mirror_zfs/lib/libzpool/kernel.c
Ryan Moeller 76a157f004 Add 'zfs rename -u' to rename without remounting
Allow to rename file systems without remounting if it is possible.
It is possible for file systems with 'mountpoint' property set to
'legacy' or 'none' - we don't have to change mount directory for them.
Currently such file systems are unmounted on rename and not even
mounted back.

This introduces layering violation, as we need to update
'f_mntfromname' field in statfs structure related to mountpoint (for
the dataset we are renaming and all its children).

In my opinion it is worth it, as it allow to update FreeBSD in even
cleaner way - in ZFS-only configuration root file system is ZFS file
system with 'mountpoint' property set to 'legacy'. If root dataset is
named system/rootfs, we can snapshot it (system/rootfs@upgrade), clone
it (system/oldrootfs), update FreeBSD and if it doesn't boot we can
boot back from system/oldrootfs and rename it back to system/rootfs
while it is mounted as /. Before it was not possible, because
unmounting / was not possible.

Authored by: Pawel Jakub Dawidek <pjd@FreeBSD.org>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: Matt Macy <mmacy@freebsd.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #10839
2020-09-03 16:16:15 -07:00

1417 lines
27 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
*/
#include <assert.h>
#include <fcntl.h>
#include <libgen.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/crypto/icp.h>
#include <sys/processor.h>
#include <sys/rrwlock.h>
#include <sys/spa.h>
#include <sys/stat.h>
#include <sys/systeminfo.h>
#include <sys/time.h>
#include <sys/utsname.h>
#include <sys/zfs_context.h>
#include <sys/zfs_onexit.h>
#include <sys/zfs_vfsops.h>
#include <sys/zstd/zstd.h>
#include <sys/zvol.h>
#include <zfs_fletcher.h>
#include <zlib.h>
/*
* Emulation of kernel services in userland.
*/
uint64_t physmem;
char hw_serial[HW_HOSTID_LEN];
struct utsname hw_utsname;
/* If set, all blocks read will be copied to the specified directory. */
char *vn_dumpdir = NULL;
/* this only exists to have its address taken */
struct proc p0;
/*
* =========================================================================
* threads
* =========================================================================
*
* TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While
* TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for
* the expected stack depth while small enough to avoid exhausting address
* space with high thread counts.
*/
#define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768)
#define TS_STACK_MAX (256 * 1024)
/*ARGSUSED*/
kthread_t *
zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state)
{
pthread_attr_t attr;
pthread_t tid;
char *stkstr;
int detachstate = PTHREAD_CREATE_DETACHED;
VERIFY0(pthread_attr_init(&attr));
if (state & TS_JOINABLE)
detachstate = PTHREAD_CREATE_JOINABLE;
VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
/*
* We allow the default stack size in user space to be specified by
* setting the ZFS_STACK_SIZE environment variable. This allows us
* the convenience of observing and debugging stack overruns in
* user space. Explicitly specified stack sizes will be honored.
* The usage of ZFS_STACK_SIZE is discussed further in the
* ENVIRONMENT VARIABLES sections of the ztest(1) man page.
*/
if (stksize == 0) {
stkstr = getenv("ZFS_STACK_SIZE");
if (stkstr == NULL)
stksize = TS_STACK_MAX;
else
stksize = MAX(atoi(stkstr), TS_STACK_MIN);
}
VERIFY3S(stksize, >, 0);
stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
/*
* If this ever fails, it may be because the stack size is not a
* multiple of system page size.
