, nbytes);
|
|
}
|
|
|
|
if (error) {
|
|
/* convert checksum errors into IO errors */
|
|
if (error == ECKSUM)
|
|
error = SET_ERROR(EIO);
|
|
|
|
#if defined(__linux__)
|
|
/*
|
|
* if we actually read some bytes, bubbling EFAULT
|
|
* up to become EAGAIN isn't what we want here...
|
|
*
|
|
* ...on Linux, at least. On FBSD, doing this breaks.
|
|
*/
|
|
if (error == EFAULT &&
|
|
(zfs_uio_offset(uio) - start_offset) != 0)
|
|
error = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
n -= nbytes;
|
|
}
|
|
|
|
int64_t nread = start_resid - n;
|
|
dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
|
|
task_io_account_read(nread);
|
|
out:
|
|
zfs_rangelock_exit(lr);
|
|
|
|
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
|
|
uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
|
|
{
|
|
zilog_t *zilog = zfsvfs->z_log;
|
|
const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
|
|
|
|
ASSERT(clear_setid_bits_txgp != NULL);
|
|
ASSERT(tx != NULL);
|
|
|
|
/*
|
|
* Clear Set-UID/Set-GID bits on successful write if not
|
|
* privileged and at least one of the execute bits is set.
|
|
*
|
|
* It would be nice to do this after all writes have
|
|
* been done, but that would still expose the ISUID/ISGID
|
|
* to another app after the partial write is committed.
|
|
*
|
|
* Note: we don't call zfs_fuid_map_id() here because
|
|
* user 0 is not an ephemeral uid.
|
|
*/
|
|
mutex_enter(&zp->z_acl_lock);
|
|
if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
|
|
(zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
|
|
secpolicy_vnode_setid_retain(zp, cr,
|
|
((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
|
|
uint64_t newmode;
|
|
|
|
zp->z_mode &= ~(S_ISUID | S_ISGID);
|
|
newmode = zp->z_mode;
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
|
|
(void *)&newmode, sizeof (uint64_t), tx);
|
|
|
|
mutex_exit(&zp->z_acl_lock);
|
|
|
|
/*
|
|
* Make sure SUID/SGID bits will be removed when we replay the
|
|
* log. If the setid bits are keep coming back, don't log more
|
|
* than one TX_SETATTR per transaction group.
|
|
*/
|
|
if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
|
|
vattr_t va = {0};
|
|
|
|
va.va_mask = ATTR_MODE;
|
|
va.va_nodeid = zp->z_id;
|
|
va.va_mode = newmode;
|
|
zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
|
|
ATTR_MODE, NULL);
|
|
*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
|
|
}
|
|
} else {
|
|
mutex_exit(&zp->z_acl_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write the bytes to a file.
|
|
*
|
|
* IN: zp - znode of file to be written to.
|
|
* uio - structure supplying write location, range info,
|
|
* and data buffer.
|
|
* ioflag - O_APPEND flag set if in append mode.
|
|
* O_DIRECT flag; used to bypass page cache.
|
|
* cr - credentials of caller.
|
|
*
|
|
* OUT: uio - updated offset and range.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* ip - ctime|mtime updated if byte count > 0
|
|
*/
|
|
int
|
|
zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
|
|
{
|
|
int error = 0, error1;
|
|
ssize_t start_resid = zfs_uio_resid(uio);
|
|
uint64_t clear_setid_bits_txg = 0;
|
|
|
|
/*
|
|
* Fasttrack empty write
|
|
*/
|
|
ssize_t n = start_resid;
|
|
if (n == 0)
|
|
return (0);
|
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
sa_bulk_attr_t bulk[4];
|
|
int count = 0;
|
|
uint64_t mtime[2], ctime[2];
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
|
|
&zp->z_size, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
|
|
&zp->z_pflags, 8);
|
|
|
|
/*
|
|
* Callers might not be able to detect properly that we are read-only,
|
|
* so check it explicitly here.
|
|
*/
|
|
if (zfs_is_readonly(zfsvfs)) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EROFS));
|
|
}
|
|
|
|
/*
|
|
* If immutable or not appending then return EPERM.
|
|
* Intentionally allow ZFS_READONLY through here.
