mirror_zfs/lib/libzpool/kernel.c
2009-02-18 12:51:31 -08:00

887 lines
18 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <assert.h>
#include <fcntl.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <zlib.h>
#include <sys/spa.h>
#include <sys/stat.h>
#include <sys/processor.h>
#include <sys/zfs_context.h>
#include <sys/zmod.h>
#include <sys/utsname.h>
#include <sys/systeminfo.h>
/*
* Emulation of kernel services in userland.
*/
uint64_t physmem;
vnode_t *rootdir = (vnode_t *)0xabcd1234;
char hw_serial[HW_HOSTID_LEN];
struct utsname utsname = {
"userland", "libzpool", "1", "1", "na"
};
/*
* =========================================================================
* threads
* =========================================================================
*/
/*ARGSUSED*/
kthread_t *
zk_thread_create(void (*func)(), void *arg)
{
thread_t tid;
VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
&tid) == 0);
return ((void *)(uintptr_t)tid);
}
/*
* =========================================================================
* kstats
* =========================================================================
*/
/*ARGSUSED*/
kstat_t *
kstat_create(char *module, int instance, char *name, char *class,
uchar_t type, ulong_t ndata, uchar_t ks_flag)
{
return (NULL);
}
/*ARGSUSED*/
void
kstat_install(kstat_t *ksp)
{}
/*ARGSUSED*/
void
kstat_delete(kstat_t *ksp)
{}
/*
* =========================================================================
* mutexes
* =========================================================================
*/
void
zmutex_init(kmutex_t *mp)
{
mp->m_owner = NULL;
mp->initialized = B_TRUE;
(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
}
void
zmutex_destroy(kmutex_t *mp)
{
ASSERT(mp->initialized == B_TRUE);
ASSERT(mp->m_owner == NULL);
(void) _mutex_destroy(&(mp)->m_lock);
mp->m_owner = (void *)-1UL;
mp->initialized = B_FALSE;
}
void
mutex_enter(kmutex_t *mp)
{
ASSERT(mp->initialized == B_TRUE);
ASSERT(mp->m_owner != (void *)-1UL);
ASSERT(mp->m_owner != curthread);
VERIFY(mutex_lock(&mp->m_lock) == 0);
ASSERT(mp->m_owner == NULL);
mp->m_owner = curthread;
}
int
mutex_tryenter(kmutex_t *mp)
{
ASSERT(mp->initialized == B_TRUE);
ASSERT(mp->m_owner != (void *)-1UL);
if (0 == mutex_trylock(&mp->m_lock)) {
ASSERT(mp->m_owner == NULL);
mp->m_owner = curthread;
return (1);
} else {
return (0);
}
}
void
mutex_exit(kmutex_t *mp)
{
ASSERT(mp->initialized == B_TRUE);
ASSERT(mutex_owner(mp) == curthread);
mp->m_owner = NULL;
VERIFY(mutex_unlock(&mp->m_lock) == 0);
}
void *
mutex_owner(kmutex_t *mp)
{
ASSERT(mp->initialized == B_TRUE);
return (mp->m_owner);
}
/*
* =========================================================================
* rwlocks
* =========================================================================
*/
/*ARGSUSED*/
void
rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
{
rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
rwlp->rw_owner = NULL;
rwlp->initialized = B_TRUE;
}
void
rw_destroy(krwlock_t *rwlp)
{
rwlock_destroy(&rwlp->rw_lock);
rwlp->rw_owner = (void *)-1UL;
rwlp->initialized = B_FALSE;
}
void
rw_enter(krwlock_t *rwlp, krw_t rw)
{
ASSERT(!RW_LOCK_HELD(rwlp));
ASSERT(rwlp->initialized == B_TRUE);
ASSERT(rwlp->rw_owner != (void *)-1UL);
ASSERT(rwlp->rw_owner != curthread);
if (rw == RW_READER)
VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
else
VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
rwlp->rw_owner = curthread;
}
void
rw_exit(krwlock_t *rwlp)
{
ASSERT(rwlp->initialized == B_TRUE);
ASSERT(rwlp->rw_owner != (void *)-1UL);
rwlp->rw_owner = NULL;
VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
}
int
rw_tryenter(krwlock_t *rwlp, krw_t rw)
{
int rv;
ASSERT(rwlp->initialized == B_TRUE);
ASSERT(rwlp->rw_owner != (void *)-1UL);
if (rw == RW_READER)
rv = rw_tryrdlock(&rwlp->rw_lock);
else
rv = rw_trywrlock(&rwlp->rw_lock);
if (rv == 0) {
rwlp->rw_owner = curthread;
return (1);
}
return (0);
}
/*ARGSUSED*/
int
rw_tryupgrade(krwlock_t *rwlp)
{
ASSERT(rwlp->initialized == B_TRUE);