*/
VERIFY0(pthread_attr_setstacksize(&attr, stksize));
VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
VERIFY0(pthread_create(&tid, &attr, (void *(*)(void *))func, arg));
VERIFY0(pthread_attr_destroy(&attr));
return ((void *)(uintptr_t)tid);
}
/*
* =========================================================================
* kstats
* =========================================================================
*/
/*ARGSUSED*/
kstat_t *
kstat_create(const char *module, int instance, const char *name,
const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
{
return (NULL);
}
/*ARGSUSED*/
void
kstat_install(kstat_t *ksp)
{}
/*ARGSUSED*/
void
kstat_delete(kstat_t *ksp)
{}
/*ARGSUSED*/
void
kstat_waitq_enter(kstat_io_t *kiop)
{}
/*ARGSUSED*/
void
kstat_waitq_exit(kstat_io_t *kiop)
{}
/*ARGSUSED*/
void
kstat_runq_enter(kstat_io_t *kiop)
{}
/*ARGSUSED*/
void
kstat_runq_exit(kstat_io_t *kiop)
{}
/*ARGSUSED*/
void
kstat_waitq_to_runq(kstat_io_t *kiop)
{}
/*ARGSUSED*/
void
kstat_runq_back_to_waitq(kstat_io_t *kiop)
{}
void
kstat_set_raw_ops(kstat_t *ksp,
int (*headers)(char *buf, size_t size),
int (*data)(char *buf, size_t size, void *data),
void *(*addr)(kstat_t *ksp, loff_t index))
{}
/*
* =========================================================================
* mutexes
* =========================================================================
*/
void
mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
{
VERIFY0(pthread_mutex_init(&mp->m_lock, NULL));
memset(&mp->m_owner, 0, sizeof (pthread_t));
}
void
mutex_destroy(kmutex_t *mp)
{
VERIFY0(pthread_mutex_destroy(&mp->m_lock));
}
void
mutex_enter(kmutex_t *mp)
{
VERIFY0(pthread_mutex_lock(&mp->m_lock));
mp->m_owner = pthread_self();
}
int
mutex_tryenter(kmutex_t *mp)
{
int error;
error = pthread_mutex_trylock(&mp->m_lock);
if (error == 0) {
mp->m_owner = pthread_self();
return (1);
} else {
VERIFY3S(error, ==, EBUSY);
return (0);
}
}
void
mutex_exit(kmutex_t *mp)
{
memset(&mp->m_owner, 0, sizeof (pthread_t));
VERIFY0(pthread_mutex_unlock(&mp->m_lock));
}
/*
* =========================================================================
* rwlocks
* =========================================================================
*/
void
rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
{
VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL));
rwlp->rw_readers = 0;
rwlp->rw_owner = 0;
}
void
rw_destroy(krwlock_t *rwlp)
{
VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock));
}
void
rw_enter(krwlock_t *rwlp, krw_t rw)
{
if (rw == RW_READER) {
VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock));
atomic_inc_uint(&rwlp->rw_readers);
} else {
VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock));
rwlp->rw_owner = pthread_self();
}
}
void
rw_exit(krwlock_t *rwlp)
{
if (RW_READ_HELD(rwlp))
atomic_dec_uint(&rwlp->rw_readers);
else
rwlp->rw_owner = 0;
VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock));
}
int
rw_tryenter(krwlock_t *rwlp, krw_t rw)
{
int error;
if (rw == RW_READER)
error = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
else
error = pthread_rwlock_trywrlock(&rwlp->rw_lock);
if (error == 0) {
if (rw == RW_READER)
atomic_inc_uint(&rwlp->rw_readers);
else
rwlp->rw_owner = pthread_self();
return (1);
}
VERIFY3S(error, ==, EBUSY);
return (0);
}
/* ARGSUSED */
uint32_t
zone_get_hostid(void *zonep)
{
/*
* We're emulating the system's hostid in userland.
