1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-19 14:36:35 +03:00
mirror_zfs/include/sys/atomic.h
Brian Behlendorf ff0582cb39 Remove atomic64_xchg() wrappers
The atomic64_xchg() and atomic64_cmpxchg() functions have been
available since Linux 2.6.24.  There is no longer a need to
maintain this compatibility code.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2014-10-17 15:11:50 -07:00

316 lines
7.7 KiB
C

/*****************************************************************************\
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
* For details, see <http://zfsonlinux.org/>.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
\*****************************************************************************/
#ifndef _SPL_ATOMIC_H
#define _SPL_ATOMIC_H
#include <linux/module.h>
#include <linux/spinlock.h>
#include <sys/types.h>
/*
* Two approaches to atomic operations are implemented each with its
* own benefits are drawbacks imposed by the Solaris API. Neither
* approach handles the issue of word breaking when using a 64-bit
* atomic variable on a 32-bit arch. The Solaris API would need to
* add an atomic read call to correctly support this.
*
* When ATOMIC_SPINLOCK is defined all atomic operations will be
* serialized through global spin locks. This is bad for performance
* but it does allow a simple generic implementation.
*
* When ATOMIC_SPINLOCK is not defined the Linux atomic operations
* are used. This is safe as long as the core Linux implementation
* doesn't change because we are relying on the fact that an atomic
* type is really just a uint32 or uint64. If this changes at some
* point in the future we need to fall-back to the spin approach.
*/
#ifdef ATOMIC_SPINLOCK
extern spinlock_t atomic32_lock;
extern spinlock_t atomic64_lock;
static __inline__ void
atomic_inc_32(volatile uint32_t *target)
{
spin_lock(&atomic32_lock);
(*target)++;
spin_unlock(&atomic32_lock);
}
static __inline__ void
atomic_dec_32(volatile uint32_t *target)
{
spin_lock(&atomic32_lock);
(*target)--;
spin_unlock(&atomic32_lock);
}
static __inline__ void
atomic_add_32(volatile uint32_t *target, int32_t delta)
{
spin_lock(&atomic32_lock);
*target += delta;
spin_unlock(&atomic32_lock);
}
static __inline__ void
atomic_sub_32(volatile uint32_t *target, int32_t delta)
{
spin_lock(&atomic32_lock);
*target -= delta;
spin_unlock(&atomic32_lock);
}
static __inline__ uint32_t
atomic_inc_32_nv(volatile uint32_t *target)
{
uint32_t nv;
spin_lock(&atomic32_lock);
nv = ++(*target);
spin_unlock(&atomic32_lock);
return nv;
}
static __inline__ uint32_t
atomic_dec_32_nv(volatile uint32_t *target)
{
uint32_t nv;
spin_lock(&atomic32_lock);
nv = --(*target);
spin_unlock(&atomic32_lock);
return nv;
}
static __inline__ uint32_t
atomic_add_32_nv(volatile uint32_t *target, uint32_t delta)
{
uint32_t nv;
spin_lock(&atomic32_lock);
*target += delta;
nv = *target;
spin_unlock(&atomic32_lock);
return nv;
}
static __inline__ uint32_t
atomic_sub_32_nv(volatile uint32_t *target, uint32_t delta)
{
uint32_t nv;
spin_lock(&atomic32_lock);
*target -= delta;
nv = *target;
spin_unlock(&atomic32_lock);
return nv;
}
static __inline__ uint32_t
atomic_cas_32(volatile uint32_t *target, uint32_t cmp,
uint32_t newval)
{
uint32_t rc;
spin_lock(&atomic32_lock);
rc = *target;
if (*target == cmp)
*target = newval;
spin_unlock(&atomic32_lock);
return rc;
}
static __inline__ uint32_t
atomic_swap_32(volatile uint32_t *target, uint32_t newval)
{
uint32_t rc;
spin_lock(&atomic32_lock);
rc = *target;
*target = newval;
spin_unlock(&atomic32_lock);
return rc;
}