|
|
* See zfs_zaccess_common()
|
|
*/
|
|
if ((zp->z_pflags & ZFS_IMMUTABLE) ||
|
|
((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
|
|
(zfs_uio_offset(uio) < zp->z_size))) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
/*
|
|
* Validate file offset
|
|
*/
|
|
offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
|
|
if (woff < 0) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Pre-fault the pages to ensure slow (eg NFS) pages
|
|
* don't hold up txg.
|
|
*/
|
|
ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
|
|
if (zfs_uio_prefaultpages(pfbytes, uio)) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EFAULT));
|
|
}
|
|
|
|
/*
|
|
* If in append mode, set the io offset pointer to eof.
|
|
*/
|
|
zfs_locked_range_t *lr;
|
|
if (ioflag & O_APPEND) {
|
|
/*
|
|
* Obtain an appending range lock to guarantee file append
|
|
* semantics. We reset the write offset once we have the lock.
|
|
*/
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
|
|
woff = lr->lr_offset;
|
|
if (lr->lr_length == UINT64_MAX) {
|
|
/*
|
|
* We overlocked the file because this write will cause
|
|
* the file block size to increase.
|
|
* Note that zp_size cannot change with this lock held.
|
|
*/
|
|
woff = zp->z_size;
|
|
}
|
|
zfs_uio_setoffset(uio, woff);
|
|
} else {
|
|
/*
|
|
* Note that if the file block size will change as a result of
|
|
* this write, then this range lock will lock the entire file
|
|
* so that we can re-write the block safely.
|
|
*/
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
|
|
}
|
|
|
|
if (zn_rlimit_fsize_uio(zp, uio)) {
|
|
zfs_rangelock_exit(lr);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EFBIG));
|
|
}
|
|
|
|
const rlim64_t limit = MAXOFFSET_T;
|
|
|
|
if (woff >= limit) {
|
|
zfs_rangelock_exit(lr);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EFBIG));
|
|
}
|
|
|
|
if (n > limit - woff)
|
|
n = limit - woff;
|
|
|
|
uint64_t end_size = MAX(zp->z_size, woff + n);
|
|
zilog_t *zilog = zfsvfs->z_log;
|
|
boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
|
|
(zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
|
|
|
|
const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
|
|
const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
|
|
const uint64_t projid = zp->z_projid;
|
|
|
|
/*
|
|
* Write the file in reasonable size chunks. Each chunk is written
|
|
* in a separate transaction; this keeps the intent log records small
|
|
* and allows us to do more fine-grained space accounting.
|
|
*/
|
|
while (n > 0) {
|
|
woff = zfs_uio_offset(uio);
|
|
|
|
if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
|
|
zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
|
|
(projid != ZFS_DEFAULT_PROJID &&
|
|
zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
|
|
projid))) {
|
|
error = SET_ERROR(EDQUOT);
|
|
break;
|
|
}
|
|
|
|
uint64_t blksz;
|
|
if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
|
|
if (zp->z_blksz > zfsvfs->z_max_blksz &&
|
|
!ISP2(zp->z_blksz)) {
|
|
/*
|
|
* File's blocksize is already larger than the
|
|
* "recordsize" property. Only let it grow to
|
|
* the next power of 2.
|
|
*/
|
|
blksz = 1 << highbit64(zp->z_blksz);
|
|
} else {
|
|
blksz = zfsvfs->z_max_blksz;
|
|
}
|
|
blksz = MIN(blksz, P2ROUNDUP(end_size,
|
|
SPA_MINBLOCKSIZE));
|
|
blksz = MAX(blksz, zp->z_blksz);
|
|
} else {
|
|
blksz = zp->z_blksz;
|
|
}
|
|
|
|
arc_buf_t *abuf = NULL;
|
|
ssize_t nbytes = n;
|
|
if (n >= blksz && woff >= zp->z_size &&
|
|
P2PHASE(woff, blksz) == 0 &&
|
|
(blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
|
|
/*
|
|
* This write covers a full block. "Borrow" a buffer
|
|
* from the dmu so that we can fill it before we enter
|
|
* a transaction. This avoids the possibility of
|
|
* holding up the transaction if the data copy hangs
|
|
* up on a pagefault (e.g., from an NFS server mapping).
