mirror_zfs/module/zfs/sa.c
Xin Li c475167627 Illumos #1661: Fix flaw in sa_find_sizes() calculation
When calculating space needed for SA_BONUS buffers, hdrsize is
always rounded up to next 8-aligned boundary. However, in two places
the round up was done against sum of 'total' plus hdrsize. On the
other hand, hdrsize increments by 4 each time, which means in certain
conditions, we would end up returning with will_spill == 0 and
(total + hdrsize) larger than full_space, leading to a failed
assertion because it's invalid for dmu_set_bonus.

Reviewed by: Matthew Ahrens <matt@delphix.com>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Approved by: Gordon Ross <gwr@nexenta.com>

References to Illumos issue:
  https://www.illumos.org/issues/1661

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #426
2011-10-24 09:57:52 -07:00

2007 lines
51 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_objset.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/sunddi.h>
#include <sys/sa_impl.h>
#include <sys/dnode.h>
#include <sys/errno.h>
#include <sys/zfs_context.h>
/*
* ZFS System attributes:
*
* A generic mechanism to allow for arbitrary attributes
* to be stored in a dnode. The data will be stored in the bonus buffer of
* the dnode and if necessary a special "spill" block will be used to handle
* overflow situations. The spill block will be sized to fit the data
* from 512 - 128K. When a spill block is used the BP (blkptr_t) for the
* spill block is stored at the end of the current bonus buffer. Any
* attributes that would be in the way of the blkptr_t will be relocated
* into the spill block.
*
* Attribute registration:
*
* Stored persistently on a per dataset basis
* a mapping between attribute "string" names and their actual attribute
* numeric values, length, and byteswap function. The names are only used
* during registration. All attributes are known by their unique attribute
* id value. If an attribute can have a variable size then the value
* 0 will be used to indicate this.
*
* Attribute Layout:
*
* Attribute layouts are a way to compactly store multiple attributes, but
* without taking the overhead associated with managing each attribute
* individually. Since you will typically have the same set of attributes
* stored in the same order a single table will be used to represent that
* layout. The ZPL for example will usually have only about 10 different
* layouts (regular files, device files, symlinks,
* regular files + scanstamp, files/dir with extended attributes, and then
* you have the possibility of all of those minus ACL, because it would
* be kicked out into the spill block)
*
* Layouts are simply an array of the attributes and their
* ordering i.e. [0, 1, 4, 5, 2]
*
* Each distinct layout is given a unique layout number and that is whats
* stored in the header at the beginning of the SA data buffer.
*
* A layout only covers a single dbuf (bonus or spill). If a set of
* attributes is split up between the bonus buffer and a spill buffer then
* two different layouts will be used. This allows us to byteswap the
* spill without looking at the bonus buffer and keeps the on disk format of
* the bonus and spill buffer the same.
*
* Adding a single attribute will cause the entire set of attributes to
* be rewritten and could result in a new layout number being constructed
* as part of the rewrite if no such layout exists for the new set of
* attribues. The new attribute will be appended to the end of the already
* existing attributes.
*
* Both the attribute registration and attribute layout information are
* stored in normal ZAP attributes. Their should be a small number of
* known layouts and the set of attributes is assumed to typically be quite
* small.
*
* The registered attributes and layout "table" information is maintained
* in core and a special "sa_os_t" is attached to the objset_t.
*
* A special interface is provided to allow for quickly applying
* a large set of attributes at once. sa_replace_all_by_template() is
* used to set an array of attributes. This is used by the ZPL when
* creating a brand new file. The template that is passed into the function
* specifies the attribute, size for variable length attributes, location of
* data and special "data locator" function if the data isn't in a contiguous
* location.
*
* Byteswap implications:
* Since the SA attributes are not entirely self describing we can't do
* the normal byteswap processing. The special ZAP layout attribute and
* attribute registration attributes define the byteswap function and the
* size of the attributes, unless it is variable sized.
* The normal ZFS byteswapping infrastructure assumes you don't need
* to read any objects in order to do the necessary byteswapping. Whereas
* SA attributes can only be properly byteswapped if the dataset is opened
* and the layout/attribute ZAP attributes are available. Because of this
* the SA attributes will be byteswapped when they are first accessed by
* the SA code that will read the SA data.
*/
typedef void (sa_iterfunc_t)(void *hdr, void *addr, sa_attr_type_t,
uint16_t length, int length_idx, boolean_t, void *userp);
static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype);
static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab);
static void *sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype,
void *data);
static void sa_idx_tab_rele(objset_t *os, void *arg);
static void sa_copy_data(sa_data_locator_t *func, void *start, void *target,
int buflen);
static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr,
sa_data_op_t action, sa_data_locator_t *locator, void *datastart,
uint16_t buflen, dmu_tx_t *tx);
arc_byteswap_func_t *sa_bswap_table[] = {
byteswap_uint64_array,
byteswap_uint32_array,
byteswap_uint16_array,
byteswap_uint8_array,
zfs_acl_byteswap,
};
#define SA_COPY_DATA(f, s, t, l) \
{ \
if (f == NULL) { \
if (l == 8) { \
*(uint64_t *)t = *(uint64_t *)s; \
} else if (l == 16) { \
*(uint64_t *)t = *(uint64_t *)s; \
*(uint64_t *)((uintptr_t)t + 8) = \
*(uint64_t *)((uintptr_t)s + 8); \
} else { \
bcopy(s, t, l); \
} \
} else \
sa_copy_data(f, s, t, l); \
}
/*
* This table is fixed and cannot be changed. Its purpose is to
* allow the SA code to work with both old/new ZPL file systems.
* It contains the list of legacy attributes. These attributes aren't
* stored in the "attribute" registry zap objects, since older ZPL file systems
* won't have the registry. Only objsets of type ZFS_TYPE_FILESYSTEM will
* use this static table.
*/
sa_attr_reg_t sa_legacy_attrs[] = {
{"ZPL_ATIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 0},
{"ZPL_MTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 1},
{"ZPL_CTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 2},
{"ZPL_CRTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 3},
{"ZPL_GEN", sizeof (uint64_t), SA_UINT64_ARRAY, 4},
{"ZPL_MODE", sizeof (uint64_t), SA_UINT64_ARRAY, 5},
{"ZPL_SIZE", sizeof (uint64_t), SA_UINT64_ARRAY, 6},
{"ZPL_PARENT", sizeof (uint64_t), SA_UINT64_ARRAY, 7},
{"ZPL_LINKS", sizeof (uint64_t), SA_UINT64_ARRAY, 8},
{"ZPL_XATTR", sizeof (uint64_t), SA_UINT64_ARRAY, 9},
{"ZPL_RDEV", sizeof (uint64_t), SA_UINT64_ARRAY, 10},
{"ZPL_FLAGS", sizeof (uint64_t), SA_UINT64_ARRAY, 11},
{"ZPL_UID", sizeof (uint64_t), SA_UINT64_ARRAY, 12},
{"ZPL_GID", sizeof (uint64_t), SA_UINT64_ARRAY, 13},
{"ZPL_PAD", sizeof (uint64_t) * 4, SA_UINT64_ARRAY, 14},
{"ZPL_ZNODE_ACL", 88, SA_UINT8_ARRAY, 15},
};
/*
* ZPL legacy layout
* This is only used for objects of type DMU_OT_ZNODE
*/
sa_attr_type_t sa_legacy_zpl_layout[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
/*
* Special dummy layout used for buffers with no attributes.
