mirror_zfs/module/zfs/zpl_super.c
Ned Bass 3af56fd95f Honor xattr=sa dataset property
ZFS incorrectly uses directory-based extended attributes even when
xattr=sa is specified as a dataset property or mount option. Support to
honor temporary mount options including "xattr" was added in commit
0282c4137e. There are two issues with the
mount option handling:

* Libzfs has historically included "xattr" in its list of default mount
  options. This overrides the dataset property, so the dataset is always
  configured to use directory-based xattrs even when the xattr dataset
  property is set to off or sa. Address this by removing "xattr" from
  the set of default mount options in libzfs.

* There was no way to enable system attribute-based extended attributes
  using temporary mount options. Add the mount options "saxattr" and
  "dirxattr" which enable the xattr behavior their names suggest.  This
  approach has the advantages of mirroring the valid xattr dataset
  property values and following existing conventions for mount option
  names.

Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3787
2015-09-19 14:04:14 -07:00

565 lines
13 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
*/
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_ctldir.h>
#include <sys/zpl.h>
static struct inode *
zpl_inode_alloc(struct super_block *sb)
{
struct inode *ip;
VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
ip->i_version = 1;
return (ip);
}
static void
zpl_inode_destroy(struct inode *ip)
{
ASSERT(atomic_read(&ip->i_count) == 0);
zfs_inode_destroy(ip);
}
/*
* Called from __mark_inode_dirty() to reflect that something in the
* inode has changed. We use it to ensure the znode system attributes
* are always strictly update to date with respect to the inode.
*/
#ifdef HAVE_DIRTY_INODE_WITH_FLAGS
static void
zpl_dirty_inode(struct inode *ip, int flags)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, flags);
spl_fstrans_unmark(cookie);
}
#else
static void
zpl_dirty_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, 0);
spl_fstrans_unmark(cookie);
}
#endif /* HAVE_DIRTY_INODE_WITH_FLAGS */
/*
* When ->drop_inode() is called its return value indicates if the
* inode should be evicted from the inode cache. If the inode is
* unhashed and has no links the default policy is to evict it
* immediately.
*
* Prior to 2.6.36 this eviction was accomplished by the vfs calling
* ->delete_inode(). It was ->delete_inode()'s responsibility to
* truncate the inode pages and call clear_inode(). The call to
* clear_inode() synchronously invalidates all the buffers and
* calls ->clear_inode(). It was ->clear_inode()'s responsibility
* to cleanup and filesystem specific data before freeing the inode.
*
* This elaborate mechanism was replaced by ->evict_inode() which
* does the job of both ->delete_inode() and ->clear_inode(). It
* will be called exactly once, and when it returns the inode must
* be in a state where it can simply be freed.i
*
* The ->evict_inode() callback must minimally truncate the inode pages,
* and call clear_inode(). For 2.6.35 and later kernels this will
* simply update the inode state, with the sync occurring before the
* truncate in evict(). For earlier kernels clear_inode() maps to
* end_writeback() which is responsible for completing all outstanding
* write back. In either case, once this is done it is safe to cleanup
* any remaining inode specific data via zfs_inactive().
* remaining filesystem specific data.