|
|
*/
|
|
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
|
|
blksz);
|
|
ASSERT(abuf != NULL);
|
|
ASSERT(arc_buf_size(abuf) == blksz);
|
|
if ((error = zfs_uiocopy(abuf->b_data, blksz,
|
|
UIO_WRITE, uio, &nbytes))) {
|
|
dmu_return_arcbuf(abuf);
|
|
break;
|
|
}
|
|
ASSERT3S(nbytes, ==, blksz);
|
|
} else {
|
|
nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
|
|
P2PHASE(woff, blksz));
|
|
if (pfbytes < nbytes) {
|
|
if (zfs_uio_prefaultpages(nbytes, uio)) {
|
|
error = SET_ERROR(EFAULT);
|
|
break;
|
|
}
|
|
pfbytes = nbytes;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start a transaction.
|
|
*/
|
|
dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
|
|
DB_DNODE_ENTER(db);
|
|
dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
|
|
DB_DNODE_EXIT(db);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
if (abuf != NULL)
|
|
dmu_return_arcbuf(abuf);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* NB: We must call zfs_clear_setid_bits_if_necessary before
|
|
* committing the transaction!
|
|
*/
|
|
|
|
/*
|
|
* If rangelock_enter() over-locked we grow the blocksize
|
|
* and then reduce the lock range. This will only happen
|
|
* on the first iteration since rangelock_reduce() will
|
|
* shrink down lr_length to the appropriate size.
|
|
*/
|
|
if (lr->lr_length == UINT64_MAX) {
|
|
zfs_grow_blocksize(zp, blksz, tx);
|
|
zfs_rangelock_reduce(lr, woff, n);
|
|
}
|
|
|
|
ssize_t tx_bytes;
|
|
if (abuf == NULL) {
|
|
tx_bytes = zfs_uio_resid(uio);
|
|
zfs_uio_fault_disable(uio, B_TRUE);
|
|
error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
|
|
uio, nbytes, tx);
|
|
zfs_uio_fault_disable(uio, B_FALSE);
|
|
#ifdef __linux__
|
|
if (error == EFAULT) {
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
|
|
cr, &clear_setid_bits_txg, tx);
|
|
dmu_tx_commit(tx);
|
|
/*
|
|
* Account for partial writes before
|
|
* continuing the loop.
|
|
* Update needs to occur before the next
|
|
* zfs_uio_prefaultpages, or prefaultpages may
|
|
* error, and we may break the loop early.
|
|
*/
|
|
n -= tx_bytes - zfs_uio_resid(uio);
|
|
pfbytes -= tx_bytes - zfs_uio_resid(uio);
|
|
continue;
|
|
}
|
|
#endif
|
|
/*
|
|
* On FreeBSD, EFAULT should be propagated back to the
|
|
* VFS, which will handle faulting and will retry.
|
|
*/
|
|
if (error != 0 && error != EFAULT) {
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
|
|
cr, &clear_setid_bits_txg, tx);
|
|
dmu_tx_commit(tx);
|
|
break;
|
|
}
|
|
tx_bytes -= zfs_uio_resid(uio);
|
|
} else {
|
|
/*
|
|
* Thus, we're writing a full block at a block-aligned
|
|
* offset and extending the file past EOF.
|
|
*
|
|
* dmu_assign_arcbuf_by_dbuf() will directly assign the
|
|
* arc buffer to a dbuf.
|
|
*/
|
|
error = dmu_assign_arcbuf_by_dbuf(
|
|
sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
|
|
if (error != 0) {
|
|
/*
|
|
* XXX This might not be necessary if
|
|
* dmu_assign_arcbuf_by_dbuf is guaranteed
|
|
* to be atomic.
|
|
*/
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
|
|
cr, &clear_setid_bits_txg, tx);
|
|
dmu_return_arcbuf(abuf);
|
|
dmu_tx_commit(tx);
|
|
break;
|
|
}
|
|
ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
|
|
zfs_uioskip(uio, nbytes);
|
|
tx_bytes = nbytes;
|
|
}
|
|
if (tx_bytes &&
|
|
zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
|
|
!(ioflag & O_DIRECT)) {
|
|
update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
|
|
}
|
|
|
|
/*
|
|
* If we made no progress, we're done. If we made even
|
|
* partial progress, update the znode and ZIL accordingly.
|
|
*/
|
|
if (tx_bytes == 0) {
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
|
|
(void *)&zp->z_size, sizeof (uint64_t), tx);
|
|
dmu_tx_commit(tx);
|
|
ASSERT(error != 0);
|
|
break;
|
|
}
|
|
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
|
|
&clear_setid_bits_txg, tx);
|
|
|
|
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
|
|
|
|
/*
|
|
* Update the file size (zp_size) if it has changed;
|
|
* account for possible concurrent updates.
