mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-07 08:40:25 +03:00
c1c26a77ff
Slow disk response times can be indicative of a failing drive. ZFS currently tracks slow I/Os (slower than zio_slow_io_ms) and generates events (ereport.fs.zfs.delay). However, no action is taken by ZED, like is done for checksum or I/O errors. This change adds slow disk diagnosis to ZED which is opt-in using new VDEV properties: VDEV_PROP_SLOW_IO_N VDEV_PROP_SLOW_IO_T If multiple VDEVs in a pool are undergoing slow I/Os, then it skips the zpool_vdev_degrade(). Sponsored-By: OpenDrives Inc. Sponsored-By: Klara Inc. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Allan Jude <allan@klarasystems.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Rob Wing <rob.wing@klarasystems.com> Signed-off-by: Don Brady <don.brady@klarasystems.com> Closes #15469
1120 lines
31 KiB
C
1120 lines
31 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2016, Intel Corporation.
|
|
* Copyright (c) 2023, Klara Inc.
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <libuutil.h>
|
|
#include <libzfs.h>
|
|
#include <sys/types.h>
|
|
#include <sys/time.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/fm/protocol.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
|
|
#include "zfs_agents.h"
|
|
#include "fmd_api.h"
|
|
|
|
/*
|
|
* Default values for the serd engine when processing checksum or io errors. The
|
|
* semantics are N <events> in T <seconds>.
|
|
*/
|
|
#define DEFAULT_CHECKSUM_N 10 /* events */
|
|
#define DEFAULT_CHECKSUM_T 600 /* seconds */
|
|
#define DEFAULT_IO_N 10 /* events */
|
|
#define DEFAULT_IO_T 600 /* seconds */
|
|
#define DEFAULT_SLOW_IO_N 10 /* events */
|
|
#define DEFAULT_SLOW_IO_T 30 /* seconds */
|
|
|
|
#define CASE_GC_TIMEOUT_SECS 43200 /* 12 hours */
|
|
|
|
/*
|
|
* Our serd engines are named in the following format:
|
|
* 'zfs_<pool_guid>_<vdev_guid>_{checksum,io,slow_io}'
|
|
* This #define reserves enough space for two 64-bit hex values plus the
|
|
* length of the longest string.
|
|
*/
|
|
#define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum"))
|
|
|
|
/*
|
|
* On-disk case structure. This must maintain backwards compatibility with
|
|
* previous versions of the DE. By default, any members appended to the end
|
|
* will be filled with zeros if they don't exist in a previous version.
|
|
*/
|
|
typedef struct zfs_case_data {
|
|
uint64_t zc_version;
|
|
uint64_t zc_ena;
|
|
uint64_t zc_pool_guid;
|
|
uint64_t zc_vdev_guid;
|
|
int zc_pool_state;
|
|
char zc_serd_checksum[MAX_SERDLEN];
|
|
char zc_serd_io[MAX_SERDLEN];
|
|
char zc_serd_slow_io[MAX_SERDLEN];
|
|
int zc_has_remove_timer;
|
|
} zfs_case_data_t;
|
|
|
|
/*
|
|
* Time-of-day
|
|
*/
|
|
typedef struct er_timeval {
|
|
uint64_t ertv_sec;
|
|
uint64_t ertv_nsec;
|
|
} er_timeval_t;
|
|
|
|
/*
|
|
* In-core case structure.
|
|
*/
|
|
typedef struct zfs_case {
|
|
boolean_t zc_present;
|
|
uint32_t zc_version;
|
|
zfs_case_data_t zc_data;
|
|
fmd_case_t *zc_case;
|
|
uu_list_node_t zc_node;
|
|
id_t zc_remove_timer;
|
|
char *zc_fru;
|
|
er_timeval_t zc_when;
|
|
} zfs_case_t;
|
|
|
|
#define CASE_DATA "data"
|
|
#define CASE_FRU "fru"
|
|
#define CASE_DATA_VERSION_INITIAL 1
|
|
#define CASE_DATA_VERSION_SERD 2
|
|
|
|
typedef struct zfs_de_stats {
|
|
fmd_stat_t old_drops;
|
|
fmd_stat_t dev_drops;
|
|
fmd_stat_t vdev_drops;
|
|
fmd_stat_t import_drops;
|
|
fmd_stat_t resource_drops;
|
|
} zfs_de_stats_t;
|
|
|
|
zfs_de_stats_t zfs_stats = {
|
|
{ "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" },
|
|
{ "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"},
|
|
{ "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"},
|
|
{ "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" },
|
|
{ "resource_drops", FMD_TYPE_UINT64, "resource related ereports" }
|
|
};
|
|
|
|
/* wait 15 seconds after a removal */
|
|
static hrtime_t zfs_remove_timeout = SEC2NSEC(15);
|
|
|
|
uu_list_pool_t *zfs_case_pool;
|
|
uu_list_t *zfs_cases;
|
|
|
|
#define ZFS_MAKE_RSRC(type) \
|
|
FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type
|
|
#define ZFS_MAKE_EREPORT(type) \
|
|
FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type
|
|
|
|
static void zfs_purge_cases(fmd_hdl_t *hdl);
|
|
|
|
/*
|
|
* Write out the persistent representation of an active case.