*/
#ifdef HAVE_EVICT_INODE
static void
zpl_evict_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
truncate_setsize(ip, 0);
clear_inode(ip);
zfs_inactive(ip);
spl_fstrans_unmark(cookie);
}
#else
static void
zpl_drop_inode(struct inode *ip)
{
generic_delete_inode(ip);
}
static void
zpl_clear_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_inactive(ip);
spl_fstrans_unmark(cookie);
}
static void
zpl_inode_delete(struct inode *ip)
{
truncate_setsize(ip, 0);
clear_inode(ip);
}
#endif /* HAVE_EVICT_INODE */
static void
zpl_put_super(struct super_block *sb)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_umount(sb);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
}
static int
zpl_sync_fs(struct super_block *sb, int wait)
{
fstrans_cookie_t cookie;
cred_t *cr = CRED();
int error;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_sync(sb, wait, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_statvfs(dentry, statp);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
enum {
TOKEN_RO,
TOKEN_RW,
TOKEN_SETUID,
TOKEN_NOSETUID,
TOKEN_EXEC,
TOKEN_NOEXEC,
TOKEN_DEVICES,
TOKEN_NODEVICES,
TOKEN_DIRXATTR,
TOKEN_SAXATTR,
TOKEN_XATTR,
TOKEN_NOXATTR,
TOKEN_ATIME,
TOKEN_NOATIME,
TOKEN_RELATIME,
TOKEN_NORELATIME,
TOKEN_NBMAND,
TOKEN_NONBMAND,
TOKEN_MNTPOINT,
TOKEN_LAST,
};
static const match_table_t zpl_tokens = {
{ TOKEN_RO, MNTOPT_RO },
{ TOKEN_RW, MNTOPT_RW },
{ TOKEN_SETUID, MNTOPT_SETUID },
{ TOKEN_NOSETUID, MNTOPT_NOSETUID },
{ TOKEN_EXEC, MNTOPT_EXEC },
{ TOKEN_NOEXEC, MNTOPT_NOEXEC },
{ TOKEN_DEVICES, MNTOPT_DEVICES },
{ TOKEN_NODEVICES, MNTOPT_NODEVICES },
{ TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
{ TOKEN_SAXATTR, MNTOPT_SAXATTR },
{ TOKEN_XATTR, MNTOPT_XATTR },
{ TOKEN_NOXATTR, MNTOPT_NOXATTR },
{ TOKEN_ATIME, MNTOPT_ATIME },
{ TOKEN_NOATIME, MNTOPT_NOATIME },
{ TOKEN_RELATIME, MNTOPT_RELATIME },
{ TOKEN_NORELATIME, MNTOPT_NORELATIME },
{ TOKEN_NBMAND, MNTOPT_NBMAND },
{ TOKEN_NONBMAND, MNTOPT_NONBMAND },
{ TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
{ TOKEN_LAST, NULL },
};
static int
zpl_parse_option(char *option, int token, substring_t *args, zfs_mntopts_t *zmo)
{
switch (token) {
case TOKEN_RO:
zmo->z_readonly = B_TRUE;
zmo->z_do_readonly = B_TRUE;
break;
case TOKEN_RW:
zmo->z_readonly = B_FALSE;
zmo->z_do_readonly = B_TRUE;
break;
case TOKEN_SETUID:
zmo->z_setuid = B_TRUE;
zmo->z_do_setuid = B_TRUE;
break;
case TOKEN_NOSETUID:
zmo->z_setuid = B_FALSE;
zmo->z_do_setuid = B_TRUE;
break;
case TOKEN_EXEC:
zmo->z_exec = B_TRUE;
zmo->z_do_exec = B_TRUE;
break;
case TOKEN_NOEXEC:
zmo->z_exec = B_FALSE;
zmo->z_do_exec = B_TRUE;
break;
case TOKEN_DEVICES:
zmo->z_devices = B_TRUE;
zmo->z_do_devices = B_TRUE;
break;
case TOKEN_NODEVICES:
zmo->z_devices = B_FALSE;
zmo->z_do_devices = B_TRUE;
break;
case TOKEN_DIRXATTR:
zmo->z_xattr = ZFS_XATTR_DIR;
zmo->z_do_xattr = B_TRUE;
break;
case TOKEN_SAXATTR:
zmo->z_xattr = ZFS_XATTR_SA;
zmo->z_do_xattr = B_TRUE;
break;
case TOKEN_XATTR:
zmo->z_xattr = ZFS_XATTR_DIR;
zmo->z_do_xattr = B_TRUE;
break;
case TOKEN_NOXATTR:
zmo->z_xattr = ZFS_XATTR_OFF;
zmo->z_do_xattr = B_TRUE;
break;
case TOKEN_ATIME:
zmo->z_atime = B_TRUE;
zmo->z_do_atime = B_TRUE;
break;
case TOKEN_NOATIME:
zmo->z_atime = B_FALSE;
zmo->z_do_atime = B_TRUE;
break;
case TOKEN_RELATIME:
zmo->z_relatime = B_TRUE;
zmo->z_do_relatime = B_TRUE;
break;
case TOKEN_NORELATIME:
zmo->z_relatime = B_FALSE;
zmo->z_do_relatime = B_TRUE;
break;
case TOKEN_NBMAND:
zmo->z_nbmand = B_TRUE;
zmo->z_do_nbmand = B_TRUE;
break;
case TOKEN_NONBMAND:
zmo->z_nbmand = B_FALSE;
zmo->z_do_nbmand = B_TRUE;
break;
case TOKEN_MNTPOINT:
zmo->z_mntpoint = match_strdup(&args[0]);
if (zmo->z_mntpoint == NULL)
return (-ENOMEM);
break;
default:
break;
}
return (0);
}
/*
* Parse the mntopts string storing the results in provided zmo argument.