|
|
*/
|
|
while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
|
|
(void) atomic_cas_64(&zp->z_size, end_size,
|
|
zfs_uio_offset(uio));
|
|
ASSERT(error == 0 || error == EFAULT);
|
|
}
|
|
/*
|
|
* If we are replaying and eof is non zero then force
|
|
* the file size to the specified eof. Note, there's no
|
|
* concurrency during replay.
|
|
*/
|
|
if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
|
|
zp->z_size = zfsvfs->z_replay_eof;
|
|
|
|
error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
|
|
if (error1 != 0)
|
|
/* Avoid clobbering EFAULT. */
|
|
error = error1;
|
|
|
|
/*
|
|
* NB: During replay, the TX_SETATTR record logged by
|
|
* zfs_clear_setid_bits_if_necessary must precede any of
|
|
* the TX_WRITE records logged here.
|
|
*/
|
|
zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
|
|
NULL, NULL);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error != 0)
|
|
break;
|
|
ASSERT3S(tx_bytes, ==, nbytes);
|
|
n -= nbytes;
|
|
pfbytes -= nbytes;
|
|
}
|
|
|
|
zfs_znode_update_vfs(zp);
|
|
zfs_rangelock_exit(lr);
|
|
|
|
/*
|
|
* If we're in replay mode, or we made no progress, or the
|
|
* uio data is inaccessible return an error. Otherwise, it's
|
|
* at least a partial write, so it's successful.
|
|
*/
|
|
if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
|
|
error == EFAULT) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
if (commit)
|
|
zil_commit(zilog, zp->z_id);
|
|
|
|
const int64_t nwritten = start_resid - zfs_uio_resid(uio);
|
|
dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
|
|
task_io_account_write(nwritten);
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
|
|
{
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int error;
|
|
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
error = zfs_getacl(zp, vsecp, skipaclchk, cr);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
|
|
{
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int error;
|
|
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
|
|
zilog_t *zilog;
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
zilog = zfsvfs->z_log;
|
|
error = zfs_setacl(zp, vsecp, skipaclchk, cr);
|
|
|
|
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef ZFS_DEBUG
|
|
static int zil_fault_io = 0;
|
|
#endif
|
|
|
|
static void zfs_get_done(zgd_t *zgd, int error);
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
int
|
|
zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
|
|
struct lwb *lwb, zio_t *zio)
|
|
{
|
|
zfsvfs_t *zfsvfs = arg;
|
|
objset_t *os = zfsvfs->z_os;
|
|
znode_t *zp;
|
|
uint64_t object = lr->lr_foid;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error = 0;
|
|
uint64_t zp_gen;
|
|
|
|
ASSERT3P(lwb, !=, NULL);
|
|
ASSERT3U(size, !=, 0);
|
|
|
|
/*
|
|
* Nothing to do if the file has been removed
|
|
*/
|
|
if (zfs_zget(zfsvfs, object, &zp) != 0)
|
|
return (SET_ERROR(ENOENT));
|
|
if (zp->z_unlinked) {
|
|
/*
|
|
* Release the vnode asynchronously as we currently have the
|
|
* txg stopped from syncing.
|
|
*/
|
|
zfs_zrele_async(zp);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
/* check if generation number matches */
|
|
if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
|
|
sizeof (zp_gen)) != 0) {
|
|
zfs_zrele_async(zp);
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
if (zp_gen != gen) {
|
|
zfs_zrele_async(zp);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
|
|
zgd->zgd_lwb = lwb;
|
|
zgd->zgd_private = zp;
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
|
|
offset, size, RL_READER);
|
|
/* test for truncation needs to be done while range locked */
|
|
if (offset >= zp->z_size) {
|
|
error = SET_ERROR(ENOENT);
|
|
} else {
|
|
error = dmu_read(os, object, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
}
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
} else { /* indirect write */
|
|
ASSERT3P(zio, !=, NULL);
|
|
/*
|
|
* Have to lock the whole block to ensure when it's
|
|
* written out and its checksum is being calculated
|
|
* that no one can change the data. We need to re-check
|
|
* blocksize after we get the lock in case it's changed!