ASSERT(rwlp->rw_owner != (void *)-1UL);
return (0);
}
/*
* =========================================================================
* condition variables
* =========================================================================
*/
/*ARGSUSED*/
void
cv_init(kcondvar_t *cv, char *name, int type, void *arg)
{
VERIFY(cond_init(cv, type, NULL) == 0);
}
void
cv_destroy(kcondvar_t *cv)
{
VERIFY(cond_destroy(cv) == 0);
}
void
cv_wait(kcondvar_t *cv, kmutex_t *mp)
{
ASSERT(mutex_owner(mp) == curthread);
mp->m_owner = NULL;
int ret = cond_wait(cv, &mp->m_lock);
VERIFY(ret == 0 || ret == EINTR);
mp->m_owner = curthread;
}
clock_t
cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
{
int error;
timestruc_t ts;
clock_t delta;
top:
delta = abstime - lbolt;
if (delta <= 0)
return (-1);
ts.tv_sec = delta / hz;
ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
ASSERT(mutex_owner(mp) == curthread);
mp->m_owner = NULL;
error = cond_reltimedwait(cv, &mp->m_lock, &ts);
mp->m_owner = curthread;
if (error == ETIME)
return (-1);
if (error == EINTR)
goto top;
ASSERT(error == 0);
return (1);
}
void
cv_signal(kcondvar_t *cv)
{
VERIFY(cond_signal(cv) == 0);
}
void
cv_broadcast(kcondvar_t *cv)
{
VERIFY(cond_broadcast(cv) == 0);
}
/*
* =========================================================================
* vnode operations
* =========================================================================
*/
/*
* Note: for the xxxat() versions of these functions, we assume that the
* starting vp is always rootdir (which is true for spa_directory.c, the only
* ZFS consumer of these interfaces). We assert this is true, and then emulate
* them by adding '/' in front of the path.
*/
/*ARGSUSED*/
int
vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
{
int fd;
vnode_t *vp;
int old_umask;
char realpath[MAXPATHLEN];
struct stat64 st;
/*
* If we're accessing a real disk from userland, we need to use
* the character interface to avoid caching. This is particularly
* important if we're trying to look at a real in-kernel storage
* pool from userland, e.g. via zdb, because otherwise we won't
* see the changes occurring under the segmap cache.
* On the other hand, the stupid character device returns zero
* for its size. So -- gag -- we open the block device to get
* its size, and remember it for subsequent VOP_GETATTR().
*/
if (strncmp(path, "/dev/", 5) == 0) {
char *dsk;
fd = open64(path, O_RDONLY);
if (fd == -1)
return (errno);
if (fstat64(fd, &st) == -1) {
close(fd);
return (errno);
}
close(fd);
(void) sprintf(realpath, "%s", path);
dsk = strstr(path, "/dsk/");
if (dsk != NULL)
(void) sprintf(realpath + (dsk - path) + 1, "r%s",
dsk + 1);
} else {
(void) sprintf(realpath, "%s", path);
if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
return (errno);
}
if (flags & FCREAT)
old_umask = umask(0);
/*
* The construct 'flags - FREAD' conveniently maps combinations of
* FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
*/
fd = open64(realpath, flags - FREAD, mode);
if (flags & FCREAT)
(void) umask(old_umask);
if (fd == -1)
return (errno);
if (fstat64(fd, &st) == -1) {
close(fd);
return (errno);
}
(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
vp->v_fd = fd;
vp->v_size = st.st_size;
vp->v_path = spa_strdup(path);
return (0);
}
/*ARGSUSED*/
int
vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
int x3, vnode_t *startvp, int fd)
{
char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
int ret;
ASSERT(startvp == rootdir);
(void) sprintf(realpath, "/%s", path);
/* fd ignored for now, need if want to simulate nbmand support */
ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
umem_free(realpath, strlen(path) + 2);
return (ret);
}
/*ARGSUSED*/
int
vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
{
ssize_t iolen, split;
if (uio == UIO_READ) {
iolen = pread64(vp->v_fd, addr, len, offset);
} else {
/*
* To simulate partial disk writes, we split writes into two
* system calls so that the process can be killed in between.