*/
sa_attr_type_t sa_dummy_zpl_layout[] = { 0 };
static int sa_legacy_attr_count = 16;
static kmem_cache_t *sa_cache = NULL;
/*ARGSUSED*/
static int
sa_cache_constructor(void *buf, void *unused, int kmflag)
{
sa_handle_t *hdl = buf;
hdl->sa_bonus_tab = NULL;
hdl->sa_spill_tab = NULL;
hdl->sa_os = NULL;
hdl->sa_userp = NULL;
hdl->sa_bonus = NULL;
hdl->sa_spill = NULL;
mutex_init(&hdl->sa_lock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
/*ARGSUSED*/
static void
sa_cache_destructor(void *buf, void *unused)
{
sa_handle_t *hdl = buf;
mutex_destroy(&hdl->sa_lock);
}
void
sa_cache_init(void)
{
sa_cache = kmem_cache_create("sa_cache",
sizeof (sa_handle_t), 0, sa_cache_constructor,
sa_cache_destructor, NULL, NULL, NULL, 0);
}
void
sa_cache_fini(void)
{
if (sa_cache)
kmem_cache_destroy(sa_cache);
}
static int
layout_num_compare(const void *arg1, const void *arg2)
{
const sa_lot_t *node1 = arg1;
const sa_lot_t *node2 = arg2;
if (node1->lot_num > node2->lot_num)
return (1);
else if (node1->lot_num < node2->lot_num)
return (-1);
return (0);
}
static int
layout_hash_compare(const void *arg1, const void *arg2)
{
const sa_lot_t *node1 = arg1;
const sa_lot_t *node2 = arg2;
if (node1->lot_hash > node2->lot_hash)
return (1);
if (node1->lot_hash < node2->lot_hash)
return (-1);
if (node1->lot_instance > node2->lot_instance)
return (1);
if (node1->lot_instance < node2->lot_instance)
return (-1);
return (0);
}
boolean_t
sa_layout_equal(sa_lot_t *tbf, sa_attr_type_t *attrs, int count)
{
int i;
if (count != tbf->lot_attr_count)
return (1);
for (i = 0; i != count; i++) {
if (attrs[i] != tbf->lot_attrs[i])
return (1);
}
return (0);
}
#define SA_ATTR_HASH(attr) (zfs_crc64_table[(-1ULL ^ attr) & 0xFF])
static uint64_t
sa_layout_info_hash(sa_attr_type_t *attrs, int attr_count)
{
int i;
uint64_t crc = -1ULL;
for (i = 0; i != attr_count; i++)
crc ^= SA_ATTR_HASH(attrs[i]);
return (crc);
}
static int
sa_get_spill(sa_handle_t *hdl)
{
int rc;
if (hdl->sa_spill == NULL) {
if ((rc = dmu_spill_hold_existing(hdl->sa_bonus, NULL,
&hdl->sa_spill)) == 0)
VERIFY(0 == sa_build_index(hdl, SA_SPILL));
} else {
rc = 0;
}
return (rc);
}
/*
* Main attribute lookup/update function
* returns 0 for success or non zero for failures
*
* Operates on bulk array, first failure will abort further processing
*/
int
sa_attr_op(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count,
sa_data_op_t data_op, dmu_tx_t *tx)
{
sa_os_t *sa = hdl->sa_os->os_sa;
int i;
int error = 0;
sa_buf_type_t buftypes;
buftypes = 0;
ASSERT(count > 0);
for (i = 0; i != count; i++) {
ASSERT(bulk[i].sa_attr <= hdl->sa_os->os_sa->sa_num_attrs);
bulk[i].sa_addr = NULL;
/* First check the bonus buffer */
if (hdl->sa_bonus_tab && TOC_ATTR_PRESENT(
hdl->sa_bonus_tab->sa_idx_tab[bulk[i].sa_attr])) {
SA_ATTR_INFO(sa, hdl->sa_bonus_tab,
SA_GET_HDR(hdl, SA_BONUS),
bulk[i].sa_attr, bulk[i], SA_BONUS, hdl);
if (tx && !(buftypes & SA_BONUS)) {
dmu_buf_will_dirty(hdl->sa_bonus, tx);
buftypes |= SA_BONUS;
}
}
if (bulk[i].sa_addr == NULL &&
((error = sa_get_spill(hdl)) == 0)) {
if (TOC_ATTR_PRESENT(
hdl->sa_spill_tab->sa_idx_tab[bulk[i].sa_attr])) {
SA_ATTR_INFO(sa, hdl->sa_spill_tab,
SA_GET_HDR(hdl, SA_SPILL),
bulk[i].sa_attr, bulk[i], SA_SPILL, hdl);
if (tx && !(buftypes & SA_SPILL) &&
bulk[i].sa_size == bulk[i].sa_length) {
dmu_buf_will_dirty(hdl->sa_spill, tx);
buftypes |= SA_SPILL;
}
}
}
if (error && error != ENOENT) {
return ((error == ECKSUM) ? EIO : error);
}
switch (data_op) {
case SA_LOOKUP:
if (bulk[i].sa_addr == NULL)
return (ENOENT);
if (bulk[i].sa_data) {
SA_COPY_DATA(bulk[i].sa_data_func,
bulk[i].sa_addr, bulk[i].sa_data,
bulk[i].sa_size);
}
continue;
case SA_UPDATE:
/* existing rewrite of attr */
if (bulk[i].sa_addr &&
bulk[i].sa_size == bulk[i].sa_length) {
SA_COPY_DATA(bulk[i].sa_data_func,
bulk[i].sa_data, bulk[i].sa_addr,
bulk[i].sa_length);
continue;
} else if (bulk[i].sa_addr) { /* attr size change */
error = sa_modify_attrs(hdl, bulk[i].sa_attr,
SA_REPLACE, bulk[i].sa_data_func,
bulk[i].sa_data, bulk[i].sa_length, tx);
} else { /* adding new attribute */
error = sa_modify_attrs(hdl, bulk[i].sa_attr,
SA_ADD, bulk[i].sa_data_func,
bulk[i].sa_data, bulk[i].sa_length, tx);
}
if (error)
return (error);
break;
default:
break;
}
}
return (error);
}
static sa_lot_t *
sa_add_layout_entry(objset_t *os, sa_attr_type_t *attrs, int attr_count,
uint64_t lot_num, uint64_t hash, boolean_t zapadd, dmu_tx_t *tx)
{
sa_os_t *sa = os->os_sa;
sa_lot_t *tb, *findtb;
int i;
avl_index_t loc;
ASSERT(MUTEX_HELD(&sa->sa_lock));
tb = kmem_zalloc(sizeof (sa_lot_t), KM_SLEEP);
tb->lot_attr_count = attr_count;
tb->lot_attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count,
KM_SLEEP);
bcopy(attrs, tb->lot_attrs, sizeof (sa_attr_type_t) * attr_count);
tb->lot_num = lot_num;
tb->lot_hash = hash;
tb->lot_instance = 0;
if (zapadd) {
char attr_name[8];
if (sa->sa_layout_attr_obj == 0) {
sa->sa_layout_attr_obj = zap_create(os,
DMU_OT_SA_ATTR_LAYOUTS, DMU_OT_NONE, 0, tx);
VERIFY(zap_add(os, sa->sa_master_obj, SA_LAYOUTS, 8, 1,
&sa->sa_layout_attr_obj, tx) == 0);
}
(void) snprintf(attr_name, sizeof (attr_name),
"%d", (int)lot_num);
VERIFY(0 == zap_update(os, os->os_sa->sa_layout_attr_obj,
attr_name, 2, attr_count, attrs, tx));
}
list_create(&tb->lot_idx_tab, sizeof (sa_idx_tab_t),
offsetof(sa_idx_tab_t, sa_next));
for (i = 0; i != attr_count; i++) {
if (sa->sa_attr_table[tb->lot_attrs[i]].sa_length == 0)
tb->lot_var_sizes++;
}
avl_add(&sa->sa_layout_num_tree, tb);
/* verify we don't have a hash collision */
if ((findtb = avl_find(&sa->sa_layout_hash_tree, tb, &loc)) != NULL) {
for (; findtb && findtb->lot_hash == hash;
findtb = AVL_NEXT(&sa->sa_layout_hash_tree, findtb)) {
if (findtb->lot_instance != tb->lot_instance)
break;
tb->lot_instance++;
}
}
avl_add(&sa->sa_layout_hash_tree, tb);
return (tb);
}
static void
sa_find_layout(objset_t *os, uint64_t hash, sa_attr_type_t *attrs,
int count, dmu_tx_t *tx, sa_lot_t **lot)
{
sa_lot_t *tb, tbsearch;
avl_index_t loc;
sa_os_t *sa = os->os_sa;
boolean_t found = B_FALSE;
mutex_enter(&sa->sa_lock);
tbsearch.lot_hash = hash;
tbsearch.lot_instance = 0;
tb = avl_find(&sa->sa_layout_hash_tree, &tbsearch, &loc);
if (tb) {
for (; tb && tb->lot_hash == hash;
tb = AVL_NEXT(&sa->sa_layout_hash_tree, tb)) {