|
|
*/
|
|
for (;;) {
|
|
uint64_t blkoff;
|
|
size = zp->z_blksz;
|
|
blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
|
|
offset -= blkoff;
|
|
zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
|
|
offset, size, RL_READER);
|
|
if (zp->z_blksz == size)
|
|
break;
|
|
offset += blkoff;
|
|
zfs_rangelock_exit(zgd->zgd_lr);
|
|
}
|
|
/* test for truncation needs to be done while range locked */
|
|
if (lr->lr_offset >= zp->z_size)
|
|
error = SET_ERROR(ENOENT);
|
|
#ifdef ZFS_DEBUG
|
|
if (zil_fault_io) {
|
|
error = SET_ERROR(EIO);
|
|
zil_fault_io = 0;
|
|
}
|
|
#endif
|
|
if (error == 0)
|
|
error = dmu_buf_hold_noread(os, object, offset, zgd,
|
|
&db);
|
|
|
|
if (error == 0) {
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = bp;
|
|
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zfs_get_done, zgd);
|
|
ASSERT(error || lr->lr_length <= size);
|
|
|
|
/*
|
|
* On success, we need to wait for the write I/O
|
|
* initiated by dmu_sync() to complete before we can
|
|
* release this dbuf. We will finish everything up
|
|
* in the zfs_get_done() callback.
|
|
*/
|
|
if (error == 0)
|
|
return (0);
|
|
|
|
if (error == EALREADY) {
|
|
lr->lr_common.lrc_txtype = TX_WRITE2;
|
|
/*
|
|
* TX_WRITE2 relies on the data previously
|
|
* written by the TX_WRITE that caused
|
|
* EALREADY. We zero out the BP because
|
|
* it is the old, currently-on-disk BP.
|
|
*/
|
|
zgd->zgd_bp = NULL;
|
|
BP_ZERO(bp);
|
|
error = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
zfs_get_done(zgd, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
static void
|
|
zfs_get_done(zgd_t *zgd, int error)
|
|
{
|
|
(void) error;
|
|
znode_t *zp = zgd->zgd_private;
|
|
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
zfs_rangelock_exit(zgd->zgd_lr);
|
|
|
|
/*
|
|
* Release the vnode asynchronously as we currently have the
|
|
* txg stopped from syncing.
|
|
*/
|
|
zfs_zrele_async(zp);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
static int
|
|
zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
|
|
{
|
|
int error;
|
|
|
|
/* Swap. Not sure if the order of zfs_enter()s is important. */
|
|
if (zfsvfs1 > zfsvfs2) {
|
|
zfsvfs_t *tmpzfsvfs;
|
|
|
|
tmpzfsvfs = zfsvfs2;
|
|
zfsvfs2 = zfsvfs1;
|
|
zfsvfs1 = tmpzfsvfs;
|
|
}
|
|
|
|
error = zfs_enter(zfsvfs1, tag);
|
|
if (error != 0)
|
|
return (error);
|
|
if (zfsvfs1 != zfsvfs2) {
|
|
error = zfs_enter(zfsvfs2, tag);
|
|
if (error != 0) {
|
|
zfs_exit(zfsvfs1, tag);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
|
|
{
|
|
|
|
zfs_exit(zfsvfs1, tag);
|
|
if (zfsvfs1 != zfsvfs2)
|
|
zfs_exit(zfsvfs2, tag);
|
|
}
|
|
|
|
/*
|
|
* We split each clone request in chunks that can fit into a single ZIL
|
|
* log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
|
|
* operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
|
|
* us room for storing 1022 block pointers.
|
|
*
|
|
* On success, the function return the number of bytes copied in *lenp.
|
|
* Note, it doesn't return how much bytes are left to be copied.
|
|
* On errors which are caused by any file system limitations or
|
|
* brt limitations `EINVAL` is returned. In the most cases a user
|
|
* requested bad parameters, it could be possible to clone the file but
|
|
* some parameters don't match the requirements.
