mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 11:29:36 +03:00
c25b8f99f8
* Simplify threads, mutexs, cvs and rwlocks * Update the zk_thread_create() function to use the same trick as Illumos. Specifically, cast the new pthread_t to a void pointer and return that as the kthread_t *. This avoids the issues associated with managing a wrapper structure and is safe as long as the callers never attempt to dereference it. * Update all function prototypes passed to pthread_create() to match the expected prototype. We were getting away this with before since the function were explicitly cast. * Replaced direct zk_thread_create() calls with thread_create() for code consistency. All consumers of libzpool now use the proper wrappers. * The mutex_held() calls were converted to MUTEX_HELD(). * Removed all mutex_owner() calls and retired the interface. Instead use MUTEX_HELD() which provides the same information and allows the implementation details to be hidden. In this case the use of the pthread_equals() function. * The kthread_t, kmutex_t, krwlock_t, and krwlock_t types had any non essential fields removed. In the case of kthread_t and kcondvar_t they could be directly typedef'd to pthread_t and pthread_cond_t respectively. * Removed all extra ASSERTS from the thread, mutex, rwlock, and cv wrapper functions. In practice, pthreads already provides the vast majority of checks as long as we check the return code. Removing this code from our wrappers help readability. * Added TS_JOINABLE state flag to pass to request a joinable rather than detached thread. This isn't a standard thread_create() state but it's the least invasive way to pass this information and is only used by ztest. TEST_ZTEST_TIMEOUT=3600 Chunwei Chen <tuxoko@gmail.com> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4547 Closes #5503 Closes #5523 Closes #6377 Closes #6495
783 lines
18 KiB
C
783 lines
18 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/time.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/zio.h>
|
|
#include <umem.h>
|
|
#include <sys/vdev_raidz.h>
|
|
#include <sys/vdev_raidz_impl.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include "raidz_test.h"
|
|
|
|
static int *rand_data;
|
|
raidz_test_opts_t rto_opts;
|
|
|
|
static char gdb[256];
|
|
static const char gdb_tmpl[] = "gdb -ex \"set pagination 0\" -p %d";
|
|
|
|
static void sig_handler(int signo)
|
|
{
|
|
struct sigaction action;
|
|
/*
|
|
* Restore default action and re-raise signal so SIGSEGV and
|
|
* SIGABRT can trigger a core dump.
|
|
*/
|
|
action.sa_handler = SIG_DFL;
|
|
sigemptyset(&action.sa_mask);
|
|
action.sa_flags = 0;
|
|
(void) sigaction(signo, &action, NULL);
|
|
|
|
if (rto_opts.rto_gdb)
|
|
if (system(gdb)) { }
|
|
|
|
raise(signo);
|
|
}
|
|
|
|
static void print_opts(raidz_test_opts_t *opts, boolean_t force)
|
|
{
|
|
char *verbose;
|
|
switch (opts->rto_v) {
|
|
case 0:
|
|
verbose = "no";