|
|
*/
|
|
static void
|
|
zfs_case_serialize(zfs_case_t *zcp)
|
|
{
|
|
zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD;
|
|
}
|
|
|
|
/*
|
|
* Read back the persistent representation of an active case.
|
|
*/
|
|
static zfs_case_t *
|
|
zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp)
|
|
{
|
|
zfs_case_t *zcp;
|
|
|
|
zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP);
|
|
zcp->zc_case = cp;
|
|
|
|
fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data,
|
|
sizeof (zcp->zc_data));
|
|
|
|
if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) {
|
|
fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* fmd_buf_read() will have already zeroed out the remainder of the
|
|
* buffer, so we don't have to do anything special if the version
|
|
* doesn't include the SERD engine name.
|
|
*/
|
|
|
|
if (zcp->zc_data.zc_has_remove_timer)
|
|
zcp->zc_remove_timer = fmd_timer_install(hdl, zcp,
|
|
NULL, zfs_remove_timeout);
|
|
|
|
uu_list_node_init(zcp, &zcp->zc_node, zfs_case_pool);
|
|
(void) uu_list_insert_before(zfs_cases, NULL, zcp);
|
|
|
|
fmd_case_setspecific(hdl, cp, zcp);
|
|
|
|
return (zcp);
|
|
}
|
|
|
|
/*
|
|
* count other unique slow-io cases in a pool
|
|
*/
|
|
static uint_t
|
|
zfs_other_slow_cases(fmd_hdl_t *hdl, const zfs_case_data_t *zfs_case)
|
|
{
|
|
zfs_case_t *zcp;
|
|
uint_t cases = 0;
|
|
static hrtime_t next_check = 0;
|
|
|
|
/*
|
|
* Note that plumbing in some external GC would require adding locking,
|
|
* since most of this module code is not thread safe and assumes there
|
|
* is only one thread running against the module. So we perform GC here
|
|
* inline periodically so that future delay induced faults will be
|
|
* possible once the issue causing multiple vdev delays is resolved.
|
|
*/
|
|
if (gethrestime_sec() > next_check) {
|
|
/* Periodically purge old SERD entries and stale cases */
|
|
fmd_serd_gc(hdl);
|
|
zfs_purge_cases(hdl);
|
|
next_check = gethrestime_sec() + CASE_GC_TIMEOUT_SECS;
|
|
}
|
|
|
|
for (zcp = uu_list_first(zfs_cases); zcp != NULL;
|
|
zcp = uu_list_next(zfs_cases, zcp)) {
|
|
if (zcp->zc_data.zc_pool_guid == zfs_case->zc_pool_guid &&
|
|
zcp->zc_data.zc_vdev_guid != zfs_case->zc_vdev_guid &&
|
|
zcp->zc_data.zc_serd_slow_io[0] != '\0' &&
|
|
fmd_serd_active(hdl, zcp->zc_data.zc_serd_slow_io)) {
|
|
cases++;
|
|
}
|
|
}
|
|
return (cases);
|
|
}
|
|
|
|
/*
|
|
* Iterate over any active cases. If any cases are associated with a pool or
|
|
* vdev which is no longer present on the system, close the associated case.
|
|
*/
|
|
static void
|
|
zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded)
|
|
{
|
|
uint64_t vdev_guid = 0;
|
|
uint_t c, children;
|
|
nvlist_t **child;
|
|
zfs_case_t *zcp;
|
|
|
|
(void) nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid);
|
|
|
|
/*
|
|
* Mark any cases associated with this (pool, vdev) pair.
|
|
*/
|
|
for (zcp = uu_list_first(zfs_cases); zcp != NULL;
|
|
zcp = uu_list_next(zfs_cases, zcp)) {
|
|
if (zcp->zc_data.zc_pool_guid == pool_guid &&
|
|
zcp->zc_data.zc_vdev_guid == vdev_guid) {
|
|
zcp->zc_present = B_TRUE;
|
|
zcp->zc_when = *loaded;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Iterate over all children.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child,
|
|
&children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
zfs_mark_vdev(pool_guid, child[c], loaded);
|
|
}
|
|
|
|
if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child,
|
|
&children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
zfs_mark_vdev(pool_guid, child[c], loaded);
|
|
}
|
|
|
|
if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child,
|
|
&children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
zfs_mark_vdev(pool_guid, child[c], loaded);
|
|
}
|
|
}
|
|
|
|
static int
|
|
zfs_mark_pool(zpool_handle_t *zhp, void *unused)
|
|
{
|
|
(void) unused;
|
|
zfs_case_t *zcp;
|
|
uint64_t pool_guid;
|
|
uint64_t *tod;
|
|
er_timeval_t loaded = { 0 };
|
|
nvlist_t *config, *vd;
|
|
uint_t nelem = 0;
|
|
int ret;
|
|
|
|
pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
|
|
/*
|
|
* Mark any cases associated with just this pool.