if (sa_layout_equal(tb, attrs, count) == 0) {
found = B_TRUE;
break;
}
}
}
if (!found) {
tb = sa_add_layout_entry(os, attrs, count,
avl_numnodes(&sa->sa_layout_num_tree), hash, B_TRUE, tx);
}
mutex_exit(&sa->sa_lock);
*lot = tb;
}
static int
sa_resize_spill(sa_handle_t *hdl, uint32_t size, dmu_tx_t *tx)
{
int error;
uint32_t blocksize;
if (size == 0) {
blocksize = SPA_MINBLOCKSIZE;
} else if (size > SPA_MAXBLOCKSIZE) {
ASSERT(0);
return (EFBIG);
} else {
blocksize = P2ROUNDUP_TYPED(size, SPA_MINBLOCKSIZE, uint32_t);
}
error = dbuf_spill_set_blksz(hdl->sa_spill, blocksize, tx);
ASSERT(error == 0);
return (error);
}
static void
sa_copy_data(sa_data_locator_t *func, void *datastart, void *target, int buflen)
{
if (func == NULL) {
bcopy(datastart, target, buflen);
} else {
boolean_t start;
int bytes;
void *dataptr;
void *saptr = target;
uint32_t length;
start = B_TRUE;
bytes = 0;
while (bytes < buflen) {
func(&dataptr, &length, buflen, start, datastart);
bcopy(dataptr, saptr, length);
saptr = (void *)((caddr_t)saptr + length);
bytes += length;
start = B_FALSE;
}
}
}
/*
* Determine several different sizes
* first the sa header size
* the number of bytes to be stored
* if spill would occur the index in the attribute array is returned
*
* the boolean will_spill will be set when spilling is necessary. It
* is only set when the buftype is SA_BONUS
*/
static int
sa_find_sizes(sa_os_t *sa, sa_bulk_attr_t *attr_desc, int attr_count,
dmu_buf_t *db, sa_buf_type_t buftype, int *index, int *total,
boolean_t *will_spill)
{
int var_size = 0;
int i;
int full_space;
int hdrsize;
boolean_t done = B_FALSE;
if (buftype == SA_BONUS && sa->sa_force_spill) {
*total = 0;
*index = 0;
*will_spill = B_TRUE;
return (0);
}
*index = -1;
*total = 0;
if (buftype == SA_BONUS)
*will_spill = B_FALSE;
hdrsize = (SA_BONUSTYPE_FROM_DB(db) == DMU_OT_ZNODE) ? 0 :
sizeof (sa_hdr_phys_t);
full_space = (buftype == SA_BONUS) ? DN_MAX_BONUSLEN : db->db_size;
for (i = 0; i != attr_count; i++) {
boolean_t is_var_sz;
*total += attr_desc[i].sa_length;
if (done)
goto next;
is_var_sz = (SA_REGISTERED_LEN(sa, attr_desc[i].sa_attr) == 0);
if (is_var_sz) {
var_size++;
}
if (is_var_sz && var_size > 1) {
if (P2ROUNDUP(hdrsize + sizeof (uint16_t), 8) +
*total < full_space) {
hdrsize += sizeof (uint16_t);
} else {
done = B_TRUE;
*index = i;
if (buftype == SA_BONUS)
*will_spill = B_TRUE;
continue;
}
}
/*
* find index of where spill *could* occur.
* Then continue to count of remainder attribute
* space. The sum is used later for sizing bonus
* and spill buffer.
*/
if (buftype == SA_BONUS && *index == -1 &&
(*total + P2ROUNDUP(hdrsize, 8)) >
(full_space - sizeof (blkptr_t))) {
*index = i;
done = B_TRUE;
}
next:
if ((*total + P2ROUNDUP(hdrsize, 8)) > full_space &&
buftype == SA_BONUS)
*will_spill = B_TRUE;
}
hdrsize = P2ROUNDUP(hdrsize, 8);
return (hdrsize);
}
#define BUF_SPACE_NEEDED(total, header) (total + header)
/*
* Find layout that corresponds to ordering of attributes
* If not found a new layout number is created and added to
* persistent layout tables.
*/
static int
sa_build_layouts(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count,
dmu_tx_t *tx)
{
sa_os_t *sa = hdl->sa_os->os_sa;
uint64_t hash;
sa_buf_type_t buftype;
sa_hdr_phys_t *sahdr;
void *data_start;
int buf_space;
sa_attr_type_t *attrs, *attrs_start;
int i, lot_count;
int hdrsize, spillhdrsize = 0;
int used;
dmu_object_type_t bonustype;
sa_lot_t *lot;
int len_idx;
int spill_used;
boolean_t spilling;
dmu_buf_will_dirty(hdl->sa_bonus, tx);
bonustype = SA_BONUSTYPE_FROM_DB(hdl->sa_bonus);
/* first determine bonus header size and sum of all attributes */
hdrsize = sa_find_sizes(sa, attr_desc, attr_count, hdl->sa_bonus,
SA_BONUS, &i, &used, &spilling);
if (used > SPA_MAXBLOCKSIZE)
return (EFBIG);
VERIFY(0 == dmu_set_bonus(hdl->sa_bonus, spilling ?
MIN(DN_MAX_BONUSLEN - sizeof (blkptr_t), used + hdrsize) :
used + hdrsize, tx));
ASSERT((bonustype == DMU_OT_ZNODE && spilling == 0) ||
bonustype == DMU_OT_SA);
/* setup and size spill buffer when needed */
if (spilling) {
boolean_t dummy;
if (hdl->sa_spill == NULL) {
VERIFY(dmu_spill_hold_by_bonus(hdl->sa_bonus, NULL,
&hdl->sa_spill) == 0);
}
dmu_buf_will_dirty(hdl->sa_spill, tx);
spillhdrsize = sa_find_sizes(sa, &attr_desc[i],
attr_count - i, hdl->sa_spill, SA_SPILL, &i,
&spill_used, &dummy);
if (spill_used > SPA_MAXBLOCKSIZE)
return (EFBIG);
buf_space = hdl->sa_spill->db_size - spillhdrsize;
if (BUF_SPACE_NEEDED(spill_used, spillhdrsize) >
hdl->sa_spill->db_size)
VERIFY(0 == sa_resize_spill(hdl,
BUF_SPACE_NEEDED(spill_used, spillhdrsize), tx));
}
/* setup starting pointers to lay down data */
data_start = (void *)((uintptr_t)hdl->sa_bonus->db_data + hdrsize);
sahdr = (sa_hdr_phys_t *)hdl->sa_bonus->db_data;
buftype = SA_BONUS;
if (spilling)
buf_space = (sa->sa_force_spill) ?
0 : SA_BLKPTR_SPACE - hdrsize;
else
buf_space = hdl->sa_bonus->db_size - hdrsize;
attrs_start = attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count,
KM_SLEEP);
lot_count = 0;
for (i = 0, len_idx = 0, hash = -1ULL; i != attr_count; i++) {
uint16_t length;
attrs[i] = attr_desc[i].sa_attr;
length = SA_REGISTERED_LEN(sa, attrs[i]);
if (length == 0)
length = attr_desc[i].sa_length;
if (buf_space < length) { /* switch to spill buffer */
VERIFY(bonustype == DMU_OT_SA);
if (buftype == SA_BONUS && !sa->sa_force_spill) {
sa_find_layout(hdl->sa_os, hash, attrs_start,
lot_count, tx, &lot);
SA_SET_HDR(sahdr, lot->lot_num, hdrsize);
}
buftype = SA_SPILL;
hash = -1ULL;
len_idx = 0;
sahdr = (sa_hdr_phys_t *)hdl->sa_spill->db_data;
sahdr->sa_magic = SA_MAGIC;
data_start = (void *)((uintptr_t)sahdr +
spillhdrsize);
attrs_start = &attrs[i];
buf_space = hdl->sa_spill->db_size - spillhdrsize;
lot_count = 0;
}
hash ^= SA_ATTR_HASH(attrs[i]);
attr_desc[i].sa_addr = data_start;
attr_desc[i].sa_size = length;
SA_COPY_DATA(attr_desc[i].sa_data_func, attr_desc[i].sa_data,
data_start, length);
if (sa->sa_attr_table[attrs[i]].sa_length == 0) {
sahdr->sa_lengths[len_idx++] = length;
}
data_start = (void *)P2ROUNDUP(((uintptr_t)data_start +
length), 8);
buf_space -= P2ROUNDUP(length, 8);
lot_count++;
}
sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot);
/*
* Verify that old znodes always have layout number 0.