|
|
break;
|
|
case 1:
|
|
verbose = "info";
|
|
break;
|
|
default:
|
|
verbose = "debug";
|
|
break;
|
|
}
|
|
|
|
if (force || opts->rto_v >= D_INFO) {
|
|
(void) fprintf(stdout, DBLSEP "Running with options:\n"
|
|
" (-a) zio ashift : %zu\n"
|
|
" (-o) zio offset : 1 << %zu\n"
|
|
" (-d) number of raidz data columns : %zu\n"
|
|
" (-s) size of DATA : 1 << %zu\n"
|
|
" (-S) sweep parameters : %s \n"
|
|
" (-v) verbose : %s \n\n",
|
|
opts->rto_ashift, /* -a */
|
|
ilog2(opts->rto_offset), /* -o */
|
|
opts->rto_dcols, /* -d */
|
|
ilog2(opts->rto_dsize), /* -s */
|
|
opts->rto_sweep ? "yes" : "no", /* -S */
|
|
verbose); /* -v */
|
|
}
|
|
}
|
|
|
|
static void usage(boolean_t requested)
|
|
{
|
|
const raidz_test_opts_t *o = &rto_opts_defaults;
|
|
|
|
FILE *fp = requested ? stdout : stderr;
|
|
|
|
(void) fprintf(fp, "Usage:\n"
|
|
"\t[-a zio ashift (default: %zu)]\n"
|
|
"\t[-o zio offset, exponent radix 2 (default: %zu)]\n"
|
|
"\t[-d number of raidz data columns (default: %zu)]\n"
|
|
"\t[-s zio size, exponent radix 2 (default: %zu)]\n"
|
|
"\t[-S parameter sweep (default: %s)]\n"
|
|
"\t[-t timeout for parameter sweep test]\n"
|
|
"\t[-B benchmark all raidz implementations]\n"
|
|
"\t[-v increase verbosity (default: %zu)]\n"
|
|
"\t[-h (print help)]\n"
|
|
"\t[-T test the test, see if failure would be detected]\n"
|
|
"\t[-D debug (attach gdb on SIGSEGV)]\n"
|
|
"",
|
|
o->rto_ashift, /* -a */
|
|
ilog2(o->rto_offset), /* -o */
|
|
o->rto_dcols, /* -d */
|
|
ilog2(o->rto_dsize), /* -s */
|
|
rto_opts.rto_sweep ? "yes" : "no", /* -S */
|
|
o->rto_v); /* -d */
|
|
|
|
exit(requested ? 0 : 1);
|
|
}
|
|
|
|
static void process_options(int argc, char **argv)
|
|
{
|
|
size_t value;
|
|
int opt;
|
|
|
|
raidz_test_opts_t *o = &rto_opts;
|
|
|
|
bcopy(&rto_opts_defaults, o, sizeof (*o));
|
|
|
|
while ((opt = getopt(argc, argv, "TDBSvha:o:d:s:t:")) != -1) {
|
|
value = 0;
|
|
|
|
switch (opt) {
|
|
case 'a':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_ashift = MIN(13, MAX(9, value));
|
|
break;
|
|
case 'o':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9;
|
|
break;
|
|
case 'd':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_dcols = MIN(255, MAX(1, value));
|
|
break;
|
|
case 's':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_dsize = 1ULL << MIN(SPA_MAXBLOCKSHIFT,
|
|
MAX(SPA_MINBLOCKSHIFT, value));
|
|
break;
|
|
case 't':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_sweep_timeout = value;
|
|
break;
|
|
case 'v':
|
|
o->rto_v++;
|
|
break;
|
|
case 'S':
|
|
o->rto_sweep = 1;
|
|
break;
|
|
case 'B':
|
|
o->rto_benchmark = 1;
|
|
break;
|
|
case 'D':
|
|
o->rto_gdb = 1;
|
|
break;
|
|
case 'T':
|
|
o->rto_sanity = 1;
|
|
break;
|
|
case 'h':
|
|
usage(B_TRUE);
|
|
break;
|
|
case '?':
|
|
default:
|
|
usage(B_FALSE);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define DATA_COL(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_abd)