*/
split = (len > 0 ? rand() % len : 0);
iolen = pwrite64(vp->v_fd, addr, split, offset);
iolen += pwrite64(vp->v_fd, (char *)addr + split,
len - split, offset + split);
}
if (iolen == -1)
return (errno);
if (residp)
*residp = len - iolen;
else if (iolen != len)
return (EIO);
return (0);
}
void
vn_close(vnode_t *vp)
{
close(vp->v_fd);
spa_strfree(vp->v_path);
umem_free(vp, sizeof (vnode_t));
}
#ifdef ZFS_DEBUG
/*
* =========================================================================
* Figure out which debugging statements to print
* =========================================================================
*/
static char *dprintf_string;
static int dprintf_print_all;
int
dprintf_find_string(const char *string)
{
char *tmp_str = dprintf_string;
int len = strlen(string);
/*
* Find out if this is a string we want to print.
* String format: file1.c,function_name1,file2.c,file3.c
*/
while (tmp_str != NULL) {
if (strncmp(tmp_str, string, len) == 0 &&
(tmp_str[len] == ',' || tmp_str[len] == '\0'))
return (1);
tmp_str = strchr(tmp_str, ',');
if (tmp_str != NULL)
tmp_str++; /* Get rid of , */
}
return (0);
}
void
dprintf_setup(int *argc, char **argv)
{
int i, j;
/*
* Debugging can be specified two ways: by setting the
* environment variable ZFS_DEBUG, or by including a
* "debug=..." argument on the command line. The command
* line setting overrides the environment variable.
*/
for (i = 1; i < *argc; i++) {
int len = strlen("debug=");
/* First look for a command line argument */
if (strncmp("debug=", argv[i], len) == 0) {
dprintf_string = argv[i] + len;
/* Remove from args */
for (j = i; j < *argc; j++)
argv[j] = argv[j+1];
argv[j] = NULL;
(*argc)--;
}
}
if (dprintf_string == NULL) {
/* Look for ZFS_DEBUG environment variable */
dprintf_string = getenv("ZFS_DEBUG");
}
/*
* Are we just turning on all debugging?
*/
if (dprintf_find_string("on"))
dprintf_print_all = 1;
}
/*
* =========================================================================
* debug printfs
* =========================================================================
*/
void
__dprintf(const char *file, const char *func, int line, const char *fmt, ...)
{
const char *newfile;
va_list adx;
/*
* Get rid of annoying "../common/" prefix to filename.
*/
newfile = strrchr(file, '/');
if (newfile != NULL) {
newfile = newfile + 1; /* Get rid of leading / */
} else {
newfile = file;
}
if (dprintf_print_all ||
dprintf_find_string(newfile) ||
dprintf_find_string(func)) {
/* Print out just the function name if requested */
flockfile(stdout);
if (dprintf_find_string("pid"))
(void) printf("%d ", getpid());
if (dprintf_find_string("tid"))
(void) printf("%u ", thr_self());
if (dprintf_find_string("cpu"))
(void) printf("%u ", getcpuid());
if (dprintf_find_string("time"))
(void) printf("%llu ", gethrtime());
if (dprintf_find_string("long"))
(void) printf("%s, line %d: ", newfile, line);
(void) printf("%s: ", func);
va_start(adx, fmt);
(void) vprintf(fmt, adx);
va_end(adx);
funlockfile(stdout);
}
}
#endif /* ZFS_DEBUG */
/*
* =========================================================================
* cmn_err() and panic()
* =========================================================================
*/
static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
void
vpanic(const char *fmt, va_list adx)
{
(void) fprintf(stderr, "error: ");
(void) vfprintf(stderr, fmt, adx);
(void) fprintf(stderr, "\n");
abort(); /* think of it as a "user-level crash dump" */
}
void
panic(const char *fmt, ...)
{
va_list adx;
va_start(adx, fmt);
vpanic(fmt, adx);
va_end(adx);
}
void
vcmn_err(int ce, const char *fmt, va_list adx)
{
if (ce == CE_PANIC)
vpanic(fmt, adx);
if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
(void) fprintf(stderr, "%s", ce_prefix[ce]);
(void) vfprintf(stderr, fmt, adx);
(void) fprintf(stderr, "%s", ce_suffix[ce]);
}
}
/*PRINTFLIKE2*/
void
cmn_err(int ce, const char *fmt, ...)
