1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-27 18:34:22 +03:00
mirror_zfs/module/icp/algs/aes/aes_impl.c
Jorgen Lundman c9e319faae
Replace sprintf()->snprintf() and strcpy()->strlcpy()
The strcpy() and sprintf() functions are deprecated on some platforms.
Care is needed to ensure correct size is used.  If some platforms
miss snprintf, we can add a #define to sprintf, likewise strlcpy().

The biggest change is adding a size parameter to zfs_id_to_fuidstr().

The various *_impl_get() functions are only used on linux and have
not yet been updated.

Reviewed by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes 
2020-06-07 11:42:12 -07:00

444 lines
11 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/crypto/icp.h>
#include <sys/crypto/spi.h>
#include <sys/simd.h>
#include <modes/modes.h>
#include <aes/aes_impl.h>
/*
* Initialize AES encryption and decryption key schedules.
*
* Parameters:
* cipherKey User key
* keyBits AES key size (128, 192, or 256 bits)
* keysched AES key schedule to be initialized, of type aes_key_t.
* Allocated by aes_alloc_keysched().
*/
void
aes_init_keysched(const uint8_t *cipherKey, uint_t keyBits, void *keysched)
{
const aes_impl_ops_t *ops = aes_impl_get_ops();
aes_key_t *newbie = keysched;
uint_t keysize, i, j;
union {
uint64_t ka64[4];
uint32_t ka32[8];
} keyarr;
switch (keyBits) {
case 128:
newbie->nr = 10;
break;
case 192:
newbie->nr = 12;
break;
case 256:
newbie->nr = 14;
break;
default:
/* should never get here */
return;
}
keysize = CRYPTO_BITS2BYTES(keyBits);
/*
* Generic C implementation requires byteswap for little endian
* machines, various accelerated implementations for various
* architectures may not.
*/
if (!ops->needs_byteswap) {
/* no byteswap needed */
if (IS_P2ALIGNED(cipherKey, sizeof (uint64_t))) {
for (i = 0, j = 0; j < keysize; i++, j += 8) {
/* LINTED: pointer alignment */
keyarr.ka64[i] = *((uint64_t *)&cipherKey[j]);
}
} else {
bcopy(cipherKey, keyarr.ka32, keysize);
}
} else {
/* byte swap */
for (i = 0, j = 0; j < keysize; i++, j += 4) {
keyarr.ka32[i] =
htonl(*(uint32_t *)(void *)&cipherKey[j]);
}
}
ops->generate(newbie, keyarr.ka32, keyBits);
newbie->ops = ops;
/*
* Note: if there are systems that need the AES_64BIT_KS type in the
* future, move setting key schedule type to individual implementations
*/
newbie->type = AES_32BIT_KS;
}
/*
* Encrypt one block using AES.
* Align if needed and (for x86 32-bit only) byte-swap.
*
* Parameters:
* ks Key schedule, of type aes_key_t
* pt Input block (plain text)
* ct Output block (crypto text). Can overlap with pt
*/
int
aes_encrypt_block(const void *ks, const uint8_t *pt, uint8_t *ct)
{
aes_key_t *ksch = (aes_key_t *)ks;
const aes_impl_ops_t *ops = ksch->ops;
if (IS_P2ALIGNED2(pt, ct, sizeof (uint32_t)) && !ops->needs_byteswap) {
/* LINTED: pointer alignment */
ops->encrypt(&ksch->encr_ks.ks32[0], ksch->nr,
/* LINTED: pointer alignment */
(uint32_t *)pt, (uint32_t *)ct);
} else {
uint32_t buffer[AES_BLOCK_LEN / sizeof (uint32_t)];
/* Copy input block into buffer */
if (ops->needs_byteswap) {
buffer[0] = htonl(*(uint32_t *)(void *)&pt[0]);
buffer[1] = htonl(*(uint32_t *)(void *)&pt[4]);
buffer[2] = htonl(*(uint32_t *)(void *)&pt[8]);
buffer[3] = htonl(*(uint32_t *)(void *)&pt[12]);
} else
bcopy(pt, &buffer, AES_BLOCK_LEN);
ops->encrypt(&ksch->encr_ks.ks32[0], ksch->nr, buffer, buffer);
/* Copy result from buffer to output block */
if (ops->needs_byteswap) {
*(uint32_t *)(void *)&ct[0] = htonl(buffer[0]);
*(uint32_t *)(void *)&ct[4] = htonl(buffer[1]);
*(uint32_t *)(void *)&ct[8] = htonl(buffer[2]);
*(uint32_t *)(void *)&ct[12] = htonl(buffer[3]);
} else
bcopy(&buffer, ct, AES_BLOCK_LEN);
}
return (CRYPTO_SUCCESS);
}
/*
* Decrypt one block using AES.