|
|
#define DATA_COL_SIZE(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_size)
|
|
|
|
#define CODE_COL(rm, i) ((rm)->rm_col[(i)].rc_abd)
|
|
#define CODE_COL_SIZE(rm, i) ((rm)->rm_col[(i)].rc_size)
|
|
|
|
static int
|
|
cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
VERIFY(parity >= 1 && parity <= 3);
|
|
|
|
for (i = 0; i < parity; i++) {
|
|
if (abd_cmp(CODE_COL(rm, i), CODE_COL(opts->rm_golden, i))
|
|
!= 0) {
|
|
ret++;
|
|
LOG_OPT(D_DEBUG, opts,
|
|
"\nParity block [%d] different!\n", i);
|
|
}
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm)
|
|
{
|
|
int i, ret = 0;
|
|
int dcols = opts->rm_golden->rm_cols - raidz_parity(opts->rm_golden);
|
|
|
|
for (i = 0; i < dcols; i++) {
|
|
if (abd_cmp(DATA_COL(opts->rm_golden, i), DATA_COL(rm, i))
|
|
!= 0) {
|
|
ret++;
|
|
|
|
LOG_OPT(D_DEBUG, opts,
|
|
"\nData block [%d] different!\n", i);
|
|
}
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
init_rand(void *data, size_t size, void *private)
|
|
{
|
|
int i;
|
|
int *dst = (int *)data;
|
|
|
|
for (i = 0; i < size / sizeof (int); i++)
|
|
dst[i] = rand_data[i];
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt)
|
|
{
|
|
int i;
|
|
raidz_col_t *col;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
col = &rm->rm_col[tgts[i]];
|
|
abd_iterate_func(col->rc_abd, 0, col->rc_size, init_rand, NULL);
|
|
}
|
|
}
|
|
|
|
void
|
|
init_zio_abd(zio_t *zio)
|
|
{
|
|
abd_iterate_func(zio->io_abd, 0, zio->io_size, init_rand, NULL);
|
|
}
|
|
|
|
static void
|
|
fini_raidz_map(zio_t **zio, raidz_map_t **rm)
|
|
{
|
|
vdev_raidz_map_free(*rm);
|
|
raidz_free((*zio)->io_abd, (*zio)->io_size);
|
|
umem_free(*zio, sizeof (zio_t));
|
|
|
|
*zio = NULL;
|
|
*rm = NULL;
|
|
}
|
|
|
|
static int
|
|
init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
|
|
{
|
|
int err = 0;
|
|
zio_t *zio_test;
|
|
raidz_map_t *rm_test;
|
|
const size_t total_ncols = opts->rto_dcols + parity;
|
|
|
|
if (opts->rm_golden) {
|
|
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
|
|
}
|
|
|
|
opts->zio_golden = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
|
|
zio_test = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
|
|
|
|
opts->zio_golden->io_offset = zio_test->io_offset = opts->rto_offset;
|
|
opts->zio_golden->io_size = zio_test->io_size = opts->rto_dsize;
|
|
|
|
opts->zio_golden->io_abd = raidz_alloc(opts->rto_dsize);
|
|
zio_test->io_abd = raidz_alloc(opts->rto_dsize);
|
|
|
|
init_zio_abd(opts->zio_golden);
|
|
init_zio_abd(zio_test);
|
|
|
|
VERIFY0(vdev_raidz_impl_set("original"));
|
|
|
|
opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
|
|
opts->rto_ashift, total_ncols, parity);
|
|
rm_test = vdev_raidz_map_alloc(zio_test,
|
|
opts->rto_ashift, total_ncols, parity);
|
|
|
|
VERIFY(opts->zio_golden);
|
|
VERIFY(opts->rm_golden);
|
|
|
|
vdev_raidz_generate_parity(opts->rm_golden);
|
|
vdev_raidz_generate_parity(rm_test);