|
|
*/
|
|
int
|
|
zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
|
|
uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
|
|
{
|
|
zfsvfs_t *inzfsvfs, *outzfsvfs;
|
|
objset_t *inos, *outos;
|
|
zfs_locked_range_t *inlr, *outlr;
|
|
dmu_buf_impl_t *db;
|
|
dmu_tx_t *tx;
|
|
zilog_t *zilog;
|
|
uint64_t inoff, outoff, len, done;
|
|
uint64_t outsize, size;
|
|
int error;
|
|
int count = 0;
|
|
sa_bulk_attr_t bulk[3];
|
|
uint64_t mtime[2], ctime[2];
|
|
uint64_t uid, gid, projid;
|
|
blkptr_t *bps;
|
|
size_t maxblocks, nbps;
|
|
uint_t inblksz;
|
|
uint64_t clear_setid_bits_txg = 0;
|
|
uint64_t last_synced_txg = 0;
|
|
|
|
inoff = *inoffp;
|
|
outoff = *outoffp;
|
|
len = *lenp;
|
|
done = 0;
|
|
|
|
inzfsvfs = ZTOZSB(inzp);
|
|
outzfsvfs = ZTOZSB(outzp);
|
|
|
|
/*
|
|
* We need to call zfs_enter() potentially on two different datasets,
|
|
* so we need a dedicated function for that.
|
|
*/
|
|
error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
inos = inzfsvfs->z_os;
|
|
outos = outzfsvfs->z_os;
|
|
|
|
/*
|
|
* Both source and destination have to belong to the same storage pool.
|
|
*/
|
|
if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
/*
|
|
* outos and inos belongs to the same storage pool.
|
|
* see a few lines above, only one check.
|
|
*/
|
|
if (!spa_feature_is_enabled(dmu_objset_spa(outos),
|
|
SPA_FEATURE_BLOCK_CLONING)) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EOPNOTSUPP));
|
|
}
|
|
|
|
ASSERT(!outzfsvfs->z_replay);
|
|
|
|
/*
|
|
* Block cloning from an unencrypted dataset into an encrypted
|
|
* dataset and vice versa is not supported.
|
|
*/
|
|
if (inos->os_encrypted != outos->os_encrypted) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
/*
|
|
* Cloning across encrypted datasets is possible only if they
|
|
* share the same master key.
|
|
*/
|
|
if (inos != outos && inos->os_encrypted &&
|
|
!dmu_objset_crypto_key_equal(inos, outos)) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
error = zfs_verify_zp(inzp);
|
|
if (error == 0)
|
|
error = zfs_verify_zp(outzp);
|
|
if (error != 0) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* We don't copy source file's flags that's why we don't allow to clone
|
|
* files that are in quarantine.
|
|
*/
|
|
if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
|
|
if (inoff >= inzp->z_size) {
|
|
*lenp = 0;
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (0);
|
|
}
|
|
if (len > inzp->z_size - inoff) {
|
|
len = inzp->z_size - inoff;
|
|
}
|
|
if (len == 0) {
|
|
*lenp = 0;
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Callers might not be able to detect properly that we are read-only,
|
|
* so check it explicitly here.
|
|
*/
|
|
if (zfs_is_readonly(outzfsvfs)) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EROFS));
|
|
}
|
|
|
|
/*
|
|
* If immutable or not appending then return EPERM.
|
|
* Intentionally allow ZFS_READONLY through here.
|
|
* See zfs_zaccess_common()
|
|
*/
|
|
if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
/*
|
|
* No overlapping if we are cloning within the same file.
|
|
*/
|
|
if (inzp == outzp) {
|
|
if (inoff < outoff + len && outoff < inoff + len) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
/* Flush any mmap()'d data to disk */
|
|
if (zn_has_cached_data(inzp, inoff, inoff + len - 1))
|
|
zn_flush_cached_data(inzp, B_TRUE);
|
|
|
|
/*
|
|
* Maintain predictable lock order.
|
|
*/
|
|
if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
|
|
inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
|
|
RL_READER);
|
|
outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
|
|
RL_WRITER);
|
|
} else {
|
|
outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
|
|
RL_WRITER);
|
|
inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
|
|
RL_READER);
|
|
}
|
|
|
|
inblksz = inzp->z_blksz;
|
|
|
|
/*
|
|
* We cannot clone into a file with different block size if we can't
|
|
* grow it (block size is already bigger, has more than one block, or
|
|
* not locked for growth). There are other possible reasons for the
|
|
* grow to fail, but we cover what we can before opening transaction
|
|
* and the rest detect after we try to do it.
|
|
*/
|
|
if (inblksz < outzp->z_blksz) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
|
|
outlr->lr_length != UINT64_MAX)) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Block size must be power-of-2 if destination offset != 0.
|
|
* There can be no multiple blocks of non-power-of-2 size.