* Must be DMU_OT_SA for arbitrary layouts
*/
VERIFY((bonustype == DMU_OT_ZNODE && lot->lot_num == 0) ||
(bonustype == DMU_OT_SA && lot->lot_num > 1));
if (bonustype == DMU_OT_SA) {
SA_SET_HDR(sahdr, lot->lot_num,
buftype == SA_BONUS ? hdrsize : spillhdrsize);
}
kmem_free(attrs, sizeof (sa_attr_type_t) * attr_count);
if (hdl->sa_bonus_tab) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab);
hdl->sa_bonus_tab = NULL;
}
if (!sa->sa_force_spill)
VERIFY(0 == sa_build_index(hdl, SA_BONUS));
if (hdl->sa_spill) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
if (!spilling) {
/*
* remove spill block that is no longer needed.
*/
dmu_buf_rele(hdl->sa_spill, NULL);
hdl->sa_spill = NULL;
hdl->sa_spill_tab = NULL;
VERIFY(0 == dmu_rm_spill(hdl->sa_os,
sa_handle_object(hdl), tx));
} else {
VERIFY(0 == sa_build_index(hdl, SA_SPILL));
}
}
return (0);
}
static void
sa_free_attr_table(sa_os_t *sa)
{
int i;
if (sa->sa_attr_table == NULL)
return;
for (i = 0; i != sa->sa_num_attrs; i++) {
if (sa->sa_attr_table[i].sa_name)
kmem_free(sa->sa_attr_table[i].sa_name,
strlen(sa->sa_attr_table[i].sa_name) + 1);
}
kmem_free(sa->sa_attr_table,
sizeof (sa_attr_table_t) * sa->sa_num_attrs);
sa->sa_attr_table = NULL;
}
static int
sa_attr_table_setup(objset_t *os, sa_attr_reg_t *reg_attrs, int count)
{
sa_os_t *sa = os->os_sa;
uint64_t sa_attr_count = 0;
uint64_t sa_reg_count = 0;
int error = 0;
uint64_t attr_value;
sa_attr_table_t *tb;
zap_cursor_t zc;
zap_attribute_t za;
int registered_count = 0;
int i;
dmu_objset_type_t ostype = dmu_objset_type(os);
sa->sa_user_table =
kmem_zalloc(count * sizeof (sa_attr_type_t), KM_SLEEP);
sa->sa_user_table_sz = count * sizeof (sa_attr_type_t);
if (sa->sa_reg_attr_obj != 0) {
error = zap_count(os, sa->sa_reg_attr_obj,
&sa_attr_count);
/*
* Make sure we retrieved a count and that it isn't zero
*/
if (error || (error == 0 && sa_attr_count == 0)) {
if (error == 0)
error = EINVAL;
goto bail;
}
sa_reg_count = sa_attr_count;
}
if (ostype == DMU_OST_ZFS && sa_attr_count == 0)
sa_attr_count += sa_legacy_attr_count;
/* Allocate attribute numbers for attributes that aren't registered */
for (i = 0; i != count; i++) {
boolean_t found = B_FALSE;
int j;
if (ostype == DMU_OST_ZFS) {
for (j = 0; j != sa_legacy_attr_count; j++) {
if (strcmp(reg_attrs[i].sa_name,
sa_legacy_attrs[j].sa_name) == 0) {
sa->sa_user_table[i] =
sa_legacy_attrs[j].sa_attr;
found = B_TRUE;
}
}
}
if (found)
continue;
if (sa->sa_reg_attr_obj)
error = zap_lookup(os, sa->sa_reg_attr_obj,
reg_attrs[i].sa_name, 8, 1, &attr_value);
else
error = ENOENT;
switch (error) {
case ENOENT:
sa->sa_user_table[i] = (sa_attr_type_t)sa_attr_count;
sa_attr_count++;
break;
case 0:
sa->sa_user_table[i] = ATTR_NUM(attr_value);
break;
default:
goto bail;
}
}
sa->sa_num_attrs = sa_attr_count;
tb = sa->sa_attr_table =
kmem_zalloc(sizeof (sa_attr_table_t) * sa_attr_count, KM_SLEEP);
/*
* Attribute table is constructed from requested attribute list,
* previously foreign registered attributes, and also the legacy
* ZPL set of attributes.
*/
if (sa->sa_reg_attr_obj) {
for (zap_cursor_init(&zc, os, sa->sa_reg_attr_obj);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
uint64_t value;
value = za.za_first_integer;
registered_count++;
tb[ATTR_NUM(value)].sa_attr = ATTR_NUM(value);
tb[ATTR_NUM(value)].sa_length = ATTR_LENGTH(value);
tb[ATTR_NUM(value)].sa_byteswap = ATTR_BSWAP(value);
tb[ATTR_NUM(value)].sa_registered = B_TRUE;
if (tb[ATTR_NUM(value)].sa_name) {
continue;
}
tb[ATTR_NUM(value)].sa_name =
kmem_zalloc(strlen(za.za_name) +1, KM_SLEEP);
(void) strlcpy(tb[ATTR_NUM(value)].sa_name, za.za_name,
strlen(za.za_name) +1);
}
zap_cursor_fini(&zc);
/*
* Make sure we processed the correct number of registered
* attributes
*/
if (registered_count != sa_reg_count) {
ASSERT(error != 0);
goto bail;
}
}
if (ostype == DMU_OST_ZFS) {
for (i = 0; i != sa_legacy_attr_count; i++) {
if (tb[i].sa_name)
continue;
tb[i].sa_attr = sa_legacy_attrs[i].sa_attr;
tb[i].sa_length = sa_legacy_attrs[i].sa_length;
tb[i].sa_byteswap = sa_legacy_attrs[i].sa_byteswap;
tb[i].sa_registered = B_FALSE;
tb[i].sa_name =
kmem_zalloc(strlen(sa_legacy_attrs[i].sa_name) +1,
KM_SLEEP);
(void) strlcpy(tb[i].sa_name,
sa_legacy_attrs[i].sa_name,
strlen(sa_legacy_attrs[i].sa_name) + 1);
}
}
for (i = 0; i != count; i++) {
sa_attr_type_t attr_id;
attr_id = sa->sa_user_table[i];
if (tb[attr_id].sa_name)
continue;
tb[attr_id].sa_length = reg_attrs[i].sa_length;
tb[attr_id].sa_byteswap = reg_attrs[i].sa_byteswap;
tb[attr_id].sa_attr = attr_id;
tb[attr_id].sa_name =
kmem_zalloc(strlen(reg_attrs[i].sa_name) + 1, KM_SLEEP);
(void) strlcpy(tb[attr_id].sa_name, reg_attrs[i].sa_name,
strlen(reg_attrs[i].sa_name) + 1);
}
sa->sa_need_attr_registration =
(sa_attr_count != registered_count);
return (0);
bail:
kmem_free(sa->sa_user_table, count * sizeof (sa_attr_type_t));
sa->sa_user_table = NULL;
sa_free_attr_table(sa);
return ((error != 0) ? error : EINVAL);
}
int
sa_setup(objset_t *os, uint64_t sa_obj, sa_attr_reg_t *reg_attrs, int count,
sa_attr_type_t **user_table)
{
zap_cursor_t zc;
zap_attribute_t za;
sa_os_t *sa;
dmu_objset_type_t ostype = dmu_objset_type(os);
sa_attr_type_t *tb;
int error;
mutex_enter(&os->os_lock);
if (os->os_sa) {
mutex_enter(&os->os_sa->sa_lock);
mutex_exit(&os->os_lock);
tb = os->os_sa->sa_user_table;
mutex_exit(&os->os_sa->sa_lock);
*user_table = tb;
return (0);
}
sa = kmem_zalloc(sizeof (sa_os_t), KM_SLEEP);
mutex_init(&sa->sa_lock, NULL, MUTEX_DEFAULT, NULL);
sa->sa_master_obj = sa_obj;