*/
return (strtoul(hw_serial, NULL, 10));
}
int
rw_tryupgrade(krwlock_t *rwlp)
{
return (0);
}
/*
* =========================================================================
* condition variables
* =========================================================================
*/
void
cv_init(kcondvar_t *cv, char *name, int type, void *arg)
{
VERIFY0(pthread_cond_init(cv, NULL));
}
void
cv_destroy(kcondvar_t *cv)
{
VERIFY0(pthread_cond_destroy(cv));
}
void
cv_wait(kcondvar_t *cv, kmutex_t *mp)
{
memset(&mp->m_owner, 0, sizeof (pthread_t));
VERIFY0(pthread_cond_wait(cv, &mp->m_lock));
mp->m_owner = pthread_self();
}
int
cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
{
cv_wait(cv, mp);
return (1);
}
int
cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
{
int error;
struct timeval tv;
struct timespec ts;
clock_t delta;
delta = abstime - ddi_get_lbolt();
if (delta <= 0)
return (-1);
VERIFY(gettimeofday(&tv, NULL) == 0);
ts.tv_sec = tv.tv_sec + delta / hz;
ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
if (ts.tv_nsec >= NANOSEC) {
ts.tv_sec++;
ts.tv_nsec -= NANOSEC;
}
memset(&mp->m_owner, 0, sizeof (pthread_t));
error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
mp->m_owner = pthread_self();
if (error == ETIMEDOUT)
return (-1);
VERIFY0(error);
return (1);
}
/*ARGSUSED*/
int
cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
int flag)
{
int error;
struct timeval tv;
struct timespec ts;
hrtime_t delta;
ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
delta = tim;
if (flag & CALLOUT_FLAG_ABSOLUTE)
delta -= gethrtime();
if (delta <= 0)
return (-1);
VERIFY0(gettimeofday(&tv, NULL));
ts.tv_sec = tv.tv_sec + delta / NANOSEC;
ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
if (ts.tv_nsec >= NANOSEC) {
ts.tv_sec++;
ts.tv_nsec -= NANOSEC;
}
memset(&mp->m_owner, 0, sizeof (pthread_t));
error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
mp->m_owner = pthread_self();
if (error == ETIMEDOUT)
return (-1);
VERIFY0(error);
return (1);
}
void
cv_signal(kcondvar_t *cv)
{
VERIFY0(pthread_cond_signal(cv));
}
void
cv_broadcast(kcondvar_t *cv)
{
VERIFY0(pthread_cond_broadcast(cv));
}
/*
* =========================================================================
* procfs list
* =========================================================================
*/
void
seq_printf(struct seq_file *m, const char *fmt, ...)
{}
void
procfs_list_install(const char *module,
const char *name,
mode_t mode,
procfs_list_t *procfs_list,
int (*show)(struct seq_file *f, void *p),
int (*show_header)(struct seq_file *f),
int (*clear)(procfs_list_t *procfs_list),
size_t procfs_list_node_off)
{
mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&procfs_list->pl_list,
procfs_list_node_off + sizeof (procfs_list_node_t),
procfs_list_node_off + offsetof(procfs_list_node_t, pln_link));
procfs_list->pl_next_id = 1;
procfs_list->pl_node_offset = procfs_list_node_off;
}
void
procfs_list_uninstall(procfs_list_t *procfs_list)
{}
void
procfs_list_destroy(procfs_list_t *procfs_list)
{
ASSERT(list_is_empty(&procfs_list->pl_list));
list_destroy(&procfs_list->pl_list);
mutex_destroy(&procfs_list->pl_lock);
}
#define NODE_ID(procfs_list, obj) \
(((procfs_list_node_t *)(((char *)obj) + \
(procfs_list)->pl_node_offset))->pln_id)
void
procfs_list_add(procfs_list_t *procfs_list, void *p)
{
ASSERT(MUTEX_HELD(&procfs_list->pl_lock));
NODE_ID(procfs_list, p) = procfs_list->pl_next_id++;
list_insert_tail(&procfs_list->pl_list, p);
}
/*
* =========================================================================
* vnode operations
* =========================================================================
*/
/*
* =========================================================================
* Figure out which debugging statements to print
* =========================================================================
*/
static char *dprintf_string;
static int dprintf_print_all;
int
dprintf_find_string(const char *string)
{
char *tmp_str = dprintf_string;
int len = strlen(string);
/*
* Find out if this is a string we want to print.
* String format: file1.c,function_name1,file2.c,file3.c
*/
while (tmp_str != NULL) {
if (strncmp(tmp_str, string, len) == 0 &&
(tmp_str[len] == ',' || tmp_str[len] == '\0'))
return (1);
tmp_str = strchr(tmp_str, ',');
if (tmp_str != NULL)
tmp_str++; /* Get rid of , */
}
return (0);
}
void
dprintf_setup(int *argc, char **argv)
{
int i, j;
/*
* Debugging can be specified two ways: by setting the
* environment variable ZFS_DEBUG, or by including a
* "debug=..." argument on the command line. The command
* line setting overrides the environment variable.
