mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 03:09:34 +03:00
e8b96c6007
4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647 Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
196 lines
5.0 KiB
C
196 lines
5.0 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2013 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#ifndef _SYS_DMU_TX_H
|
|
#define _SYS_DMU_TX_H
|
|
|
|
#include <sys/inttypes.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/refcount.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
struct dmu_buf_impl;
|
|
struct dmu_tx_hold;
|
|
struct dnode_link;
|
|
struct dsl_pool;
|
|
struct dnode;
|
|
struct dsl_dir;
|
|
|
|
struct dmu_tx {
|
|
/*
|
|
* No synchronization is needed because a tx can only be handled
|
|
* by one thread.
|
|
*/
|
|
list_t tx_holds; /* list of dmu_tx_hold_t */
|
|
objset_t *tx_objset;
|
|
struct dsl_dir *tx_dir;
|
|
struct dsl_pool *tx_pool;
|
|
uint64_t tx_txg;
|
|
uint64_t tx_lastsnap_txg;
|
|
uint64_t tx_lasttried_txg;
|
|
txg_handle_t tx_txgh;
|
|
void *tx_tempreserve_cookie;
|
|
struct dmu_tx_hold *tx_needassign_txh;
|
|
|
|
/* list of dmu_tx_callback_t on this dmu_tx */
|
|
list_t tx_callbacks;
|
|
|
|
/* placeholder for syncing context, doesn't need specific holds */
|
|
boolean_t tx_anyobj;
|
|
|
|
/* has this transaction already been delayed? */
|
|
boolean_t tx_waited;
|
|
|
|
/* time this transaction was created */
|
|
hrtime_t tx_start;
|
|
|
|
/* need to wait for sufficient dirty space */
|
|
boolean_t tx_wait_dirty;
|
|
|
|
int tx_err;
|
|
#ifdef DEBUG_DMU_TX
|
|
uint64_t tx_space_towrite;
|
|
uint64_t tx_space_tofree;
|
|
uint64_t tx_space_tooverwrite;
|
|
uint64_t tx_space_tounref;
|
|
refcount_t tx_space_written;
|
|
refcount_t tx_space_freed;
|
|
#endif
|
|
};
|
|
|
|
enum dmu_tx_hold_type {
|
|
THT_NEWOBJECT,
|
|
THT_WRITE,
|
|
THT_BONUS,
|
|
THT_FREE,
|
|
THT_ZAP,
|
|
THT_SPACE,
|
|
THT_SPILL,
|
|
THT_NUMTYPES
|
|
};
|
|
|
|
typedef struct dmu_tx_hold {
|
|
dmu_tx_t *txh_tx;
|
|
list_node_t txh_node;
|
|
struct dnode *txh_dnode;
|
|
uint64_t txh_space_towrite;
|
|
uint64_t txh_space_tofree;
|
|
uint64_t txh_space_tooverwrite;
|
|
uint64_t txh_space_tounref;
|
|
uint64_t txh_memory_tohold;
|
|
uint64_t txh_fudge;
|
|
#ifdef DEBUG_DMU_TX
|
|
enum dmu_tx_hold_type txh_type;
|
|
uint64_t txh_arg1;
|
|
uint64_t txh_arg2;
|
|
#endif
|
|
} dmu_tx_hold_t;
|
|
|
|
typedef struct dmu_tx_callback {
|
|
list_node_t dcb_node; /* linked to tx_callbacks list */
|
|
dmu_tx_callback_func_t *dcb_func; /* caller function pointer */
|
|
void *dcb_data; /* caller private data */
|
|
} dmu_tx_callback_t;
|
|
|
|
/*
|
|
* Used for dmu tx kstat.
|
|
*/
|
|
typedef struct dmu_tx_stats {
|
|
kstat_named_t dmu_tx_assigned;
|
|
kstat_named_t dmu_tx_delay;
|
|
kstat_named_t dmu_tx_error;
|
|
kstat_named_t dmu_tx_suspended;
|
|
kstat_named_t dmu_tx_group;
|
|
kstat_named_t dmu_tx_how;
|
|
kstat_named_t dmu_tx_memory_reserve;
|
|
kstat_named_t dmu_tx_memory_reclaim;
|
|
kstat_named_t dmu_tx_memory_inflight;
|
|
kstat_named_t dmu_tx_dirty_throttle;
|
|
kstat_named_t dmu_tx_dirty_delay;
|
|
kstat_named_t dmu_tx_dirty_over_max;
|
|
kstat_named_t dmu_tx_quota;
|
|
} dmu_tx_stats_t;
|
|
|
|
extern dmu_tx_stats_t dmu_tx_stats;
|
|
|
|
#define DMU_TX_STAT_INCR(stat, val) \
|
|
atomic_add_64(&dmu_tx_stats.stat.value.ui64, (val));
|
|
#define DMU_TX_STAT_BUMP(stat) \
|
|
DMU_TX_STAT_INCR(stat, 1);
|
|
|
|
/*
|
|
* These routines are defined in dmu.h, and are called by the user.
|
|
*/
|
|
dmu_tx_t *dmu_tx_create(objset_t *dd);
|
|
int dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how);
|
|
void dmu_tx_commit(dmu_tx_t *tx);
|
|
void dmu_tx_abort(dmu_tx_t *tx);
|
|
uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
|
|
struct dsl_pool *dmu_tx_pool(dmu_tx_t *tx);
|
|
void dmu_tx_wait(dmu_tx_t *tx);
|
|
|
|
void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
|
|
void *dcb_data);
|
|
void dmu_tx_do_callbacks(list_t *cb_list, int error);
|
|
|
|
/*
|
|
* These routines are defined in dmu_spa.h, and are called by the SPA.
|
|
*/
|
|
extern dmu_tx_t *dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg);
|
|
|
|
/*
|
|
* These routines are only called by the DMU.
|
|
*/
|
|
dmu_tx_t *dmu_tx_create_dd(dsl_dir_t *dd);
|
|
int dmu_tx_is_syncing(dmu_tx_t *tx);
|
|
int dmu_tx_private_ok(dmu_tx_t *tx);
|
|
void dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object);
|
|
void dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta);
|
|
void dmu_tx_dirty_buf(dmu_tx_t *tx, struct dmu_buf_impl *db);
|
|
int dmu_tx_holds(dmu_tx_t *tx, uint64_t object);
|
|
void dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space);
|
|
|
|
#ifdef DEBUG_DMU_TX
|
|
#define DMU_TX_DIRTY_BUF(tx, db) dmu_tx_dirty_buf(tx, db)
|
|
#else
|
|
#define DMU_TX_DIRTY_BUF(tx, db)
|
|
#endif
|
|
|
|
void dmu_tx_init(void);
|
|
void dmu_tx_fini(void);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _SYS_DMU_TX_H */
|