|
|
*/
|
|
for (zcp = uu_list_first(zfs_cases); zcp != NULL;
|
|
zcp = uu_list_next(zfs_cases, zcp)) {
|
|
if (zcp->zc_data.zc_pool_guid == pool_guid &&
|
|
zcp->zc_data.zc_vdev_guid == 0)
|
|
zcp->zc_present = B_TRUE;
|
|
}
|
|
|
|
if ((config = zpool_get_config(zhp, NULL)) == NULL) {
|
|
zpool_close(zhp);
|
|
return (-1);
|
|
}
|
|
|
|
(void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
|
|
&tod, &nelem);
|
|
if (nelem == 2) {
|
|
loaded.ertv_sec = tod[0];
|
|
loaded.ertv_nsec = tod[1];
|
|
for (zcp = uu_list_first(zfs_cases); zcp != NULL;
|
|
zcp = uu_list_next(zfs_cases, zcp)) {
|
|
if (zcp->zc_data.zc_pool_guid == pool_guid &&
|
|
zcp->zc_data.zc_vdev_guid == 0) {
|
|
zcp->zc_when = loaded;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd);
|
|
if (ret) {
|
|
zpool_close(zhp);
|
|
return (-1);
|
|
}
|
|
|
|
zfs_mark_vdev(pool_guid, vd, &loaded);
|
|
|
|
zpool_close(zhp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct load_time_arg {
|
|
uint64_t lt_guid;
|
|
er_timeval_t *lt_time;
|
|
boolean_t lt_found;
|
|
};
|
|
|
|
static int
|
|
zpool_find_load_time(zpool_handle_t *zhp, void *arg)
|
|
{
|
|
struct load_time_arg *lta = arg;
|
|
uint64_t pool_guid;
|
|
uint64_t *tod;
|
|
nvlist_t *config;
|
|
uint_t nelem;
|
|
|
|
if (lta->lt_found) {
|
|
zpool_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
|
|
if (pool_guid != lta->lt_guid) {
|
|
zpool_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
if ((config = zpool_get_config(zhp, NULL)) == NULL) {
|
|
zpool_close(zhp);
|
|
return (-1);
|
|
}
|
|
|
|
if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
|
|
&tod, &nelem) == 0 && nelem == 2) {
|
|
lta->lt_found = B_TRUE;
|
|
lta->lt_time->ertv_sec = tod[0];
|
|
lta->lt_time->ertv_nsec = tod[1];
|
|
}
|
|
|
|
zpool_close(zhp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zfs_purge_cases(fmd_hdl_t *hdl)
|
|
{
|
|
zfs_case_t *zcp;
|
|
uu_list_walk_t *walk;
|
|
libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
|
|
|
|
/*
|
|
* There is no way to open a pool by GUID, or lookup a vdev by GUID. No
|
|
* matter what we do, we're going to have to stomach an O(vdevs * cases)
|
|
* algorithm. In reality, both quantities are likely so small that
|
|
* neither will matter. Given that iterating over pools is more
|
|
* expensive than iterating over the in-memory case list, we opt for a
|
|
* 'present' flag in each case that starts off cleared. We then iterate
|
|
* over all pools, marking those that are still present, and removing
|
|
* those that aren't found.
|
|
*
|
|
* Note that we could also construct an FMRI and rely on
|
|
* fmd_nvl_fmri_present(), but this would end up doing the same search.
|
|
*/
|
|
|
|
/*
|
|
* Mark the cases as not present.
|
|
*/
|
|
for (zcp = uu_list_first(zfs_cases); zcp != NULL;
|
|
zcp = uu_list_next(zfs_cases, zcp))
|
|
zcp->zc_present = B_FALSE;
|
|
|
|
/*
|
|
* Iterate over all pools and mark the pools and vdevs found. If this
|
|
* fails (most probably because we're out of memory), then don't close
|
|
* any of the cases and we cannot be sure they are accurate.
|
|
*/
|
|
if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0)
|
|
return;
|
|
|
|
/*
|
|
* Remove those cases which were not found.
|
|
*/
|
|
walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
|
|
while ((zcp = uu_list_walk_next(walk)) != NULL) {
|
|
if (!zcp->zc_present)
|
|
fmd_case_close(hdl, zcp->zc_case);
|
|
}
|
|
uu_list_walk_end(walk);
|
|
}
|
|
|
|
/*
|
|
* Construct the name of a serd engine given the pool/vdev GUID and type (io or
|
|
* checksum).
|
|
*/
|
|
static void
|
|
zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid,
|
|
const char *type)
|
|
{
|
|
(void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s",
|
|
(long long unsigned int)pool_guid,
|
|
(long long unsigned int)vdev_guid, type);
|
|
}
|
|
|
|
static void
|
|
zfs_case_retire(fmd_hdl_t *hdl, zfs_case_t *zcp)
|
|
{
|
|
fmd_hdl_debug(hdl, "retiring case");
|
|
|
|
fmd_case_close(hdl, zcp->zc_case);
|
|
}
|
|
|
|
/*
|
|
* Solve a given ZFS case. This first checks to make sure the diagnosis is
|
|
* still valid, as well as cleaning up any pending timer associated with the
|
|
* case.