os->os_sa = sa;
mutex_enter(&sa->sa_lock);
mutex_exit(&os->os_lock);
avl_create(&sa->sa_layout_num_tree, layout_num_compare,
sizeof (sa_lot_t), offsetof(sa_lot_t, lot_num_node));
avl_create(&sa->sa_layout_hash_tree, layout_hash_compare,
sizeof (sa_lot_t), offsetof(sa_lot_t, lot_hash_node));
if (sa_obj) {
error = zap_lookup(os, sa_obj, SA_LAYOUTS,
8, 1, &sa->sa_layout_attr_obj);
if (error != 0 && error != ENOENT)
goto fail;
error = zap_lookup(os, sa_obj, SA_REGISTRY,
8, 1, &sa->sa_reg_attr_obj);
if (error != 0 && error != ENOENT)
goto fail;
}
if ((error = sa_attr_table_setup(os, reg_attrs, count)) != 0)
goto fail;
if (sa->sa_layout_attr_obj != 0) {
uint64_t layout_count;
error = zap_count(os, sa->sa_layout_attr_obj,
&layout_count);
/*
* Layout number count should be > 0
*/
if (error || (error == 0 && layout_count == 0)) {
if (error == 0)
error = EINVAL;
goto fail;
}
for (zap_cursor_init(&zc, os, sa->sa_layout_attr_obj);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
sa_attr_type_t *lot_attrs;
uint64_t lot_num;
lot_attrs = kmem_zalloc(sizeof (sa_attr_type_t) *
za.za_num_integers, KM_SLEEP);
if ((error = (zap_lookup(os, sa->sa_layout_attr_obj,
za.za_name, 2, za.za_num_integers,
lot_attrs))) != 0) {
kmem_free(lot_attrs, sizeof (sa_attr_type_t) *
za.za_num_integers);
break;
}
VERIFY(ddi_strtoull(za.za_name, NULL, 10,
(unsigned long long *)&lot_num) == 0);
(void) sa_add_layout_entry(os, lot_attrs,
za.za_num_integers, lot_num,
sa_layout_info_hash(lot_attrs,
za.za_num_integers), B_FALSE, NULL);
kmem_free(lot_attrs, sizeof (sa_attr_type_t) *
za.za_num_integers);
}
zap_cursor_fini(&zc);
/*
* Make sure layout count matches number of entries added
* to AVL tree
*/
if (avl_numnodes(&sa->sa_layout_num_tree) != layout_count) {
ASSERT(error != 0);
goto fail;
}
}
/* Add special layout number for old ZNODES */
if (ostype == DMU_OST_ZFS) {
(void) sa_add_layout_entry(os, sa_legacy_zpl_layout,
sa_legacy_attr_count, 0,
sa_layout_info_hash(sa_legacy_zpl_layout,
sa_legacy_attr_count), B_FALSE, NULL);
(void) sa_add_layout_entry(os, sa_dummy_zpl_layout, 0, 1,
0, B_FALSE, NULL);
}
*user_table = os->os_sa->sa_user_table;
mutex_exit(&sa->sa_lock);
return (0);
fail:
os->os_sa = NULL;
sa_free_attr_table(sa);
if (sa->sa_user_table)
kmem_free(sa->sa_user_table, sa->sa_user_table_sz);
mutex_exit(&sa->sa_lock);
kmem_free(sa, sizeof (sa_os_t));
return ((error == ECKSUM) ? EIO : error);
}
void
sa_tear_down(objset_t *os)
{
sa_os_t *sa = os->os_sa;
sa_lot_t *layout;
void *cookie;
kmem_free(sa->sa_user_table, sa->sa_user_table_sz);
/* Free up attr table */
sa_free_attr_table(sa);
cookie = NULL;
while ((layout = avl_destroy_nodes(&sa->sa_layout_hash_tree, &cookie))){
sa_idx_tab_t *tab;
while ((tab = list_head(&layout->lot_idx_tab))) {
ASSERT(refcount_count(&tab->sa_refcount));
sa_idx_tab_rele(os, tab);
}
}
cookie = NULL;
while ((layout = avl_destroy_nodes(&sa->sa_layout_num_tree, &cookie))){
kmem_free(layout->lot_attrs,
sizeof (sa_attr_type_t) * layout->lot_attr_count);
kmem_free(layout, sizeof (sa_lot_t));
}
avl_destroy(&sa->sa_layout_hash_tree);
avl_destroy(&sa->sa_layout_num_tree);
kmem_free(sa, sizeof (sa_os_t));
os->os_sa = NULL;
}
void
sa_build_idx_tab(void *hdr, void *attr_addr, sa_attr_type_t attr,
uint16_t length, int length_idx, boolean_t var_length, void *userp)
{
sa_idx_tab_t *idx_tab = userp;
if (var_length) {
ASSERT(idx_tab->sa_variable_lengths);
idx_tab->sa_variable_lengths[length_idx] = length;
}
TOC_ATTR_ENCODE(idx_tab->sa_idx_tab[attr], length_idx,
(uint32_t)((uintptr_t)attr_addr - (uintptr_t)hdr));
}
static void
sa_attr_iter(objset_t *os, sa_hdr_phys_t *hdr, dmu_object_type_t type,
sa_iterfunc_t func, sa_lot_t *tab, void *userp)
{
void *data_start;
sa_lot_t *tb = tab;
sa_lot_t search;
avl_index_t loc;
sa_os_t *sa = os->os_sa;
int i;
uint16_t *length_start = NULL;
uint8_t length_idx = 0;
if (tab == NULL) {
search.lot_num = SA_LAYOUT_NUM(hdr, type);
tb = avl_find(&sa->sa_layout_num_tree, &search, &loc);
ASSERT(tb);
}
if (IS_SA_BONUSTYPE(type)) {
data_start = (void *)P2ROUNDUP(((uintptr_t)hdr +
offsetof(sa_hdr_phys_t, sa_lengths) +
(sizeof (uint16_t) * tb->lot_var_sizes)), 8);
length_start = hdr->sa_lengths;
} else {
data_start = hdr;
}
for (i = 0; i != tb->lot_attr_count; i++) {
int attr_length, reg_length;
uint8_t idx_len;
reg_length = sa->sa_attr_table[tb->lot_attrs[i]].sa_length;
if (reg_length) {
attr_length = reg_length;
idx_len = 0;
} else {
attr_length = length_start[length_idx];
idx_len = length_idx++;
}
func(hdr, data_start, tb->lot_attrs[i], attr_length,
idx_len, reg_length == 0 ? B_TRUE : B_FALSE, userp);
data_start = (void *)P2ROUNDUP(((uintptr_t)data_start +
attr_length), 8);
}
}
/*ARGSUSED*/
void
sa_byteswap_cb(void *hdr, void *attr_addr, sa_attr_type_t attr,
uint16_t length, int length_idx, boolean_t variable_length, void *userp)
{
sa_handle_t *hdl = userp;
sa_os_t *sa = hdl->sa_os->os_sa;
sa_bswap_table[sa->sa_attr_table[attr].sa_byteswap](attr_addr, length);
}
void
sa_byteswap(sa_handle_t *hdl, sa_buf_type_t buftype)
{
sa_hdr_phys_t *sa_hdr_phys = SA_GET_HDR(hdl, buftype);
dmu_buf_impl_t *db;
int num_lengths = 1;
int i;
ASSERTV(sa_os_t *sa = hdl->sa_os->os_sa);
ASSERT(MUTEX_HELD(&sa->sa_lock));
if (sa_hdr_phys->sa_magic == SA_MAGIC)
return;
db = SA_GET_DB(hdl, buftype);
if (buftype == SA_SPILL) {
arc_release(db->db_buf, NULL);
arc_buf_thaw(db->db_buf);
}
sa_hdr_phys->sa_magic = BSWAP_32(sa_hdr_phys->sa_magic);
sa_hdr_phys->sa_layout_info = BSWAP_16(sa_hdr_phys->sa_layout_info);
/*