*/
for (i = 1; i < *argc; i++) {
int len = strlen("debug=");
/* First look for a command line argument */
if (strncmp("debug=", argv[i], len) == 0) {
dprintf_string = argv[i] + len;
/* Remove from args */
for (j = i; j < *argc; j++)
argv[j] = argv[j+1];
argv[j] = NULL;
(*argc)--;
}
}
if (dprintf_string == NULL) {
/* Look for ZFS_DEBUG environment variable */
dprintf_string = getenv("ZFS_DEBUG");
}
/*
* Are we just turning on all debugging?
*/
if (dprintf_find_string("on"))
dprintf_print_all = 1;
if (dprintf_string != NULL)
zfs_flags |= ZFS_DEBUG_DPRINTF;
}
/*
* =========================================================================
* debug printfs
* =========================================================================
*/
void
__dprintf(boolean_t dprint, const char *file, const char *func,
int line, const char *fmt, ...)
{
const char *newfile;
va_list adx;
/*
* Get rid of annoying "../common/" prefix to filename.
*/
newfile = strrchr(file, '/');
if (newfile != NULL) {
newfile = newfile + 1; /* Get rid of leading / */
} else {
newfile = file;
}
if (dprint) {
/* dprintf messages are printed immediately */
if (!dprintf_print_all &&
!dprintf_find_string(newfile) &&
!dprintf_find_string(func))
return;
/* Print out just the function name if requested */
flockfile(stdout);
if (dprintf_find_string("pid"))
(void) printf("%d ", getpid());
if (dprintf_find_string("tid"))
(void) printf("%ju ",
(uintmax_t)(uintptr_t)pthread_self());
if (dprintf_find_string("cpu"))
(void) printf("%u ", getcpuid());
if (dprintf_find_string("time"))
(void) printf("%llu ", gethrtime());
if (dprintf_find_string("long"))
(void) printf("%s, line %d: ", newfile, line);
(void) printf("dprintf: %s: ", func);
va_start(adx, fmt);
(void) vprintf(fmt, adx);
va_end(adx);
funlockfile(stdout);
} else {
/* zfs_dbgmsg is logged for dumping later */
size_t size;
char *buf;
int i;
size = 1024;
buf = umem_alloc(size, UMEM_NOFAIL);
i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func);
if (i < size) {
va_start(adx, fmt);
(void) vsnprintf(buf + i, size - i, fmt, adx);
va_end(adx);
}
__zfs_dbgmsg(buf);
umem_free(buf, size);
}
}
/*
* =========================================================================
* cmn_err() and panic()
* =========================================================================
*/
static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
void
vpanic(const char *fmt, va_list adx)
{
(void) fprintf(stderr, "error: ");
(void) vfprintf(stderr, fmt, adx);
(void) fprintf(stderr, "\n");
abort(); /* think of it as a "user-level crash dump" */
}
void
panic(const char *fmt, ...)
{
va_list adx;
va_start(adx, fmt);
vpanic(fmt, adx);
va_end(adx);
}
void
vcmn_err(int ce, const char *fmt, va_list adx)
{
if (ce == CE_PANIC)
vpanic(fmt, adx);
if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
(void) fprintf(stderr, "%s", ce_prefix[ce]);
(void) vfprintf(stderr, fmt, adx);
(void) fprintf(stderr, "%s", ce_suffix[ce]);
}
}
/*PRINTFLIKE2*/
void
cmn_err(int ce, const char *fmt, ...)
{
va_list adx;
va_start(adx, fmt);
vcmn_err(ce, fmt, adx);
va_end(adx);
}
/*
* =========================================================================
* misc routines
* =========================================================================
*/
void
delay(clock_t ticks)
{
(void) poll(0, 0, ticks * (1000 / hz));
}
/*
* Find highest one bit set.
* Returns bit number + 1 of highest bit that is set, otherwise returns 0.
* The __builtin_clzll() function is supported by both GCC and Clang.
*/
int
highbit64(uint64_t i)
{
if (i == 0)
return (0);
return (NBBY * sizeof (uint64_t) - __builtin_clzll(i));
}
/*
* Find lowest one bit set.
* Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
* The __builtin_ffsll() function is supported by both GCC and Clang.