|
|
*/
|
|
static void
|
|
zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname)
|
|
{
|
|
nvlist_t *detector, *fault;
|
|
boolean_t serialize;
|
|
nvlist_t *fru = NULL;
|
|
fmd_hdl_debug(hdl, "solving fault '%s'", faultname);
|
|
|
|
/*
|
|
* Construct the detector from the case data. The detector is in the
|
|
* ZFS scheme, and is either the pool or the vdev, depending on whether
|
|
* this is a vdev or pool fault.
|
|
*/
|
|
detector = fmd_nvl_alloc(hdl, FMD_SLEEP);
|
|
|
|
(void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0);
|
|
(void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
|
|
(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL,
|
|
zcp->zc_data.zc_pool_guid);
|
|
if (zcp->zc_data.zc_vdev_guid != 0) {
|
|
(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV,
|
|
zcp->zc_data.zc_vdev_guid);
|
|
}
|
|
|
|
fault = fmd_nvl_create_fault(hdl, faultname, 100, detector,
|
|
fru, detector);
|
|
fmd_case_add_suspect(hdl, zcp->zc_case, fault);
|
|
|
|
nvlist_free(fru);
|
|
|
|
fmd_case_solve(hdl, zcp->zc_case);
|
|
|
|
serialize = B_FALSE;
|
|
if (zcp->zc_data.zc_has_remove_timer) {
|
|
fmd_timer_remove(hdl, zcp->zc_remove_timer);
|
|
zcp->zc_data.zc_has_remove_timer = 0;
|
|
serialize = B_TRUE;
|
|
}
|
|
if (serialize)
|
|
zfs_case_serialize(zcp);
|
|
|
|
nvlist_free(detector);
|
|
}
|
|
|
|
static boolean_t
|
|
timeval_earlier(er_timeval_t *a, er_timeval_t *b)
|
|
{
|
|
return (a->ertv_sec < b->ertv_sec ||
|
|
(a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec));
|
|
}
|
|
|
|
static void
|
|
zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when)
|
|
{
|
|
(void) hdl;
|
|
int64_t *tod;
|
|
uint_t nelem;
|
|
|
|
if (nvlist_lookup_int64_array(nvl, FM_EREPORT_TIME, &tod,
|
|
&nelem) == 0 && nelem == 2) {
|
|
when->ertv_sec = tod[0];
|
|
when->ertv_nsec = tod[1];
|
|
} else {
|
|
when->ertv_sec = when->ertv_nsec = UINT64_MAX;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Main fmd entry point.
|
|
*/
|
|
static void
|
|
zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class)
|
|
{
|
|
zfs_case_t *zcp, *dcp;
|
|
int32_t pool_state;
|
|
uint64_t ena, pool_guid, vdev_guid;
|
|
uint64_t checksum_n, checksum_t;
|
|
uint64_t io_n, io_t;
|
|
er_timeval_t pool_load;
|
|
er_timeval_t er_when;
|
|
nvlist_t *detector;
|
|
boolean_t pool_found = B_FALSE;
|
|
boolean_t isresource;
|
|
const char *type;
|
|
|
|
/*
|
|
* We subscribe to notifications for vdev or pool removal. In these
|
|
* cases, there may be cases that no longer apply. Purge any cases
|
|
* that no longer apply.
|
|
*/
|
|
if (fmd_nvl_class_match(hdl, nvl, "sysevent.fs.zfs.*")) {
|
|
fmd_hdl_debug(hdl, "purging orphaned cases from %s",
|
|
strrchr(class, '.') + 1);
|
|
zfs_purge_cases(hdl);
|
|
zfs_stats.resource_drops.fmds_value.ui64++;
|
|
return;
|
|
}
|
|
|
|
isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*");
|
|
|
|
if (isresource) {
|
|
/*
|
|
* For resources, we don't have a normal payload.
|
|
*/
|
|
if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
|
|
&vdev_guid) != 0)
|
|
pool_state = SPA_LOAD_OPEN;
|
|
else
|
|
pool_state = SPA_LOAD_NONE;
|
|
detector = NULL;
|
|
} else {
|
|
(void) nvlist_lookup_nvlist(nvl,
|
|
FM_EREPORT_DETECTOR, &detector);
|
|
(void) nvlist_lookup_int32(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state);
|
|
}
|
|
|
|
/*
|
|
* We also ignore all ereports generated during an import of a pool,
|
|
* since the only possible fault (.pool) would result in import failure,
|
|
* and hence no persistent fault. Some day we may want to do something
|
|
* with these ereports, so we continue generating them internally.
|
|
*/
|
|
if (pool_state == SPA_LOAD_IMPORT) {
|
|
zfs_stats.import_drops.fmds_value.ui64++;
|
|
fmd_hdl_debug(hdl, "ignoring '%s' during import", class);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Device I/O errors are ignored during pool open.