|
|
|
|
/* sanity check */
|
|
err |= cmp_data(opts, rm_test);
|
|
err |= cmp_code(opts, rm_test, parity);
|
|
|
|
if (err)
|
|
ERR("initializing the golden copy ... [FAIL]!\n");
|
|
|
|
/* tear down raidz_map of test zio */
|
|
fini_raidz_map(&zio_test, &rm_test);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static raidz_map_t *
|
|
init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
|
|
{
|
|
raidz_map_t *rm = NULL;
|
|
const size_t alloc_dsize = opts->rto_dsize;
|
|
const size_t total_ncols = opts->rto_dcols + parity;
|
|
const int ccols[] = { 0, 1, 2 };
|
|
|
|
VERIFY(zio);
|
|
VERIFY(parity <= 3 && parity >= 1);
|
|
|
|
*zio = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
|
|
|
|
(*zio)->io_offset = 0;
|
|
(*zio)->io_size = alloc_dsize;
|
|
(*zio)->io_abd = raidz_alloc(alloc_dsize);
|
|
init_zio_abd(*zio);
|
|
|
|
rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
|
|
total_ncols, parity);
|
|
VERIFY(rm);
|
|
|
|
/* Make sure code columns are destroyed */
|
|
corrupt_colums(rm, ccols, parity);
|
|
|
|
return (rm);
|
|
}
|
|
|
|
static int
|
|
run_gen_check(raidz_test_opts_t *opts)
|
|
{
|
|
char **impl_name;
|
|
int fn, err = 0;
|
|
zio_t *zio_test;
|
|
raidz_map_t *rm_test;
|
|
|
|
err = init_raidz_golden_map(opts, PARITY_PQR);
|
|
if (0 != err)
|
|
return (err);
|
|
|
|
LOG(D_INFO, DBLSEP);
|
|
LOG(D_INFO, "Testing parity generation...\n");
|
|
|
|
for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
|
|
impl_name++) {
|
|
|
|
LOG(D_INFO, SEP);
|
|
LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
|
|
|
|
if (0 != vdev_raidz_impl_set(*impl_name)) {
|
|
LOG(D_INFO, "[SKIP]\n");
|
|
continue;
|
|
} else {
|
|
LOG(D_INFO, "[SUPPORTED]\n");
|
|
}
|
|
|
|
for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
|
|
|
|
/* Check if should stop */
|
|
if (rto_opts.rto_should_stop)
|
|
return (err);
|
|
|
|
/* create suitable raidz_map */
|
|
rm_test = init_raidz_map(opts, &zio_test, fn+1);
|
|
VERIFY(rm_test);
|
|
|
|
LOG(D_INFO, "\t\tTesting method [%s] ...",
|
|
raidz_gen_name[fn]);
|
|
|
|
if (!opts->rto_sanity)
|
|
vdev_raidz_generate_parity(rm_test);
|
|
|
|
if (cmp_code(opts, rm_test, fn+1) != 0) {
|
|
LOG(D_INFO, "[FAIL]\n");
|
|
err++;
|
|
} else
|
|
LOG(D_INFO, "[PASS]\n");
|
|
|
|
fini_raidz_map(&zio_test, &rm_test);
|
|
}
|
|
}
|
|
|
|
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
|
|
{
|
|
int x0, x1, x2;
|
|
int tgtidx[3];
|
|
int err = 0;
|
|
static const int rec_tgts[7][3] = {
|
|
{1, 2, 3}, /* rec_p: bad QR & D[0] */
|
|
{0, 2, 3}, /* rec_q: bad PR & D[0] */
|
|
{0, 1, 3}, /* rec_r: bad PQ & D[0] */
|
|
{2, 3, 4}, /* rec_pq: bad R & D[0][1] */
|
|
{1, 3, 4}, /* rec_pr: bad Q & D[0][1] */
|
|
{0, 3, 4}, /* rec_qr: bad P & D[0][1] */
|
|
{3, 4, 5} /* rec_pqr: bad & D[0][1][2] */
|
|
};
|
|
|
|
memcpy(tgtidx, rec_tgts[fn], sizeof (tgtidx));
|
|
|
|
if (fn < RAIDZ_REC_PQ) {
|
|
/* can reconstruct 1 failed data disk */