*/
int
lowbit64(uint64_t i)
{
if (i == 0)
return (0);
return (__builtin_ffsll(i));
}
char *random_path = "/dev/random";
char *urandom_path = "/dev/urandom";
static int random_fd = -1, urandom_fd = -1;
void
random_init(void)
{
VERIFY((random_fd = open(random_path, O_RDONLY)) != -1);
VERIFY((urandom_fd = open(urandom_path, O_RDONLY)) != -1);
}
void
random_fini(void)
{
close(random_fd);
close(urandom_fd);
random_fd = -1;
urandom_fd = -1;
}
static int
random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
{
size_t resid = len;
ssize_t bytes;
ASSERT(fd != -1);
while (resid != 0) {
bytes = read(fd, ptr, resid);
ASSERT3S(bytes, >=, 0);
ptr += bytes;
resid -= bytes;
}
return (0);
}
int
random_get_bytes(uint8_t *ptr, size_t len)
{
return (random_get_bytes_common(ptr, len, random_fd));
}
int
random_get_pseudo_bytes(uint8_t *ptr, size_t len)
{
return (random_get_bytes_common(ptr, len, urandom_fd));
}
int
ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
{
char *end;
*result = strtoul(hw_serial, &end, base);
if (*result == 0)
return (errno);
return (0);
}
int
ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
{
char *end;
*result = strtoull(str, &end, base);
if (*result == 0)
return (errno);
return (0);
}
utsname_t *
utsname(void)
{
return (&hw_utsname);
}
/*
* =========================================================================
* kernel emulation setup & teardown
* =========================================================================
*/
static int
umem_out_of_memory(void)
{
char errmsg[] = "out of memory -- generating core dump\n";
(void) fprintf(stderr, "%s", errmsg);
abort();
return (0);
}
void
kernel_init(int mode)
{
extern uint_t rrw_tsd_key;
umem_nofail_callback(umem_out_of_memory);
physmem = sysconf(_SC_PHYS_PAGES);
dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
(double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
(mode & SPA_MODE_WRITE) ? get_system_hostid() : 0);
random_init();
VERIFY0(uname(&hw_utsname));
system_taskq_init();
icp_init();
zstd_init();
spa_init((spa_mode_t)mode);
fletcher_4_init();
tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
}
void
kernel_fini(void)
{
fletcher_4_fini();
spa_fini();
zstd_fini();
icp_fini();
system_taskq_fini();
random_fini();
}
uid_t
crgetuid(cred_t *cr)
{
return (0);
}
uid_t
crgetruid(cred_t *cr)
{
return (0);
}
gid_t
crgetgid(cred_t *cr)
{
return (0);
}
int
crgetngroups(cred_t *cr)
{
return (0);
}
gid_t *
crgetgroups(cred_t *cr)
{
return (NULL);
}
int
zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
{
return (0);
}
int
zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
{
return (0);
}
int
zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
{
return (0);
}
int
secpolicy_zfs(const cred_t *cr)
{
return (0);
}
int
secpolicy_zfs_proc(const cred_t *cr, proc_t *proc)
{
return (0);
}
ksiddomain_t *
ksid_lookupdomain(const char *dom)
{
ksiddomain_t *kd;
kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
kd->kd_name = spa_strdup(dom);
return (kd);
}
void
ksiddomain_rele(ksiddomain_t *ksid)
{
spa_strfree(ksid->kd_name);
umem_free(ksid, sizeof (ksiddomain_t));
}
char *
kmem_vasprintf(const char *fmt, va_list adx)
{
char *buf = NULL;
va_list adx_copy;
va_copy(adx_copy, adx);
VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
va_end(adx_copy);
return (buf);
}
char *
kmem_asprintf(const char *fmt, ...)