|
|
*/
|
|
if (outoff != 0 && !ISP2(inblksz)) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Offsets and len must be at block boundries.
|
|
*/
|
|
if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
/*
|
|
* Length must be multipe of blksz, except for the end of the file.
|
|
*/
|
|
if ((len % inblksz) != 0 &&
|
|
(len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* If we are copying only one block and it is smaller than recordsize
|
|
* property, do not allow destination to grow beyond one block if it
|
|
* is not there yet. Otherwise the destination will get stuck with
|
|
* that block size forever, that can be as small as 512 bytes, no
|
|
* matter how big the destination grow later.
|
|
*/
|
|
if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
|
|
outzp->z_size <= inblksz && outoff + len > inblksz) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
|
|
error = zn_rlimit_fsize(outoff + len);
|
|
if (error != 0) {
|
|
goto unlock;
|
|
}
|
|
|
|
if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
|
|
error = SET_ERROR(EFBIG);
|
|
goto unlock;
|
|
}
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
|
|
&mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
|
|
&ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
|
|
&outzp->z_size, 8);
|
|
|
|
zilog = outzfsvfs->z_log;
|
|
maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
|
|
sizeof (bps[0]);
|
|
|
|
uid = KUID_TO_SUID(ZTOUID(outzp));
|
|
gid = KGID_TO_SGID(ZTOGID(outzp));
|
|
projid = outzp->z_projid;
|
|
|
|
bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
|
|
|
|
/*
|
|
* Clone the file in reasonable size chunks. Each chunk is cloned
|
|
* in a separate transaction; this keeps the intent log records small
|
|
* and allows us to do more fine-grained space accounting.
|
|
*/
|
|
while (len > 0) {
|
|
size = MIN(inblksz * maxblocks, len);
|
|
|
|
if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
|
|
uid) ||
|
|
zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
|
|
gid) ||
|
|
(projid != ZFS_DEFAULT_PROJID &&
|
|
zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
|
|
projid))) {
|
|
error = SET_ERROR(EDQUOT);
|
|
break;
|
|
}
|
|
|
|
nbps = maxblocks;
|
|
last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
|
|
error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
|
|
&nbps);
|
|
if (error != 0) {
|
|
/*
|
|
* If we are trying to clone a block that was created
|
|
* in the current transaction group, the error will be
|
|
* EAGAIN here. Based on zfs_bclone_wait_dirty either
|
|
* return a shortened range to the caller so it can
|
|
* fallback, or wait for the next TXG and check again.
|
|
*/
|
|
if (error == EAGAIN && zfs_bclone_wait_dirty) {
|
|
txg_wait_synced(dmu_objset_pool(inos),
|
|
last_synced_txg + 1);
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Start a transaction.
|
|
*/
|
|
tx = dmu_tx_create(outos);
|
|
dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
|
|
db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
|
|
DB_DNODE_ENTER(db);
|
|
dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
|
|
DB_DNODE_EXIT(db);
|
|
zfs_sa_upgrade_txholds(tx, outzp);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Copy source znode's block size. This is done only if the
|
|
* whole znode is locked (see zfs_rangelock_cb()) and only
|
|
* on the first iteration since zfs_rangelock_reduce() will
|
|
* shrink down lr_length to the appropriate size.
|
|
*/
|
|
if (outlr->lr_length == UINT64_MAX) {
|
|
zfs_grow_blocksize(outzp, inblksz, tx);
|
|
|
|
/*
|
|
* Block growth may fail for many reasons we can not
|
|
* predict here. If it happen the cloning is doomed.
|
|
*/
|
|
if (inblksz != outzp->z_blksz) {
|
|
error = SET_ERROR(EINVAL);
|
|
dmu_tx_abort(tx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Round range lock up to the block boundary, so we
|
|
* prevent appends until we are done.
|
|
*/
|
|
zfs_rangelock_reduce(outlr, outoff,
|
|
((len - 1) / inblksz + 1) * inblksz);
|
|
}
|
|
|
|
error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
|
|
bps, nbps);
|
|
if (error != 0) {
|
|
dmu_tx_commit(tx);
|
|
break;
|
|
}
|
|
|
|
if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
|
|
update_pages(outzp, outoff, size, outos);
|
|
}
|
|
|
|
zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
|
|
&clear_setid_bits_txg, tx);
|
|
|
|
zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
|
|
|
|
/*
|
|
* Update the file size (zp_size) if it has changed;
|
|
* account for possible concurrent updates.