|
|
*/
|
|
if (pool_state == SPA_LOAD_OPEN &&
|
|
(fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
|
|
fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
|
|
fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) {
|
|
fmd_hdl_debug(hdl, "ignoring '%s' during pool open", class);
|
|
zfs_stats.dev_drops.fmds_value.ui64++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We ignore ereports for anything except disks and files.
|
|
*/
|
|
if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
|
|
&type) == 0) {
|
|
if (strcmp(type, VDEV_TYPE_DISK) != 0 &&
|
|
strcmp(type, VDEV_TYPE_FILE) != 0) {
|
|
zfs_stats.vdev_drops.fmds_value.ui64++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if this ereport corresponds to an open case.
|
|
* Each vdev or pool can have a single case.
|
|
*/
|
|
(void) nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid);
|
|
if (nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
|
|
vdev_guid = 0;
|
|
if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0)
|
|
ena = 0;
|
|
|
|
zfs_ereport_when(hdl, nvl, &er_when);
|
|
|
|
for (zcp = uu_list_first(zfs_cases); zcp != NULL;
|
|
zcp = uu_list_next(zfs_cases, zcp)) {
|
|
if (zcp->zc_data.zc_pool_guid == pool_guid) {
|
|
pool_found = B_TRUE;
|
|
pool_load = zcp->zc_when;
|
|
}
|
|
if (zcp->zc_data.zc_vdev_guid == vdev_guid)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Avoid falsely accusing a pool of being faulty. Do so by
|
|
* not replaying ereports that were generated prior to the
|
|
* current import. If the failure that generated them was
|
|
* transient because the device was actually removed but we
|
|
* didn't receive the normal asynchronous notification, we
|
|
* don't want to mark it as faulted and potentially panic. If
|
|
* there is still a problem we'd expect not to be able to
|
|
* import the pool, or that new ereports will be generated
|
|
* once the pool is used.
|
|
*/
|
|
if (pool_found && timeval_earlier(&er_when, &pool_load)) {
|
|
fmd_hdl_debug(hdl, "ignoring pool %llx, "
|
|
"ereport time %lld.%lld, pool load time = %lld.%lld",
|
|
pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
|
|
pool_load.ertv_sec, pool_load.ertv_nsec);
|
|
zfs_stats.old_drops.fmds_value.ui64++;
|
|
return;
|
|
}
|
|
|
|
if (!pool_found) {
|
|
/*
|
|
* Haven't yet seen this pool, but same situation
|
|
* may apply.
|
|
*/
|
|
libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
|
|
struct load_time_arg la;
|
|
|
|
la.lt_guid = pool_guid;
|
|
la.lt_time = &pool_load;
|
|
la.lt_found = B_FALSE;
|
|
|
|
if (zhdl != NULL &&
|
|
zpool_iter(zhdl, zpool_find_load_time, &la) == 0 &&
|
|
la.lt_found == B_TRUE) {
|
|
pool_found = B_TRUE;
|
|
|
|
if (timeval_earlier(&er_when, &pool_load)) {
|
|
fmd_hdl_debug(hdl, "ignoring pool %llx, "
|
|
"ereport time %lld.%lld, "
|
|
"pool load time = %lld.%lld",
|
|
pool_guid, er_when.ertv_sec,
|
|
er_when.ertv_nsec, pool_load.ertv_sec,
|
|
pool_load.ertv_nsec);
|
|
zfs_stats.old_drops.fmds_value.ui64++;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (zcp == NULL) {
|
|
fmd_case_t *cs;
|
|
zfs_case_data_t data = { 0 };
|
|
|
|
/*
|
|
* If this is one of our 'fake' resource ereports, and there is
|
|
* no case open, simply discard it.
|
|
*/
|
|
if (isresource) {
|
|
zfs_stats.resource_drops.fmds_value.ui64++;
|
|
fmd_hdl_debug(hdl, "discarding '%s for vdev %llu",
|
|
class, vdev_guid);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Skip tracking some ereports
|
|
*/
|
|
if (strcmp(class,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DATA)) == 0 ||
|
|
strcmp(class,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE)) == 0) {
|
|
zfs_stats.resource_drops.fmds_value.ui64++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Open a new case.
|
|
*/
|
|
cs = fmd_case_open(hdl, NULL);
|
|
|
|
fmd_hdl_debug(hdl, "opening case for vdev %llu due to '%s'",
|
|
vdev_guid, class);
|
|
|
|
/*
|
|
* Initialize the case buffer. To commonize code, we actually
|
|
* create the buffer with existing data, and then call
|
|
* zfs_case_unserialize() to instantiate the in-core structure.
|
|
*/
|
|
fmd_buf_create(hdl, cs, CASE_DATA, sizeof (zfs_case_data_t));
|
|
|
|
data.zc_version = CASE_DATA_VERSION_SERD;
|
|
data.zc_ena = ena;
|
|
data.zc_pool_guid = pool_guid;
|
|
data.zc_vdev_guid = vdev_guid;
|
|
data.zc_pool_state = (int)pool_state;
|
|
|
|
fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data));
|
|
|
|
zcp = zfs_case_unserialize(hdl, cs);
|
|
assert(zcp != NULL);
|
|
if (pool_found)
|
|
zcp->zc_when = pool_load;
|
|
}
|
|
|
|
if (isresource) {
|
|
fmd_hdl_debug(hdl, "resource event '%s'", class);
|
|
|
|
if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) {
|
|
/*
|
|
* The 'resource.fs.zfs.autoreplace' event indicates
|
|
* that the pool was loaded with the 'autoreplace'
|
|
* property set. In this case, any pending device
|
|
* failures should be ignored, as the asynchronous
|
|
* autoreplace handling will take care of them.