{
char *buf = NULL;
va_list adx;
va_start(adx, fmt);
VERIFY(vasprintf(&buf, fmt, adx) != -1);
va_end(adx);
return (buf);
}
/* ARGSUSED */
int
zfs_onexit_fd_hold(int fd, minor_t *minorp)
{
*minorp = 0;
return (0);
}
/* ARGSUSED */
void
zfs_onexit_fd_rele(int fd)
{
}
/* ARGSUSED */
int
zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
uint64_t *action_handle)
{
return (0);
}
fstrans_cookie_t
spl_fstrans_mark(void)
{
return ((fstrans_cookie_t)0);
}
void
spl_fstrans_unmark(fstrans_cookie_t cookie)
{
}
int
__spl_pf_fstrans_check(void)
{
return (0);
}
int
kmem_cache_reap_active(void)
{
return (0);
}
void *zvol_tag = "zvol_tag";
void
zvol_create_minor(const char *name)
{
}
void
zvol_create_minors_recursive(const char *name)
{
}
void
zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
{
}
void
zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
boolean_t async)
{
}
/*
* Open file
*
* path - fully qualified path to file
* flags - file attributes O_READ / O_WRITE / O_EXCL
* fpp - pointer to return file pointer
*
* Returns 0 on success underlying error on failure.
*/
int
zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp)
{
int fd = -1;
int dump_fd = -1;
int err;
int old_umask = 0;
zfs_file_t *fp;
struct stat64 st;
if (!(flags & O_CREAT) && stat64(path, &st) == -1)
return (errno);
if (!(flags & O_CREAT) && S_ISBLK(st.st_mode))
flags |= O_DIRECT;
if (flags & O_CREAT)
old_umask = umask(0);
fd = open64(path, flags, mode);
if (fd == -1)
return (errno);
if (flags & O_CREAT)
(void) umask(old_umask);
if (vn_dumpdir != NULL) {
char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
char *inpath = basename((char *)(uintptr_t)path);
(void) snprintf(dumppath, MAXPATHLEN,
"%s/%s", vn_dumpdir, inpath);
dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
umem_free(dumppath, MAXPATHLEN);
if (dump_fd == -1) {
err = errno;
close(fd);
return (err);
}
} else {
dump_fd = -1;
}
(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL);
fp->f_fd = fd;
fp->f_dump_fd = dump_fd;
*fpp = fp;
return (0);
}
void
zfs_file_close(zfs_file_t *fp)
{
close(fp->f_fd);
if (fp->f_dump_fd != -1)
close(fp->f_dump_fd);
umem_free(fp, sizeof (zfs_file_t));
}
/*
* Stateful write - use os internal file pointer to determine where to
* write and update on successful completion.
*
* fp - pointer to file (pipe, socket, etc) to write to
* buf - buffer to write
* count - # of bytes to write
* resid - pointer to count of unwritten bytes (if short write)
*
* Returns 0 on success errno on failure.
*/
int
zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid)
{
ssize_t rc;
rc = write(fp->f_fd, buf, count);
if (rc < 0)
return (errno);
if (resid) {
*resid = count - rc;
} else if (rc != count) {
return (EIO);
}
return (0);
}
/*
* Stateless write - os internal file pointer is not updated.
*
* fp - pointer to file (pipe, socket, etc) to write to
* buf - buffer to write
* count - # of bytes to write
* off - file offset to write to (only valid for seekable types)
* resid - pointer to count of unwritten bytes
*
* Returns 0 on success errno on failure.
*/
int
zfs_file_pwrite(zfs_file_t *fp, const void *buf,
size_t count, loff_t pos, ssize_t *resid)
{
ssize_t rc, split, done;
int sectors;
/*
* To simulate partial disk writes, we split writes into two
* system calls so that the process can be killed in between.
* This is used by ztest to simulate realistic failure modes.
*/
sectors = count >> SPA_MINBLOCKSHIFT;
split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT;
rc = pwrite64(fp->f_fd, buf, split, pos);
if (rc != -1) {
done = rc;
rc = pwrite64(fp->f_fd, (char *)buf + split,
count - split, pos + split);
}
#ifdef __linux__
if (rc == -1 && errno == EINVAL) {
/*
* Under Linux, this most likely means an alignment issue
* (memory or disk) due to O_DIRECT, so we abort() in order
* to catch the offender.
*/
abort();
}
#endif
if (rc < 0)
return (errno);
done += rc;
if (resid) {
*resid = count - done;
} else if (done != count) {
return (EIO);
}
return (0);
}
/*
* Stateful read - use os internal file pointer to determine where to
* read and update on successful completion.