|
|
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
|
|
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
|
|
/* Check if should stop */
|
|
if (rto_opts.rto_should_stop)
|
|
return (err);
|
|
|
|
LOG(D_DEBUG, "[%d] ", x0);
|
|
|
|
tgtidx[2] = x0 + raidz_parity(rm);
|
|
|
|
corrupt_colums(rm, tgtidx+2, 1);
|
|
|
|
if (!opts->rto_sanity)
|
|
vdev_raidz_reconstruct(rm, tgtidx, 3);
|
|
|
|
if (cmp_data(opts, rm) != 0) {
|
|
err++;
|
|
LOG(D_DEBUG, "\nREC D[%d]... [FAIL]\n", x0);
|
|
}
|
|
}
|
|
|
|
} else if (fn < RAIDZ_REC_PQR) {
|
|
/* can reconstruct 2 failed data disk */
|
|
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
|
|
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
|
|
if (x1 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
|
|
/* Check if should stop */
|
|
if (rto_opts.rto_should_stop)
|
|
return (err);
|
|
|
|
LOG(D_DEBUG, "[%d %d] ", x0, x1);
|
|
|
|
tgtidx[1] = x0 + raidz_parity(rm);
|
|
tgtidx[2] = x1 + raidz_parity(rm);
|
|
|
|
corrupt_colums(rm, tgtidx+1, 2);
|
|
|
|
if (!opts->rto_sanity)
|
|
vdev_raidz_reconstruct(rm, tgtidx, 3);
|
|
|
|
if (cmp_data(opts, rm) != 0) {
|
|
err++;
|
|
LOG(D_DEBUG, "\nREC D[%d %d]... "
|
|
"[FAIL]\n", x0, x1);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* can reconstruct 3 failed data disk */
|
|
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
|
|
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
|
|
if (x1 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
for (x2 = x1 + 1; x2 < opts->rto_dcols; x2++) {
|
|
if (x2 >=
|
|
rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
|
|
/* Check if should stop */
|
|
if (rto_opts.rto_should_stop)
|
|
return (err);
|
|
|
|
LOG(D_DEBUG, "[%d %d %d]", x0, x1, x2);
|
|
|
|
tgtidx[0] = x0 + raidz_parity(rm);
|
|
tgtidx[1] = x1 + raidz_parity(rm);
|
|
tgtidx[2] = x2 + raidz_parity(rm);
|
|
|
|
corrupt_colums(rm, tgtidx, 3);
|
|
|
|
if (!opts->rto_sanity)
|
|
vdev_raidz_reconstruct(rm,
|
|
tgtidx, 3);
|
|
|
|
if (cmp_data(opts, rm) != 0) {
|
|
err++;
|
|
LOG(D_DEBUG,
|
|
"\nREC D[%d %d %d]... "
|
|
"[FAIL]\n", x0, x1, x2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
run_rec_check(raidz_test_opts_t *opts)
|
|
{
|
|
char **impl_name;
|
|
unsigned fn, err = 0;
|
|
zio_t *zio_test;
|
|
raidz_map_t *rm_test;
|
|
|
|
err = init_raidz_golden_map(opts, PARITY_PQR);
|
|
if (0 != err)
|
|
return (err);
|
|
|
|
LOG(D_INFO, DBLSEP);
|
|
LOG(D_INFO, "Testing data reconstruction...\n");
|
|
|
|
for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
|
|
impl_name++) {
|
|
|
|
LOG(D_INFO, SEP);
|
|
LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
|
|
|
|
if (vdev_raidz_impl_set(*impl_name) != 0) {
|
|
LOG(D_INFO, "[SKIP]\n");
|
|
continue;
|
|
} else
|
|
LOG(D_INFO, "[SUPPORTED]\n");
|
|
|
|
|
|
/* create suitable raidz_map */
|
|
rm_test = init_raidz_map(opts, &zio_test, PARITY_PQR);
|
|
/* generate parity */
|
|