|
|
*/
|
|
fmd_case_close(hdl, zcp->zc_case);
|
|
} else if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) {
|
|
/*
|
|
* The 'resource.fs.zfs.removed' event indicates that
|
|
* device removal was detected, and the device was
|
|
* closed asynchronously. If this is the case, we
|
|
* assume that any recent I/O errors were due to the
|
|
* device removal, not any fault of the device itself.
|
|
* We reset the SERD engine, and cancel any pending
|
|
* timers.
|
|
*/
|
|
if (zcp->zc_data.zc_has_remove_timer) {
|
|
fmd_timer_remove(hdl, zcp->zc_remove_timer);
|
|
zcp->zc_data.zc_has_remove_timer = 0;
|
|
zfs_case_serialize(zcp);
|
|
}
|
|
if (zcp->zc_data.zc_serd_io[0] != '\0')
|
|
fmd_serd_reset(hdl, zcp->zc_data.zc_serd_io);
|
|
if (zcp->zc_data.zc_serd_checksum[0] != '\0')
|
|
fmd_serd_reset(hdl,
|
|
zcp->zc_data.zc_serd_checksum);
|
|
if (zcp->zc_data.zc_serd_slow_io[0] != '\0')
|
|
fmd_serd_reset(hdl,
|
|
zcp->zc_data.zc_serd_slow_io);
|
|
} else if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_RSRC(FM_RESOURCE_STATECHANGE))) {
|
|
uint64_t state = 0;
|
|
|
|
if (zcp != NULL &&
|
|
nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, &state) == 0 &&
|
|
state == VDEV_STATE_HEALTHY) {
|
|
fmd_hdl_debug(hdl, "closing case after a "
|
|
"device statechange to healthy");
|
|
fmd_case_close(hdl, zcp->zc_case);
|
|
}
|
|
}
|
|
zfs_stats.resource_drops.fmds_value.ui64++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Associate the ereport with this case.
|
|
*/
|
|
fmd_case_add_ereport(hdl, zcp->zc_case, ep);
|
|
|
|
/*
|
|
* Don't do anything else if this case is already solved.
|
|
*/
|
|
if (fmd_case_solved(hdl, zcp->zc_case))
|
|
return;
|
|
|
|
if (vdev_guid)
|
|
fmd_hdl_debug(hdl, "error event '%s', vdev %llu", class,
|
|
vdev_guid);
|
|
else
|
|
fmd_hdl_debug(hdl, "error event '%s'", class);
|
|
|
|
/*
|
|
* Determine if we should solve the case and generate a fault. We solve
|
|
* a case if:
|
|
*
|
|
* a. A pool failed to open (ereport.fs.zfs.pool)
|
|
* b. A device failed to open (ereport.fs.zfs.pool) while a pool
|
|
* was up and running.
|
|
*
|
|
* We may see a series of ereports associated with a pool open, all
|
|
* chained together by the same ENA. If the pool open succeeds, then
|
|
* we'll see no further ereports. To detect when a pool open has
|
|
* succeeded, we associate a timer with the event. When it expires, we
|
|
* close the case.
|
|
*/
|
|
if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) {
|
|
/*
|
|
* Pool level fault. Before solving the case, go through and
|
|
* close any open device cases that may be pending.
|
|
*/
|
|
for (dcp = uu_list_first(zfs_cases); dcp != NULL;
|
|
dcp = uu_list_next(zfs_cases, dcp)) {
|
|
if (dcp->zc_data.zc_pool_guid ==
|
|
zcp->zc_data.zc_pool_guid &&
|
|
dcp->zc_data.zc_vdev_guid != 0)
|
|
fmd_case_close(hdl, dcp->zc_case);
|
|
}
|
|
|
|
zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool");
|
|
} else if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) {
|
|
/*
|
|
* Pool level fault for reading the intent logs.
|
|
*/
|
|
zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay");
|
|
} else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) {
|
|
/*
|
|
* Device fault.
|
|
*/
|
|
zfs_case_solve(hdl, zcp, "fault.fs.zfs.device");
|
|
} else if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
|
|
fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
|
|
fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) ||
|
|
fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DELAY)) ||
|
|
fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
|
|
const char *failmode = NULL;
|
|
boolean_t checkremove = B_FALSE;
|
|
uint32_t pri = 0;
|
|
int32_t flags = 0;
|
|
|
|
/*
|
|
* If this is a checksum or I/O error, then toss it into the
|
|
* appropriate SERD engine and check to see if it has fired.
|
|
* Ideally, we want to do something more sophisticated,
|
|
* (persistent errors for a single data block, etc). For now,
|
|
* a single SERD engine is sufficient.