*
* fp - pointer to file (pipe, socket, etc) to read from
* buf - buffer to write
* count - # of bytes to read
* resid - pointer to count of unread bytes (if short read)
*
* Returns 0 on success errno on failure.
*/
int
zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid)
{
int rc;
rc = read(fp->f_fd, buf, count);
if (rc < 0)
return (errno);
if (resid) {
*resid = count - rc;
} else if (rc != count) {
return (EIO);
}
return (0);
}
/*
* Stateless read - os internal file pointer is not updated.
*
* fp - pointer to file (pipe, socket, etc) to read from
* buf - buffer to write
* count - # of bytes to write
* off - file offset to read from (only valid for seekable types)
* resid - pointer to count of unwritten bytes (if short write)
*
* Returns 0 on success errno on failure.
*/
int
zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off,
ssize_t *resid)
{
ssize_t rc;
rc = pread64(fp->f_fd, buf, count, off);
if (rc < 0) {
#ifdef __linux__
/*
* Under Linux, this most likely means an alignment issue
* (memory or disk) due to O_DIRECT, so we abort() in order to
* catch the offender.
*/
if (errno == EINVAL)
abort();
#endif
return (errno);
}
if (fp->f_dump_fd != -1) {
int status;
status = pwrite64(fp->f_dump_fd, buf, rc, off);
ASSERT(status != -1);
}
if (resid) {
*resid = count - rc;
} else if (rc != count) {
return (EIO);
}
return (0);
}
/*
* lseek - set / get file pointer
*
* fp - pointer to file (pipe, socket, etc) to read from
* offp - value to seek to, returns current value plus passed offset
* whence - see man pages for standard lseek whence values
*
* Returns 0 on success errno on failure (ESPIPE for non seekable types)
*/
int
zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence)
{
loff_t rc;
rc = lseek(fp->f_fd, *offp, whence);
if (rc < 0)
return (errno);
*offp = rc;
return (0);
}
/*
* Get file attributes
*
* filp - file pointer
* zfattr - pointer to file attr structure
*
* Currently only used for fetching size and file mode
*
* Returns 0 on success or error code of underlying getattr call on failure.
*/
int
zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr)
{
struct stat64 st;
if (fstat64_blk(fp->f_fd, &st) == -1)
return (errno);
zfattr->zfa_size = st.st_size;
zfattr->zfa_mode = st.st_mode;
return (0);
}
/*
* Sync file to disk
*
* filp - file pointer
* flags - O_SYNC and or O_DSYNC
*
* Returns 0 on success or error code of underlying sync call on failure.
*/
int
zfs_file_fsync(zfs_file_t *fp, int flags)
{
int rc;
rc = fsync(fp->f_fd);
if (rc < 0)
return (errno);
return (0);
}
/*
* fallocate - allocate or free space on disk
*
* fp - file pointer
* mode (non-standard options for hole punching etc)
* offset - offset to start allocating or freeing from
* len - length to free / allocate
*
* OPTIONAL
*/
int
zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len)
{
#ifdef __linux__
return (fallocate(fp->f_fd, mode, offset, len));
#else
return (EOPNOTSUPP);
#endif
}
/*
* Request current file pointer offset
*
* fp - pointer to file
*
* Returns current file offset.
*/
loff_t
zfs_file_off(zfs_file_t *fp)
{
return (lseek(fp->f_fd, SEEK_CUR, 0));
}
/*
* unlink file
*
* path - fully qualified file path
*
* Returns 0 on success.
*
* OPTIONAL
*/
int
zfs_file_unlink(const char *path)
{
return (remove(path));
}
/*
* Get reference to file pointer
*
* fd - input file descriptor
* fpp - pointer to file pointer
*
* Returns 0 on success EBADF on failure.
* Unsupported in user space.
*/
int
zfs_file_get(int fd, zfs_file_t **fpp)
{
abort();
return (EOPNOTSUPP);
}
/*
* Drop reference to file pointer
*
* fd - input file descriptor
*
* Unsupported in user space.
*/
void
zfs_file_put(int fd)
{
abort();
}
void
zfsvfs_update_fromname(const char *oldname, const char *newname)
{
}