* Determine number of variable lenghts in header
* The standard 8 byte header has one for free and a
* 16 byte header would have 4 + 1;
*/
if (SA_HDR_SIZE(sa_hdr_phys) > 8)
num_lengths += (SA_HDR_SIZE(sa_hdr_phys) - 8) >> 1;
for (i = 0; i != num_lengths; i++)
sa_hdr_phys->sa_lengths[i] =
BSWAP_16(sa_hdr_phys->sa_lengths[i]);
sa_attr_iter(hdl->sa_os, sa_hdr_phys, DMU_OT_SA,
sa_byteswap_cb, NULL, hdl);
if (buftype == SA_SPILL)
arc_buf_freeze(((dmu_buf_impl_t *)hdl->sa_spill)->db_buf);
}
static int
sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype)
{
sa_hdr_phys_t *sa_hdr_phys;
dmu_buf_impl_t *db = SA_GET_DB(hdl, buftype);
dmu_object_type_t bonustype = SA_BONUSTYPE_FROM_DB(db);
sa_os_t *sa = hdl->sa_os->os_sa;
sa_idx_tab_t *idx_tab;
sa_hdr_phys = SA_GET_HDR(hdl, buftype);
mutex_enter(&sa->sa_lock);
/* Do we need to byteswap? */
/* only check if not old znode */
if (IS_SA_BONUSTYPE(bonustype) && sa_hdr_phys->sa_magic != SA_MAGIC &&
sa_hdr_phys->sa_magic != 0) {
VERIFY(BSWAP_32(sa_hdr_phys->sa_magic) == SA_MAGIC);
sa_byteswap(hdl, buftype);
}
idx_tab = sa_find_idx_tab(hdl->sa_os, bonustype, sa_hdr_phys);
if (buftype == SA_BONUS)
hdl->sa_bonus_tab = idx_tab;
else
hdl->sa_spill_tab = idx_tab;
mutex_exit(&sa->sa_lock);
return (0);
}
/*ARGSUSED*/
void
sa_evict(dmu_buf_t *db, void *sap)
{
panic("evicting sa dbuf %p\n", (void *)db);
}
static void
sa_idx_tab_rele(objset_t *os, void *arg)
{
sa_os_t *sa = os->os_sa;
sa_idx_tab_t *idx_tab = arg;
if (idx_tab == NULL)
return;
mutex_enter(&sa->sa_lock);
if (refcount_remove(&idx_tab->sa_refcount, NULL) == 0) {
list_remove(&idx_tab->sa_layout->lot_idx_tab, idx_tab);
if (idx_tab->sa_variable_lengths)
kmem_free(idx_tab->sa_variable_lengths,
sizeof (uint16_t) *
idx_tab->sa_layout->lot_var_sizes);
refcount_destroy(&idx_tab->sa_refcount);
kmem_free(idx_tab->sa_idx_tab,
sizeof (uint32_t) * sa->sa_num_attrs);
kmem_free(idx_tab, sizeof (sa_idx_tab_t));
}
mutex_exit(&sa->sa_lock);
}
static void
sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab)
{
ASSERTV(sa_os_t *sa = os->os_sa);
ASSERT(MUTEX_HELD(&sa->sa_lock));
(void) refcount_add(&idx_tab->sa_refcount, NULL);
}
void
sa_handle_destroy(sa_handle_t *hdl)
{
mutex_enter(&hdl->sa_lock);
(void) dmu_buf_update_user((dmu_buf_t *)hdl->sa_bonus, hdl,
NULL, NULL, NULL);
if (hdl->sa_bonus_tab) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab);
hdl->sa_bonus_tab = NULL;
}
if (hdl->sa_spill_tab) {
sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab);
hdl->sa_spill_tab = NULL;
}
dmu_buf_rele(hdl->sa_bonus, NULL);
if (hdl->sa_spill)
dmu_buf_rele((dmu_buf_t *)hdl->sa_spill, NULL);
mutex_exit(&hdl->sa_lock);
kmem_cache_free(sa_cache, hdl);
}
int
sa_handle_get_from_db(objset_t *os, dmu_buf_t *db, void *userp,
sa_handle_type_t hdl_type, sa_handle_t **handlepp)
{
int error = 0;
sa_handle_t *handle;
#ifdef ZFS_DEBUG
dmu_object_info_t doi;
dmu_object_info_from_db(db, &doi);
ASSERT(doi.doi_bonus_type == DMU_OT_SA ||
doi.doi_bonus_type == DMU_OT_ZNODE);
#endif
/* find handle, if it exists */
/* if one doesn't exist then create a new one, and initialize it */
handle = (hdl_type == SA_HDL_SHARED) ? dmu_buf_get_user(db) : NULL;
if (handle == NULL) {
sa_handle_t *newhandle;
handle = kmem_cache_alloc(sa_cache, KM_SLEEP);
handle->sa_userp = userp;
handle->sa_bonus = db;
handle->sa_os = os;
handle->sa_spill = NULL;
error = sa_build_index(handle, SA_BONUS);
newhandle = (hdl_type == SA_HDL_SHARED) ?
dmu_buf_set_user_ie(db, handle,
NULL, sa_evict) : NULL;
if (newhandle != NULL) {
kmem_cache_free(sa_cache, handle);
handle = newhandle;
}
}
*handlepp = handle;
return (error);
}
int
sa_handle_get(objset_t *objset, uint64_t objid, void *userp,
sa_handle_type_t hdl_type, sa_handle_t **handlepp)
{
dmu_buf_t *db;
int error;
if ((error = dmu_bonus_hold(objset, objid, NULL, &db)))
return (error);
return (sa_handle_get_from_db(objset, db, userp, hdl_type,
handlepp));
}
int
sa_buf_hold(objset_t *objset, uint64_t obj_num, void *tag, dmu_buf_t **db)
{
return (dmu_bonus_hold(objset, obj_num, tag, db));
}
void
sa_buf_rele(dmu_buf_t *db, void *tag)
{
dmu_buf_rele(db, tag);
}
int
sa_lookup_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count)
{
ASSERT(hdl);
ASSERT(MUTEX_HELD(&hdl->sa_lock));
return (sa_attr_op(hdl, bulk, count, SA_LOOKUP, NULL));
}
int
sa_lookup(sa_handle_t *hdl, sa_attr_type_t attr, void *buf, uint32_t buflen)
{
int error;
sa_bulk_attr_t bulk;
bulk.sa_attr = attr;
bulk.sa_data = buf;
bulk.sa_length = buflen;
bulk.sa_data_func = NULL;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
error = sa_lookup_impl(hdl, &bulk, 1);
mutex_exit(&hdl->sa_lock);
return (error);
}
#ifdef _KERNEL
int
sa_lookup_uio(sa_handle_t *hdl, sa_attr_type_t attr, uio_t *uio)
{
int error;
sa_bulk_attr_t bulk;
bulk.sa_data = NULL;
bulk.sa_attr = attr;
bulk.sa_data_func = NULL;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) == 0) {
error = uiomove((void *)bulk.sa_addr, MIN(bulk.sa_size,
uio->uio_resid), UIO_READ, uio);
}
mutex_exit(&hdl->sa_lock);
return (error);
}
#endif
void *
sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, void *data)
{
sa_idx_tab_t *idx_tab;
sa_hdr_phys_t *hdr = (sa_hdr_phys_t *)data;
sa_os_t *sa = os->os_sa;
sa_lot_t *tb, search;
avl_index_t loc;
/*
* Deterimine layout number. If SA node and header == 0 then
* force the index table to the dummy "1" empty layout.
*
* The layout number would only be zero for a newly created file
* that has not added any attributes yet, or with crypto enabled which
* doesn't write any attributes to the bonus buffer.