|
|
*/
|
|
if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) {
|
|
if (zcp->zc_data.zc_serd_io[0] == '\0') {
|
|
if (nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N,
|
|
&io_n) != 0) {
|
|
io_n = DEFAULT_IO_N;
|
|
}
|
|
if (nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T,
|
|
&io_t) != 0) {
|
|
io_t = DEFAULT_IO_T;
|
|
}
|
|
zfs_serd_name(zcp->zc_data.zc_serd_io,
|
|
pool_guid, vdev_guid, "io");
|
|
fmd_serd_create(hdl, zcp->zc_data.zc_serd_io,
|
|
io_n,
|
|
SEC2NSEC(io_t));
|
|
zfs_case_serialize(zcp);
|
|
}
|
|
if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep))
|
|
checkremove = B_TRUE;
|
|
} else if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DELAY))) {
|
|
uint64_t slow_io_n, slow_io_t;
|
|
|
|
/*
|
|
* Create a slow io SERD engine when the VDEV has the
|
|
* 'vdev_slow_io_n' and 'vdev_slow_io_n' properties.
|
|
*/
|
|
if (zcp->zc_data.zc_serd_slow_io[0] == '\0' &&
|
|
nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_N,
|
|
&slow_io_n) == 0 &&
|
|
nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_T,
|
|
&slow_io_t) == 0) {
|
|
zfs_serd_name(zcp->zc_data.zc_serd_slow_io,
|
|
pool_guid, vdev_guid, "slow_io");
|
|
fmd_serd_create(hdl,
|
|
zcp->zc_data.zc_serd_slow_io,
|
|
slow_io_n,
|
|
SEC2NSEC(slow_io_t));
|
|
zfs_case_serialize(zcp);
|
|
}
|
|
/* Pass event to SERD engine and see if this triggers */
|
|
if (zcp->zc_data.zc_serd_slow_io[0] != '\0' &&
|
|
fmd_serd_record(hdl, zcp->zc_data.zc_serd_slow_io,
|
|
ep)) {
|
|
/*
|
|
* Ignore a slow io diagnosis when other
|
|
* VDEVs in the pool show signs of being slow.
|
|
*/
|
|
if (zfs_other_slow_cases(hdl, &zcp->zc_data)) {
|
|
zfs_case_retire(hdl, zcp);
|
|
fmd_hdl_debug(hdl, "pool %llu has "
|
|
"multiple slow io cases -- skip "
|
|
"degrading vdev %llu",
|
|
(u_longlong_t)
|
|
zcp->zc_data.zc_pool_guid,
|
|
(u_longlong_t)
|
|
zcp->zc_data.zc_vdev_guid);
|
|
} else {
|
|
zfs_case_solve(hdl, zcp,
|
|
"fault.fs.zfs.vdev.slow_io");
|
|
}
|
|
}
|
|
} else if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) {
|
|
/*
|
|
* We ignore ereports for checksum errors generated by
|
|
* scrub/resilver I/O to avoid potentially further
|
|
* degrading the pool while it's being repaired.
|
|
*/
|
|
if (((nvlist_lookup_uint32(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY, &pri) == 0) &&
|
|
(pri == ZIO_PRIORITY_SCRUB ||
|
|
pri == ZIO_PRIORITY_REBUILD)) ||
|
|
((nvlist_lookup_int32(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS, &flags) == 0) &&
|
|
(flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))) {
|
|
fmd_hdl_debug(hdl, "ignoring '%s' for "
|
|
"scrub/resilver I/O", class);
|
|
return;
|
|
}
|
|
|
|
if (zcp->zc_data.zc_serd_checksum[0] == '\0') {
|
|
if (nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N,
|
|
&checksum_n) != 0) {
|
|
checksum_n = DEFAULT_CHECKSUM_N;
|
|
}
|
|
if (nvlist_lookup_uint64(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T,
|
|
&checksum_t) != 0) {
|
|
checksum_t = DEFAULT_CHECKSUM_T;
|
|
}
|
|
|
|
zfs_serd_name(zcp->zc_data.zc_serd_checksum,
|
|
pool_guid, vdev_guid, "checksum");
|
|
fmd_serd_create(hdl,
|
|
zcp->zc_data.zc_serd_checksum,
|
|
checksum_n,
|
|
SEC2NSEC(checksum_t));
|
|
zfs_case_serialize(zcp);
|
|
}
|
|
if (fmd_serd_record(hdl,
|
|
zcp->zc_data.zc_serd_checksum, ep)) {
|
|
zfs_case_solve(hdl, zcp,
|
|
"fault.fs.zfs.vdev.checksum");
|
|
}
|
|
} else if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) &&
|
|
(nvlist_lookup_string(nvl,
|
|
FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) &&
|
|
failmode != NULL) {
|
|
if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE,
|
|
strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) {
|
|
zfs_case_solve(hdl, zcp,
|
|
"fault.fs.zfs.io_failure_continue");
|
|
} else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT,
|
|
strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) {
|
|
zfs_case_solve(hdl, zcp,
|
|
"fault.fs.zfs.io_failure_wait");
|
|
}
|
|
} else if (fmd_nvl_class_match(hdl, nvl,
|
|
ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
|
|
#ifndef __linux__
|
|
/* This causes an unexpected fault diagnosis on linux */
|
|
checkremove = B_TRUE;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Because I/O errors may be due to device removal, we postpone
|
|
* any diagnosis until we're sure that we aren't about to
|
|
* receive a 'resource.fs.zfs.removed' event.