* Align and byte-swap if needed.
*
* Parameters:
* ks Key schedule, of type aes_key_t
* ct Input block (crypto text)
* pt Output block (plain text). Can overlap with pt
*/
int
aes_decrypt_block(const void *ks, const uint8_t *ct, uint8_t *pt)
{
aes_key_t *ksch = (aes_key_t *)ks;
const aes_impl_ops_t *ops = ksch->ops;
if (IS_P2ALIGNED2(ct, pt, sizeof (uint32_t)) && !ops->needs_byteswap) {
/* LINTED: pointer alignment */
ops->decrypt(&ksch->decr_ks.ks32[0], ksch->nr,
/* LINTED: pointer alignment */
(uint32_t *)ct, (uint32_t *)pt);
} else {
uint32_t buffer[AES_BLOCK_LEN / sizeof (uint32_t)];
/* Copy input block into buffer */
if (ops->needs_byteswap) {
buffer[0] = htonl(*(uint32_t *)(void *)&ct[0]);
buffer[1] = htonl(*(uint32_t *)(void *)&ct[4]);
buffer[2] = htonl(*(uint32_t *)(void *)&ct[8]);
buffer[3] = htonl(*(uint32_t *)(void *)&ct[12]);
} else
bcopy(ct, &buffer, AES_BLOCK_LEN);
ops->decrypt(&ksch->decr_ks.ks32[0], ksch->nr, buffer, buffer);
/* Copy result from buffer to output block */
if (ops->needs_byteswap) {
*(uint32_t *)(void *)&pt[0] = htonl(buffer[0]);
*(uint32_t *)(void *)&pt[4] = htonl(buffer[1]);
*(uint32_t *)(void *)&pt[8] = htonl(buffer[2]);
*(uint32_t *)(void *)&pt[12] = htonl(buffer[3]);
} else
bcopy(&buffer, pt, AES_BLOCK_LEN);
}
return (CRYPTO_SUCCESS);
}
/*
* Allocate key schedule for AES.
*
* Return the pointer and set size to the number of bytes allocated.
* Memory allocated must be freed by the caller when done.
*
* Parameters:
* size Size of key schedule allocated, in bytes
* kmflag Flag passed to kmem_alloc(9F); ignored in userland.
*/
/* ARGSUSED */
void *
aes_alloc_keysched(size_t *size, int kmflag)
{
aes_key_t *keysched;
keysched = (aes_key_t *)kmem_alloc(sizeof (aes_key_t), kmflag);
if (keysched != NULL) {
*size = sizeof (aes_key_t);
return (keysched);
}
return (NULL);
}
/* AES implementation that contains the fastest methods */
static aes_impl_ops_t aes_fastest_impl = {
.name = "fastest"
};
/* All compiled in implementations */
const aes_impl_ops_t *aes_all_impl[] = {
&aes_generic_impl,
#if defined(__x86_64)
&aes_x86_64_impl,
#endif
#if defined(__x86_64) && defined(HAVE_AES)
&aes_aesni_impl,
#endif
};
/* Indicate that benchmark has been completed */
static boolean_t aes_impl_initialized = B_FALSE;
/* Select aes implementation */
#define IMPL_FASTEST (UINT32_MAX)
#define IMPL_CYCLE (UINT32_MAX-1)
#define AES_IMPL_READ(i) (*(volatile uint32_t *) &(i))
static uint32_t icp_aes_impl = IMPL_FASTEST;
static uint32_t user_sel_impl = IMPL_FASTEST;
/* Hold all supported implementations */
static size_t aes_supp_impl_cnt = 0;
static aes_impl_ops_t *aes_supp_impl[ARRAY_SIZE(aes_all_impl)];
/*
* Returns the AES operations for encrypt/decrypt/key setup. When a
* SIMD implementation is not allowed in the current context, then
* fallback to the fastest generic implementation.
*/
const aes_impl_ops_t *
aes_impl_get_ops(void)
{
if (!kfpu_allowed())
return (&aes_generic_impl);
const aes_impl_ops_t *ops = NULL;
const uint32_t impl = AES_IMPL_READ(icp_aes_impl);
switch (impl) {
case IMPL_FASTEST:
ASSERT(aes_impl_initialized);
ops = &aes_fastest_impl;
break;
case IMPL_CYCLE:
/* Cycle through supported implementations */
ASSERT(aes_impl_initialized);
ASSERT3U(aes_supp_impl_cnt, >, 0);
static size_t cycle_impl_idx = 0;
size_t idx = (++cycle_impl_idx) % aes_supp_impl_cnt;
ops = aes_supp_impl[idx];
break;
default:
ASSERT3U(impl, <, aes_supp_impl_cnt);
ASSERT3U(aes_supp_impl_cnt, >, 0);
if (impl < ARRAY_SIZE(aes_all_impl))
ops = aes_supp_impl[impl];
break;
}
ASSERT3P(ops, !=, NULL);
return (ops);
}
/*
* Initialize all supported implementations.