vdev_raidz_generate_parity(rm_test);
|
|
|
|
for (fn = 0; fn < RAIDZ_REC_NUM; fn++) {
|
|
|
|
LOG(D_INFO, "\t\tTesting method [%s] ...",
|
|
raidz_rec_name[fn]);
|
|
|
|
if (run_rec_check_impl(opts, rm_test, fn) != 0) {
|
|
LOG(D_INFO, "[FAIL]\n");
|
|
err++;
|
|
|
|
} else
|
|
LOG(D_INFO, "[PASS]\n");
|
|
|
|
}
|
|
/* tear down test raidz_map */
|
|
fini_raidz_map(&zio_test, &rm_test);
|
|
}
|
|
|
|
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
run_test(raidz_test_opts_t *opts)
|
|
{
|
|
int err = 0;
|
|
|
|
if (opts == NULL)
|
|
opts = &rto_opts;
|
|
|
|
print_opts(opts, B_FALSE);
|
|
|
|
err |= run_gen_check(opts);
|
|
err |= run_rec_check(opts);
|
|
|
|
return (err);
|
|
}
|
|
|
|
#define SWEEP_RUNNING 0
|
|
#define SWEEP_FINISHED 1
|
|
#define SWEEP_ERROR 2
|
|
#define SWEEP_TIMEOUT 3
|
|
|
|
static int sweep_state = 0;
|
|
static raidz_test_opts_t failed_opts;
|
|
|
|
static kmutex_t sem_mtx;
|
|
static kcondvar_t sem_cv;
|
|
static int max_free_slots;
|
|
static int free_slots;
|
|
|
|
static void
|
|
sweep_thread(void *arg)
|
|
{
|
|
int err = 0;
|
|
raidz_test_opts_t *opts = (raidz_test_opts_t *)arg;
|
|
VERIFY(opts != NULL);
|
|
|
|
err = run_test(opts);
|
|
|
|
if (rto_opts.rto_sanity) {
|
|
/* 25% chance that a sweep test fails */
|
|
if (rand() < (RAND_MAX/4))
|
|
err = 1;
|
|
}
|
|
|
|
if (0 != err) {
|
|
mutex_enter(&sem_mtx);
|
|
memcpy(&failed_opts, opts, sizeof (raidz_test_opts_t));
|
|
sweep_state = SWEEP_ERROR;
|
|
mutex_exit(&sem_mtx);
|
|
}
|
|
|
|
umem_free(opts, sizeof (raidz_test_opts_t));
|
|
|
|
/* signal the next thread */
|
|
mutex_enter(&sem_mtx);
|
|
free_slots++;
|
|
cv_signal(&sem_cv);
|
|
mutex_exit(&sem_mtx);
|
|
|
|
thread_exit();
|
|
}
|
|
|
|
static int
|
|
run_sweep(void)
|
|
{
|
|
static const size_t dcols_v[] = { 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 16 };
|
|
static const size_t ashift_v[] = { 9, 12, 14 };
|
|
static const size_t size_v[] = { 1 << 9, 21 * (1 << 9), 13 * (1 << 12),
|
|
1 << 17, (1 << 20) - (1 << 12), SPA_MAXBLOCKSIZE };
|
|
|
|
(void) setvbuf(stdout, NULL, _IONBF, 0);
|
|
|
|
ulong_t total_comb = ARRAY_SIZE(size_v) * ARRAY_SIZE(ashift_v) *
|
|
ARRAY_SIZE(dcols_v);
|
|
ulong_t tried_comb = 0;
|
|
hrtime_t time_diff, start_time = gethrtime();
|
|
raidz_test_opts_t *opts;
|
|
int a, d, s;
|
|
|
|
max_free_slots = free_slots = MAX(2, boot_ncpus);
|
|
|
|
mutex_init(&sem_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&sem_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
for (s = 0; s < ARRAY_SIZE(size_v); s++)
|
|
for (a = 0; a < ARRAY_SIZE(ashift_v); a++)
|
|
for (d = 0; d < ARRAY_SIZE(dcols_v); d++) {
|
|
|
|
if (size_v[s] < (1 << ashift_v[a])) {
|
|
total_comb--;
|
|
continue;
|
|
}
|
|
|
|
if (++tried_comb % 20 == 0)
|
|
LOG(D_ALL, "%lu/%lu... ", tried_comb, total_comb);
|
|
|
|
/* wait for signal to start new thread */
|
|
mutex_enter(&sem_mtx);
|
|
while (cv_timedwait_sig(&sem_cv, &sem_mtx,