static __inline__ void
atomic_inc_64(volatile uint64_t *target)
{
spin_lock(&atomic64_lock);
(*target)++;
spin_unlock(&atomic64_lock);
}
static __inline__ void
atomic_dec_64(volatile uint64_t *target)
{
spin_lock(&atomic64_lock);
(*target)--;
spin_unlock(&atomic64_lock);
}
static __inline__ void
atomic_add_64(volatile uint64_t *target, uint64_t delta)
{
spin_lock(&atomic64_lock);
*target += delta;
spin_unlock(&atomic64_lock);
}
static __inline__ void
atomic_sub_64(volatile uint64_t *target, uint64_t delta)
{
spin_lock(&atomic64_lock);
*target -= delta;
spin_unlock(&atomic64_lock);
}
static __inline__ uint64_t
atomic_inc_64_nv(volatile uint64_t *target)
{
uint64_t nv;
spin_lock(&atomic64_lock);
nv = ++(*target);
spin_unlock(&atomic64_lock);
return nv;
}
static __inline__ uint64_t
atomic_dec_64_nv(volatile uint64_t *target)
{
uint64_t nv;
spin_lock(&atomic64_lock);
nv = --(*target);
spin_unlock(&atomic64_lock);
return nv;
}
static __inline__ uint64_t
atomic_add_64_nv(volatile uint64_t *target, uint64_t delta)
{
uint64_t nv;
spin_lock(&atomic64_lock);
*target += delta;
nv = *target;
spin_unlock(&atomic64_lock);
return nv;
}
static __inline__ uint64_t
atomic_sub_64_nv(volatile uint64_t *target, uint64_t delta)
{
uint64_t nv;
spin_lock(&atomic64_lock);
*target -= delta;
nv = *target;
spin_unlock(&atomic64_lock);
return nv;
}
static __inline__ uint64_t
atomic_cas_64(volatile uint64_t *target, uint64_t cmp,
uint64_t newval)
{
uint64_t rc;
spin_lock(&atomic64_lock);
rc = *target;
if (*target == cmp)
*target = newval;
spin_unlock(&atomic64_lock);
return rc;
}
static __inline__ uint64_t
atomic_swap_64(volatile uint64_t *target, uint64_t newval)
{
uint64_t rc;
spin_lock(&atomic64_lock);
rc = *target;
*target = newval;
spin_unlock(&atomic64_lock);
return rc;
}
#else /* ATOMIC_SPINLOCK */
#define atomic_inc_32(v) atomic_inc((atomic_t *)(v))
#define atomic_dec_32(v) atomic_dec((atomic_t *)(v))
#define atomic_add_32(v, i) atomic_add((i), (atomic_t *)(v))
#define atomic_sub_32(v, i) atomic_sub((i), (atomic_t *)(v))
#define atomic_inc_32_nv(v) atomic_inc_return((atomic_t *)(v))
#define atomic_dec_32_nv(v) atomic_dec_return((atomic_t *)(v))
#define atomic_add_32_nv(v, i) atomic_add_return((i), (atomic_t *)(v))
#define atomic_sub_32_nv(v, i) atomic_sub_return((i), (atomic_t *)(v))
#define atomic_cas_32(v, x, y) atomic_cmpxchg((atomic_t *)(v), x, y)
#define atomic_swap_32(v, x) atomic_xchg((atomic_t *)(v), x)
#define atomic_inc_64(v) atomic64_inc((atomic64_t *)(v))
#define atomic_dec_64(v) atomic64_dec((atomic64_t *)(v))
#define atomic_add_64(v, i) atomic64_add((i), (atomic64_t *)(v))
#define atomic_sub_64(v, i) atomic64_sub((i), (atomic64_t *)(v))
#define atomic_inc_64_nv(v) atomic64_inc_return((atomic64_t *)(v))
#define atomic_dec_64_nv(v) atomic64_dec_return((atomic64_t *)(v))
#define atomic_add_64_nv(v, i) atomic64_add_return((i), (atomic64_t *)(v))
#define atomic_sub_64_nv(v, i) atomic64_sub_return((i), (atomic64_t *)(v))
#define atomic_cas_64(v, x, y) atomic64_cmpxchg((atomic64_t *)(v), x, y)
#define atomic_swap_64(v, x) atomic64_xchg((atomic64_t *)(v), x)
#endif /* ATOMIC_SPINLOCK */
#ifdef _LP64
static __inline__ void *
atomic_cas_ptr(volatile void *target, void *cmp, void *newval)
{
return (void *)atomic_cas_64((volatile uint64_t *)target,
(uint64_t)cmp, (uint64_t)newval);
}
#else /* _LP64 */
static __inline__ void *
atomic_cas_ptr(volatile void *target, void *cmp, void *newval)
{
return (void *)atomic_cas_32((volatile uint32_t *)target,
(uint32_t)cmp, (uint32_t)newval);
}
#endif /* _LP64 */
#endif /* _SPL_ATOMIC_H */