|
|
*/
|
|
while ((outsize = outzp->z_size) < outoff + size) {
|
|
(void) atomic_cas_64(&outzp->z_size, outsize,
|
|
outoff + size);
|
|
}
|
|
|
|
error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
|
|
|
|
zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
|
|
size, inblksz, bps, nbps);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error != 0)
|
|
break;
|
|
|
|
inoff += size;
|
|
outoff += size;
|
|
len -= size;
|
|
done += size;
|
|
|
|
if (issig()) {
|
|
error = SET_ERROR(EINTR);
|
|
break;
|
|
}
|
|
}
|
|
|
|
vmem_free(bps, sizeof (bps[0]) * maxblocks);
|
|
zfs_znode_update_vfs(outzp);
|
|
|
|
unlock:
|
|
zfs_rangelock_exit(outlr);
|
|
zfs_rangelock_exit(inlr);
|
|
|
|
if (done > 0) {
|
|
/*
|
|
* If we have made at least partial progress, reset the error.
|
|
*/
|
|
error = 0;
|
|
|
|
ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
|
|
|
|
if (outos->os_sync == ZFS_SYNC_ALWAYS) {
|
|
zil_commit(zilog, outzp->z_id);
|
|
}
|
|
|
|
*inoffp += done;
|
|
*outoffp += done;
|
|
*lenp = done;
|
|
} else {
|
|
/*
|
|
* If we made no progress, there must be a good reason.
|
|
* EOF is handled explicitly above, before the loop.
|
|
*/
|
|
ASSERT3S(error, !=, 0);
|
|
}
|
|
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
|
|
* but we cannot do that, because when replaying we don't have source znode
|
|
* available. This is why we need a dedicated replay function.
|
|
*/
|
|
int
|
|
zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
|
|
const blkptr_t *bps, size_t nbps)
|
|
{
|
|
zfsvfs_t *zfsvfs;
|
|
dmu_buf_impl_t *db;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
int count = 0;
|
|
sa_bulk_attr_t bulk[3];
|
|
uint64_t mtime[2], ctime[2];
|
|
|
|
ASSERT3U(off, <, MAXOFFSET_T);
|
|
ASSERT3U(len, >, 0);
|
|
ASSERT3U(nbps, >, 0);
|
|
|
|
zfsvfs = ZTOZSB(zp);
|
|
|
|
ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
|
|
SPA_FEATURE_BLOCK_CLONING));
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
ASSERT(zfsvfs->z_replay);
|
|
ASSERT(!zfs_is_readonly(zfsvfs));
|
|
|
|
if ((off % blksz) != 0) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
|
|
&zp->z_size, 8);
|
|
|
|
/*
|
|
* Start a transaction.
|
|
*/
|
|
tx = dmu_tx_create(zfsvfs->z_os);
|
|
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
|
|
DB_DNODE_ENTER(db);
|
|
dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
|
|
DB_DNODE_EXIT(db);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
if (zp->z_blksz < blksz)
|
|
zfs_grow_blocksize(zp, blksz, tx);
|
|
|
|
dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
|
|
|
|
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
|
|
|
|
if (zp->z_size < off + len)
|
|
zp->z_size = off + len;
|
|
|
|
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
|
|
|
|
/*
|
|
* zil_replaying() not only check if we are replaying ZIL, but also
|
|
* updates the ZIL header to record replay progress.
|
|
*/
|
|
VERIFY(zil_replaying(zfsvfs->z_log, tx));
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
zfs_znode_update_vfs(zp);
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
EXPORT_SYMBOL(zfs_access);
|
|
EXPORT_SYMBOL(zfs_fsync);
|
|
EXPORT_SYMBOL(zfs_holey);
|
|
EXPORT_SYMBOL(zfs_read);
|
|
EXPORT_SYMBOL(zfs_write);
|
|
EXPORT_SYMBOL(zfs_getsecattr);
|
|
EXPORT_SYMBOL(zfs_setsecattr);
|
|
EXPORT_SYMBOL(zfs_clone_range);
|
|
EXPORT_SYMBOL(zfs_clone_range_replay);
|
|
|
|
ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
|
|
"Bytes to read per chunk");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
|
|
"Enable block cloning");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
|
|
"Wait for dirty blocks when cloning");
|