|
|
ddi_get_lbolt() + hz)) {
|
|
|
|
/* check if should stop the test (timeout) */
|
|
time_diff = (gethrtime() - start_time) / NANOSEC;
|
|
if (rto_opts.rto_sweep_timeout > 0 &&
|
|
time_diff >= rto_opts.rto_sweep_timeout) {
|
|
sweep_state = SWEEP_TIMEOUT;
|
|
rto_opts.rto_should_stop = B_TRUE;
|
|
mutex_exit(&sem_mtx);
|
|
goto exit;
|
|
}
|
|
|
|
/* check if should stop the test (error) */
|
|
if (sweep_state != SWEEP_RUNNING) {
|
|
mutex_exit(&sem_mtx);
|
|
goto exit;
|
|
}
|
|
|
|
/* exit loop if a slot is available */
|
|
if (free_slots > 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
free_slots--;
|
|
mutex_exit(&sem_mtx);
|
|
|
|
opts = umem_zalloc(sizeof (raidz_test_opts_t), UMEM_NOFAIL);
|
|
opts->rto_ashift = ashift_v[a];
|
|
opts->rto_dcols = dcols_v[d];
|
|
opts->rto_offset = (1 << ashift_v[a]) * rand();
|
|
opts->rto_dsize = size_v[s];
|
|
opts->rto_v = 0; /* be quiet */
|
|
|
|
VERIFY3P(thread_create(NULL, 0, sweep_thread, (void *) opts,
|
|
0, NULL, TS_RUN, defclsyspri), !=, NULL);
|
|
}
|
|
|
|
exit:
|
|
LOG(D_ALL, "\nWaiting for test threads to finish...\n");
|
|
mutex_enter(&sem_mtx);
|
|
VERIFY(free_slots <= max_free_slots);
|
|
while (free_slots < max_free_slots) {
|
|
(void) cv_wait(&sem_cv, &sem_mtx);
|
|
}
|
|
mutex_exit(&sem_mtx);
|
|
|
|
if (sweep_state == SWEEP_ERROR) {
|
|
ERR("Sweep test failed! Failed option: \n");
|
|
print_opts(&failed_opts, B_TRUE);
|
|
} else {
|
|
if (sweep_state == SWEEP_TIMEOUT)
|
|
LOG(D_ALL, "Test timeout (%lus). Stopping...\n",
|
|
(ulong_t)rto_opts.rto_sweep_timeout);
|
|
|
|
LOG(D_ALL, "Sweep test succeeded on %lu raidz maps!\n",
|
|
(ulong_t)tried_comb);
|
|
}
|
|
|
|
mutex_destroy(&sem_mtx);
|
|
|
|
return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
size_t i;
|
|
struct sigaction action;
|
|
int err = 0;
|
|
|
|
/* init gdb string early */
|
|
(void) sprintf(gdb, gdb_tmpl, getpid());
|
|
|
|
action.sa_handler = sig_handler;
|
|
sigemptyset(&action.sa_mask);
|
|
action.sa_flags = 0;
|
|
|
|
if (sigaction(SIGSEGV, &action, NULL) < 0) {
|
|
ERR("raidz_test: cannot catch SIGSEGV: %s.\n", strerror(errno));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
(void) setvbuf(stdout, NULL, _IOLBF, 0);
|
|
|
|
dprintf_setup(&argc, argv);
|
|
|
|
process_options(argc, argv);
|
|
|
|
kernel_init(FREAD);
|
|
|
|
/* setup random data because rand() is not reentrant */
|
|
rand_data = (int *)umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
|
|
srand((unsigned)time(NULL) * getpid());
|
|
for (i = 0; i < SPA_MAXBLOCKSIZE / sizeof (int); i++)
|
|
rand_data[i] = rand();
|
|
|
|
mprotect(rand_data, SPA_MAXBLOCKSIZE, PROT_READ);
|
|
|
|
if (rto_opts.rto_benchmark) {
|
|
run_raidz_benchmark();
|
|
} else if (rto_opts.rto_sweep) {
|
|
err = run_sweep();
|
|
} else {
|
|
err = run_test(NULL);
|
|
}
|
|
|
|
umem_free(rand_data, SPA_MAXBLOCKSIZE);
|
|
kernel_fini();
|
|
|
|
return (err);
|
|
}
|