{
va_list adx;
va_start(adx, fmt);
vcmn_err(ce, fmt, adx);
va_end(adx);
}
/*
* =========================================================================
* kobj interfaces
* =========================================================================
*/
struct _buf *
kobj_open_file(char *name)
{
struct _buf *file;
vnode_t *vp;
/* set vp as the _fd field of the file */
if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
-1) != 0)
return ((void *)-1UL);
file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
file->_fd = (intptr_t)vp;
return (file);
}
int
kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
{
ssize_t resid;
vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
UIO_SYSSPACE, 0, 0, 0, &resid);
return (size - resid);
}
void
kobj_close_file(struct _buf *file)
{
vn_close((vnode_t *)file->_fd);
umem_free(file, sizeof (struct _buf));
}
int
kobj_get_filesize(struct _buf *file, uint64_t *size)
{
struct stat64 st;
vnode_t *vp = (vnode_t *)file->_fd;
if (fstat64(vp->v_fd, &st) == -1) {
vn_close(vp);
return (errno);
}
*size = st.st_size;
return (0);
}
/*
* =========================================================================
* misc routines
* =========================================================================
*/
void
delay(clock_t ticks)
{
poll(0, 0, ticks * (1000 / hz));
}
/*
* Find highest one bit set.
* Returns bit number + 1 of highest bit that is set, otherwise returns 0.
* High order bit is 31 (or 63 in _LP64 kernel).
*/
int
highbit(ulong_t i)
{
register int h = 1;
if (i == 0)
return (0);
#ifdef _LP64
if (i & 0xffffffff00000000ul) {
h += 32; i >>= 32;
}
#endif
if (i & 0xffff0000) {
h += 16; i >>= 16;
}
if (i & 0xff00) {
h += 8; i >>= 8;
}
if (i & 0xf0) {
h += 4; i >>= 4;
}
if (i & 0xc) {
h += 2; i >>= 2;
}
if (i & 0x2) {
h += 1;
}
return (h);
}
static int random_fd = -1, urandom_fd = -1;
static int
random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
{
size_t resid = len;
ssize_t bytes;
ASSERT(fd != -1);
while (resid != 0) {
bytes = read(fd, ptr, resid);
ASSERT3S(bytes, >=, 0);
ptr += bytes;
resid -= bytes;
}
return (0);
}
int
random_get_bytes(uint8_t *ptr, size_t len)
{
return (random_get_bytes_common(ptr, len, random_fd));
}
int
random_get_pseudo_bytes(uint8_t *ptr, size_t len)
{
return (random_get_bytes_common(ptr, len, urandom_fd));
}
int
ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
{
char *end;
*result = strtoul(hw_serial, &end, base);
if (*result == 0)
return (errno);
return (0);
}
/*
* =========================================================================
* kernel emulation setup & teardown
* =========================================================================
*/
static int
umem_out_of_memory(void)
{
char errmsg[] = "out of memory -- generating core dump\n";
write(fileno(stderr), errmsg, sizeof (errmsg));
abort();
return (0);
}
void
kernel_init(int mode)
{
umem_nofail_callback(umem_out_of_memory);
physmem = sysconf(_SC_PHYS_PAGES);
dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
(double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
(void) snprintf(hw_serial, sizeof (hw_serial), "%ld", gethostid());
VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
system_taskq_init();
spa_init(mode);
}
void
kernel_fini(void)
{
spa_fini();
close(random_fd);
close(urandom_fd);
random_fd = -1;
urandom_fd = -1;
}
int
z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
{
int ret;
uLongf len = *dstlen;
if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
*dstlen = (size_t)len;
return (ret);
}
int
z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
int level)
{
int ret;
uLongf len = *dstlen;
if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
*dstlen = (size_t)len;
return (ret);
}
uid_t
crgetuid(cred_t *cr)
{
return (0);
}
gid_t
crgetgid(cred_t *cr)
{
return (0);
}
int
crgetngroups(cred_t *cr)
{
return (0);
}
gid_t *
crgetgroups(cred_t *cr)
{
return (NULL);
}
int
zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
{
return (0);
}
int
zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
{
return (0);
}
int
zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
{
return (0);
}
ksiddomain_t *
ksid_lookupdomain(const char *dom)
{
ksiddomain_t *kd;
kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
kd->kd_name = spa_strdup(dom);
return (kd);
}
void
ksiddomain_rele(ksiddomain_t *ksid)
{
spa_strfree(ksid->kd_name);
umem_free(ksid, sizeof (ksiddomain_t));
}