*/
search.lot_num = SA_LAYOUT_NUM(hdr, bonustype);
tb = avl_find(&sa->sa_layout_num_tree, &search, &loc);
/* Verify header size is consistent with layout information */
ASSERT(tb);
ASSERT((IS_SA_BONUSTYPE(bonustype) &&
SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb)) || !IS_SA_BONUSTYPE(bonustype) ||
(IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0));
/*
* See if any of the already existing TOC entries can be reused?
*/
for (idx_tab = list_head(&tb->lot_idx_tab); idx_tab;
idx_tab = list_next(&tb->lot_idx_tab, idx_tab)) {
boolean_t valid_idx = B_TRUE;
int i;
if (tb->lot_var_sizes != 0 &&
idx_tab->sa_variable_lengths != NULL) {
for (i = 0; i != tb->lot_var_sizes; i++) {
if (hdr->sa_lengths[i] !=
idx_tab->sa_variable_lengths[i]) {
valid_idx = B_FALSE;
break;
}
}
}
if (valid_idx) {
sa_idx_tab_hold(os, idx_tab);
return (idx_tab);
}
}
/* No such luck, create a new entry */
idx_tab = kmem_zalloc(sizeof (sa_idx_tab_t), KM_SLEEP);
idx_tab->sa_idx_tab =
kmem_zalloc(sizeof (uint32_t) * sa->sa_num_attrs, KM_SLEEP);
idx_tab->sa_layout = tb;
refcount_create(&idx_tab->sa_refcount);
if (tb->lot_var_sizes)
idx_tab->sa_variable_lengths = kmem_alloc(sizeof (uint16_t) *
tb->lot_var_sizes, KM_SLEEP);
sa_attr_iter(os, hdr, bonustype, sa_build_idx_tab,
tb, idx_tab);
sa_idx_tab_hold(os, idx_tab); /* one hold for consumer */
sa_idx_tab_hold(os, idx_tab); /* one for layout */
list_insert_tail(&tb->lot_idx_tab, idx_tab);
return (idx_tab);
}
void
sa_default_locator(void **dataptr, uint32_t *len, uint32_t total_len,
boolean_t start, void *userdata)
{
ASSERT(start);
*dataptr = userdata;
*len = total_len;
}
static void
sa_attr_register_sync(sa_handle_t *hdl, dmu_tx_t *tx)
{
uint64_t attr_value = 0;
sa_os_t *sa = hdl->sa_os->os_sa;
sa_attr_table_t *tb = sa->sa_attr_table;
int i;
mutex_enter(&sa->sa_lock);
if (!sa->sa_need_attr_registration || sa->sa_master_obj == 0) {
mutex_exit(&sa->sa_lock);
return;
}
if (sa->sa_reg_attr_obj == 0) {
sa->sa_reg_attr_obj = zap_create(hdl->sa_os,
DMU_OT_SA_ATTR_REGISTRATION, DMU_OT_NONE, 0, tx);
VERIFY(zap_add(hdl->sa_os, sa->sa_master_obj,
SA_REGISTRY, 8, 1, &sa->sa_reg_attr_obj, tx) == 0);
}
for (i = 0; i != sa->sa_num_attrs; i++) {
if (sa->sa_attr_table[i].sa_registered)
continue;
ATTR_ENCODE(attr_value, tb[i].sa_attr, tb[i].sa_length,
tb[i].sa_byteswap);
VERIFY(0 == zap_update(hdl->sa_os, sa->sa_reg_attr_obj,
tb[i].sa_name, 8, 1, &attr_value, tx));
tb[i].sa_registered = B_TRUE;
}
sa->sa_need_attr_registration = B_FALSE;
mutex_exit(&sa->sa_lock);
}
/*
* Replace all attributes with attributes specified in template.
* If dnode had a spill buffer then those attributes will be
* also be replaced, possibly with just an empty spill block
*
* This interface is intended to only be used for bulk adding of
* attributes for a new file. It will also be used by the ZPL
* when converting and old formatted znode to native SA support.
*/
int
sa_replace_all_by_template_locked(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc,
int attr_count, dmu_tx_t *tx)
{
sa_os_t *sa = hdl->sa_os->os_sa;
if (sa->sa_need_attr_registration)
sa_attr_register_sync(hdl, tx);
return (sa_build_layouts(hdl, attr_desc, attr_count, tx));
}
int
sa_replace_all_by_template(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc,
int attr_count, dmu_tx_t *tx)
{
int error;
mutex_enter(&hdl->sa_lock);
error = sa_replace_all_by_template_locked(hdl, attr_desc,
attr_count, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
/*
* add/remove/replace a single attribute and then rewrite the entire set
* of attributes.
*/
static int
sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr,
sa_data_op_t action, sa_data_locator_t *locator, void *datastart,
uint16_t buflen, dmu_tx_t *tx)
{
sa_os_t *sa = hdl->sa_os->os_sa;
dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
dnode_t *dn;
sa_bulk_attr_t *attr_desc;
void *old_data[2];
int bonus_attr_count = 0;
int bonus_data_size = 0, spill_data_size = 0;
int spill_attr_count = 0;
int error;
uint16_t length;
int i, j, k, length_idx;
sa_hdr_phys_t *hdr;
sa_idx_tab_t *idx_tab;
int attr_count;
int count;
ASSERT(MUTEX_HELD(&hdl->sa_lock));
/* First make of copy of the old data */
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
if (dn->dn_bonuslen != 0) {
bonus_data_size = hdl->sa_bonus->db_size;
old_data[0] = kmem_alloc(bonus_data_size, KM_SLEEP);
bcopy(hdl->sa_bonus->db_data, old_data[0],
hdl->sa_bonus->db_size);
bonus_attr_count = hdl->sa_bonus_tab->sa_layout->lot_attr_count;
} else {
old_data[0] = NULL;
}
DB_DNODE_EXIT(db);
/* Bring spill buffer online if it isn't currently */
if ((error = sa_get_spill(hdl)) == 0) {
spill_data_size = hdl->sa_spill->db_size;
old_data[1] = kmem_alloc(spill_data_size, KM_SLEEP);
bcopy(hdl->sa_spill->db_data, old_data[1],
hdl->sa_spill->db_size);
spill_attr_count =
hdl->sa_spill_tab->sa_layout->lot_attr_count;
} else if (error && error != ENOENT) {
if (old_data[0])
kmem_free(old_data[0], bonus_data_size);
return (error);
} else {
old_data[1] = NULL;
}
/* build descriptor of all attributes */
attr_count = bonus_attr_count + spill_attr_count;
if (action == SA_ADD)
attr_count++;
else if (action == SA_REMOVE)
attr_count--;
attr_desc = kmem_zalloc(sizeof (sa_bulk_attr_t) * attr_count, KM_SLEEP);
/*
* loop through bonus and spill buffer if it exists, and
* build up new attr_descriptor to reset the attributes
*/
k = j = 0;
count = bonus_attr_count;
hdr = SA_GET_HDR(hdl, SA_BONUS);
idx_tab = SA_IDX_TAB_GET(hdl, SA_BONUS);
for (; k != 2; k++) {
/* iterate over each attribute in layout */
for (i = 0, length_idx = 0; i != count; i++) {
sa_attr_type_t attr;
attr = idx_tab->sa_layout->lot_attrs[i];
if (attr == newattr) {
if (action == SA_REMOVE) {
j++;
continue;
}
ASSERT(SA_REGISTERED_LEN(sa, attr) == 0);
ASSERT(action == SA_REPLACE);
SA_ADD_BULK_ATTR(attr_desc, j, attr,
locator, datastart, buflen);
} else {
length = SA_REGISTERED_LEN(sa, attr);
if (length == 0) {
length = hdr->sa_lengths[length_idx++];