*/
void
aes_impl_init(void)
{
aes_impl_ops_t *curr_impl;
int i, c;
/* Move supported implementations into aes_supp_impls */
for (i = 0, c = 0; i < ARRAY_SIZE(aes_all_impl); i++) {
curr_impl = (aes_impl_ops_t *)aes_all_impl[i];
if (curr_impl->is_supported())
aes_supp_impl[c++] = (aes_impl_ops_t *)curr_impl;
}
aes_supp_impl_cnt = c;
/*
* Set the fastest implementation given the assumption that the
* hardware accelerated version is the fastest.
*/
#if defined(__x86_64)
#if defined(HAVE_AES)
if (aes_aesni_impl.is_supported()) {
memcpy(&aes_fastest_impl, &aes_aesni_impl,
sizeof (aes_fastest_impl));
} else
#endif
{
memcpy(&aes_fastest_impl, &aes_x86_64_impl,
sizeof (aes_fastest_impl));
}
#else
memcpy(&aes_fastest_impl, &aes_generic_impl,
sizeof (aes_fastest_impl));
#endif
strlcpy(aes_fastest_impl.name, "fastest", AES_IMPL_NAME_MAX);
/* Finish initialization */
atomic_swap_32(&icp_aes_impl, user_sel_impl);
aes_impl_initialized = B_TRUE;
}
static const struct {
char *name;
uint32_t sel;
} aes_impl_opts[] = {
{ "cycle", IMPL_CYCLE },
{ "fastest", IMPL_FASTEST },
};
/*
* Function sets desired aes implementation.
*
* If we are called before init(), user preference will be saved in
* user_sel_impl, and applied in later init() call. This occurs when module
* parameter is specified on module load. Otherwise, directly update
* icp_aes_impl.
*
* @val Name of aes implementation to use
* @param Unused.
*/
int
aes_impl_set(const char *val)
{
int err = -EINVAL;
char req_name[AES_IMPL_NAME_MAX];
uint32_t impl = AES_IMPL_READ(user_sel_impl);
size_t i;
/* sanitize input */
i = strnlen(val, AES_IMPL_NAME_MAX);
if (i == 0 || i >= AES_IMPL_NAME_MAX)
return (err);
strlcpy(req_name, val, AES_IMPL_NAME_MAX);
while (i > 0 && isspace(req_name[i-1]))
i--;
req_name[i] = '\0';
/* Check mandatory options */
for (i = 0; i < ARRAY_SIZE(aes_impl_opts); i++) {
if (strcmp(req_name, aes_impl_opts[i].name) == 0) {
impl = aes_impl_opts[i].sel;
err = 0;
break;
}
}
/* check all supported impl if init() was already called */
if (err != 0 && aes_impl_initialized) {
/* check all supported implementations */
for (i = 0; i < aes_supp_impl_cnt; i++) {
if (strcmp(req_name, aes_supp_impl[i]->name) == 0) {
impl = i;
err = 0;
break;
}
}
}
if (err == 0) {
if (aes_impl_initialized)
atomic_swap_32(&icp_aes_impl, impl);
else
atomic_swap_32(&user_sel_impl, impl);
}
return (err);
}
#if defined(_KERNEL) && defined(__linux__)
static int
icp_aes_impl_set(const char *val, zfs_kernel_param_t *kp)
{
return (aes_impl_set(val));
}
static int
icp_aes_impl_get(char *buffer, zfs_kernel_param_t *kp)
{
int i, cnt = 0;
char *fmt;
const uint32_t impl = AES_IMPL_READ(icp_aes_impl);
ASSERT(aes_impl_initialized);
/* list mandatory options */
for (i = 0; i < ARRAY_SIZE(aes_impl_opts); i++) {
fmt = (impl == aes_impl_opts[i].sel) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, aes_impl_opts[i].name);
}
/* list all supported implementations */
for (i = 0; i < aes_supp_impl_cnt; i++) {
fmt = (i == impl) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, aes_supp_impl[i]->name);
}
return (cnt);
}
module_param_call(icp_aes_impl, icp_aes_impl_set, icp_aes_impl_get,
NULL, 0644);
MODULE_PARM_DESC(icp_aes_impl, "Select aes implementation.");
#endif