|
|
*/
|
|
if (checkremove) {
|
|
if (zcp->zc_data.zc_has_remove_timer)
|
|
fmd_timer_remove(hdl, zcp->zc_remove_timer);
|
|
zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL,
|
|
zfs_remove_timeout);
|
|
if (!zcp->zc_data.zc_has_remove_timer) {
|
|
zcp->zc_data.zc_has_remove_timer = 1;
|
|
zfs_case_serialize(zcp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The timeout is fired when we diagnosed an I/O error, and it was not due to
|
|
* device removal (which would cause the timeout to be cancelled).
|
|
*/
|
|
static void
|
|
zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data)
|
|
{
|
|
zfs_case_t *zcp = data;
|
|
|
|
if (id == zcp->zc_remove_timer)
|
|
zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io");
|
|
}
|
|
|
|
/*
|
|
* The specified case has been closed and any case-specific
|
|
* data structures should be deallocated.
|
|
*/
|
|
static void
|
|
zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs)
|
|
{
|
|
zfs_case_t *zcp = fmd_case_getspecific(hdl, cs);
|
|
|
|
if (zcp->zc_data.zc_serd_checksum[0] != '\0')
|
|
fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum);
|
|
if (zcp->zc_data.zc_serd_io[0] != '\0')
|
|
fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io);
|
|
if (zcp->zc_data.zc_serd_slow_io[0] != '\0')
|
|
fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_slow_io);
|
|
if (zcp->zc_data.zc_has_remove_timer)
|
|
fmd_timer_remove(hdl, zcp->zc_remove_timer);
|
|
|
|
uu_list_remove(zfs_cases, zcp);
|
|
uu_list_node_fini(zcp, &zcp->zc_node, zfs_case_pool);
|
|
fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
|
|
}
|
|
|
|
static const fmd_hdl_ops_t fmd_ops = {
|
|
zfs_fm_recv, /* fmdo_recv */
|
|
zfs_fm_timeout, /* fmdo_timeout */
|
|
zfs_fm_close, /* fmdo_close */
|
|
NULL, /* fmdo_stats */
|
|
NULL, /* fmdo_gc */
|
|
};
|
|
|
|
static const fmd_prop_t fmd_props[] = {
|
|
{ NULL, 0, NULL }
|
|
};
|
|
|
|
static const fmd_hdl_info_t fmd_info = {
|
|
"ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props
|
|
};
|
|
|
|
void
|
|
_zfs_diagnosis_init(fmd_hdl_t *hdl)
|
|
{
|
|
libzfs_handle_t *zhdl;
|
|
|
|
if ((zhdl = libzfs_init()) == NULL)
|
|
return;
|
|
|
|
if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool",
|
|
sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node),
|
|
NULL, UU_LIST_POOL_DEBUG)) == NULL) {
|
|
libzfs_fini(zhdl);
|
|
return;
|
|
}
|
|
|
|
if ((zfs_cases = uu_list_create(zfs_case_pool, NULL,
|
|
UU_LIST_DEBUG)) == NULL) {
|
|
uu_list_pool_destroy(zfs_case_pool);
|
|
libzfs_fini(zhdl);
|
|
return;
|
|
}
|
|
|
|
if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
|
|
uu_list_destroy(zfs_cases);
|
|
uu_list_pool_destroy(zfs_case_pool);
|
|
libzfs_fini(zhdl);
|
|
return;
|
|
}
|
|
|
|
fmd_hdl_setspecific(hdl, zhdl);
|
|
|
|
(void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) /
|
|
sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats);
|
|
}
|
|
|
|
void
|
|
_zfs_diagnosis_fini(fmd_hdl_t *hdl)
|
|
{
|
|
zfs_case_t *zcp;
|
|
uu_list_walk_t *walk;
|
|
libzfs_handle_t *zhdl;
|
|
|
|
/*
|
|
* Remove all active cases.
|
|
*/
|
|
walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
|
|
while ((zcp = uu_list_walk_next(walk)) != NULL) {
|
|
fmd_hdl_debug(hdl, "removing case ena %llu",
|
|
(long long unsigned)zcp->zc_data.zc_ena);
|
|
uu_list_remove(zfs_cases, zcp);
|
|
uu_list_node_fini(zcp, &zcp->zc_node, zfs_case_pool);
|
|
fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
|
|
}
|
|
uu_list_walk_end(walk);
|
|
|
|
uu_list_destroy(zfs_cases);
|
|
uu_list_pool_destroy(zfs_case_pool);
|
|
|
|
zhdl = fmd_hdl_getspecific(hdl);
|
|
libzfs_fini(zhdl);
|
|
}
|