}
SA_ADD_BULK_ATTR(attr_desc, j, attr,
NULL, (void *)
(TOC_OFF(idx_tab->sa_idx_tab[attr]) +
(uintptr_t)old_data[k]), length);
}
}
if (k == 0 && hdl->sa_spill) {
hdr = SA_GET_HDR(hdl, SA_SPILL);
idx_tab = SA_IDX_TAB_GET(hdl, SA_SPILL);
count = spill_attr_count;
} else {
break;
}
}
if (action == SA_ADD) {
length = SA_REGISTERED_LEN(sa, newattr);
if (length == 0) {
length = buflen;
}
SA_ADD_BULK_ATTR(attr_desc, j, newattr, locator,
datastart, buflen);
}
error = sa_build_layouts(hdl, attr_desc, attr_count, tx);
if (old_data[0])
kmem_free(old_data[0], bonus_data_size);
if (old_data[1])
kmem_free(old_data[1], spill_data_size);
kmem_free(attr_desc, sizeof (sa_bulk_attr_t) * attr_count);
return (error);
}
static int
sa_bulk_update_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count,
dmu_tx_t *tx)
{
int error;
sa_os_t *sa = hdl->sa_os->os_sa;
dmu_object_type_t bonustype;
bonustype = SA_BONUSTYPE_FROM_DB(SA_GET_DB(hdl, SA_BONUS));
ASSERT(hdl);
ASSERT(MUTEX_HELD(&hdl->sa_lock));
/* sync out registration table if necessary */
if (sa->sa_need_attr_registration)
sa_attr_register_sync(hdl, tx);
error = sa_attr_op(hdl, bulk, count, SA_UPDATE, tx);
if (error == 0 && !IS_SA_BONUSTYPE(bonustype) && sa->sa_update_cb)
sa->sa_update_cb(hdl, tx);
return (error);
}
/*
* update or add new attribute
*/
int
sa_update(sa_handle_t *hdl, sa_attr_type_t type,
void *buf, uint32_t buflen, dmu_tx_t *tx)
{
int error;
sa_bulk_attr_t bulk;
bulk.sa_attr = type;
bulk.sa_data_func = NULL;
bulk.sa_length = buflen;
bulk.sa_data = buf;
mutex_enter(&hdl->sa_lock);
error = sa_bulk_update_impl(hdl, &bulk, 1, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
int
sa_update_from_cb(sa_handle_t *hdl, sa_attr_type_t attr,
uint32_t buflen, sa_data_locator_t *locator, void *userdata, dmu_tx_t *tx)
{
int error;
sa_bulk_attr_t bulk;
bulk.sa_attr = attr;
bulk.sa_data = userdata;
bulk.sa_data_func = locator;
bulk.sa_length = buflen;
mutex_enter(&hdl->sa_lock);
error = sa_bulk_update_impl(hdl, &bulk, 1, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
/*
* Return size of an attribute
*/
int
sa_size(sa_handle_t *hdl, sa_attr_type_t attr, int *size)
{
sa_bulk_attr_t bulk;
int error;
bulk.sa_data = NULL;
bulk.sa_attr = attr;
bulk.sa_data_func = NULL;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) != 0) {
mutex_exit(&hdl->sa_lock);
return (error);
}
*size = bulk.sa_size;
mutex_exit(&hdl->sa_lock);
return (0);
}
int
sa_bulk_lookup_locked(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count)
{
ASSERT(hdl);
ASSERT(MUTEX_HELD(&hdl->sa_lock));
return (sa_lookup_impl(hdl, attrs, count));
}
int
sa_bulk_lookup(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count)
{
int error;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
error = sa_bulk_lookup_locked(hdl, attrs, count);
mutex_exit(&hdl->sa_lock);
return (error);
}
int
sa_bulk_update(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count, dmu_tx_t *tx)
{
int error;
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
error = sa_bulk_update_impl(hdl, attrs, count, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
int
sa_remove(sa_handle_t *hdl, sa_attr_type_t attr, dmu_tx_t *tx)
{
int error;
mutex_enter(&hdl->sa_lock);
error = sa_modify_attrs(hdl, attr, SA_REMOVE, NULL,
NULL, 0, tx);
mutex_exit(&hdl->sa_lock);
return (error);
}
void
sa_object_info(sa_handle_t *hdl, dmu_object_info_t *doi)
{
dmu_object_info_from_db((dmu_buf_t *)hdl->sa_bonus, doi);
}
void
sa_object_size(sa_handle_t *hdl, uint32_t *blksize, u_longlong_t *nblocks)
{
dmu_object_size_from_db((dmu_buf_t *)hdl->sa_bonus,
blksize, nblocks);
}
void
sa_update_user(sa_handle_t *newhdl, sa_handle_t *oldhdl)
{
(void) dmu_buf_update_user((dmu_buf_t *)newhdl->sa_bonus,
oldhdl, newhdl, NULL, sa_evict);
oldhdl->sa_bonus = NULL;
}
void
sa_set_userp(sa_handle_t *hdl, void *ptr)
{
hdl->sa_userp = ptr;
}
dmu_buf_t *
sa_get_db(sa_handle_t *hdl)
{
return ((dmu_buf_t *)hdl->sa_bonus);
}
void *
sa_get_userdata(sa_handle_t *hdl)
{
return (hdl->sa_userp);
}
void
sa_register_update_callback_locked(objset_t *os, sa_update_cb_t *func)
{
ASSERT(MUTEX_HELD(&os->os_sa->sa_lock));
os->os_sa->sa_update_cb = func;
}
void
sa_register_update_callback(objset_t *os, sa_update_cb_t *func)
{
mutex_enter(&os->os_sa->sa_lock);
sa_register_update_callback_locked(os, func);
mutex_exit(&os->os_sa->sa_lock);
}
uint64_t
sa_handle_object(sa_handle_t *hdl)
{
return (hdl->sa_bonus->db_object);
}
boolean_t
sa_enabled(objset_t *os)
{
return (os->os_sa == NULL);
}
int
sa_set_sa_object(objset_t *os, uint64_t sa_object)
{
sa_os_t *sa = os->os_sa;
if (sa->sa_master_obj)
return (1);
sa->sa_master_obj = sa_object;
return (0);
}
int
sa_hdrsize(void *arg)
{
sa_hdr_phys_t *hdr = arg;
return (SA_HDR_SIZE(hdr));
}
void
sa_handle_lock(sa_handle_t *hdl)
{
ASSERT(hdl);
mutex_enter(&hdl->sa_lock);
}
void
sa_handle_unlock(sa_handle_t *hdl)
{
ASSERT(hdl);
mutex_exit(&hdl->sa_lock);
}
#ifdef _KERNEL
EXPORT_SYMBOL(sa_handle_get);
EXPORT_SYMBOL(sa_handle_get_from_db);
EXPORT_SYMBOL(sa_handle_destroy);
EXPORT_SYMBOL(sa_buf_hold);
EXPORT_SYMBOL(sa_buf_rele);
EXPORT_SYMBOL(sa_lookup);
EXPORT_SYMBOL(sa_update);
EXPORT_SYMBOL(sa_remove);
EXPORT_SYMBOL(sa_bulk_lookup);
EXPORT_SYMBOL(sa_bulk_lookup_locked);
EXPORT_SYMBOL(sa_bulk_update);
EXPORT_SYMBOL(sa_size);
EXPORT_SYMBOL(sa_update_from_cb);
EXPORT_SYMBOL(sa_object_info);
EXPORT_SYMBOL(sa_object_size);
EXPORT_SYMBOL(sa_update_user);
EXPORT_SYMBOL(sa_get_userdata);
EXPORT_SYMBOL(sa_set_userp);
EXPORT_SYMBOL(sa_get_db);
EXPORT_SYMBOL(sa_handle_object);
EXPORT_SYMBOL(sa_register_update_callback);
EXPORT_SYMBOL(sa_setup);
EXPORT_SYMBOL(sa_replace_all_by_template);
EXPORT_SYMBOL(sa_replace_all_by_template_locked);
EXPORT_SYMBOL(sa_enabled);
EXPORT_SYMBOL(sa_cache_init);
EXPORT_SYMBOL(sa_cache_fini);
EXPORT_SYMBOL(sa_set_sa_object);
EXPORT_SYMBOL(sa_hdrsize);
EXPORT_SYMBOL(sa_handle_lock);
EXPORT_SYMBOL(sa_handle_unlock);
EXPORT_SYMBOL(sa_lookup_uio);
#endif /* _KERNEL */