* If an error occurs the zmo argument will not be modified. The caller
* needs to set isremount when recycling an existing zfs_mntopts_t.
*/
static int
zpl_parse_options(char *osname, char *mntopts, zfs_mntopts_t *zmo,
boolean_t isremount)
{
zfs_mntopts_t *tmp_zmo;
int error;
tmp_zmo = zfs_mntopts_alloc();
tmp_zmo->z_osname = strdup(osname);
if (mntopts) {
substring_t args[MAX_OPT_ARGS];
char *tmp_mntopts, *p;
int token;
tmp_mntopts = strdup(mntopts);
while ((p = strsep(&tmp_mntopts, ",")) != NULL) {
if (!*p)
continue;
args[0].to = args[0].from = NULL;
token = match_token(p, zpl_tokens, args);
error = zpl_parse_option(p, token, args, tmp_zmo);
if (error) {
zfs_mntopts_free(tmp_zmo);
strfree(tmp_mntopts);
return (error);
}
}
strfree(tmp_mntopts);
}
if (isremount == B_TRUE) {
if (zmo->z_osname)
strfree(zmo->z_osname);
if (zmo->z_mntpoint)
strfree(zmo->z_mntpoint);
} else {
ASSERT3P(zmo->z_osname, ==, NULL);
ASSERT3P(zmo->z_mntpoint, ==, NULL);
}
memcpy(zmo, tmp_zmo, sizeof (zfs_mntopts_t));
kmem_free(tmp_zmo, sizeof (zfs_mntopts_t));
return (0);
}
static int
zpl_remount_fs(struct super_block *sb, int *flags, char *data)
{
zfs_sb_t *zsb = sb->s_fs_info;
fstrans_cookie_t cookie;
int error;
error = zpl_parse_options(zsb->z_mntopts->z_osname, data,
zsb->z_mntopts, B_TRUE);
if (error)
return (error);
cookie = spl_fstrans_mark();
error = -zfs_remount(sb, flags, zsb->z_mntopts);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
static int
__zpl_show_options(struct seq_file *seq, zfs_sb_t *zsb)
{
seq_printf(seq, ",%s", zsb->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
#ifdef CONFIG_FS_POSIX_ACL
switch (zsb->z_acl_type) {
case ZFS_ACLTYPE_POSIXACL:
seq_puts(seq, ",posixacl");
break;
default:
seq_puts(seq, ",noacl");
break;
}
#endif /* CONFIG_FS_POSIX_ACL */
return (0);
}
#ifdef HAVE_SHOW_OPTIONS_WITH_DENTRY
static int
zpl_show_options(struct seq_file *seq, struct dentry *root)
{
return (__zpl_show_options(seq, root->d_sb->s_fs_info));
}
#else
static int
zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp)
{
return (__zpl_show_options(seq, vfsp->mnt_sb->s_fs_info));
}
#endif /* HAVE_SHOW_OPTIONS_WITH_DENTRY */
static int
zpl_fill_super(struct super_block *sb, void *data, int silent)
{
zfs_mntopts_t *zmo = (zfs_mntopts_t *)data;
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_domount(sb, zmo, silent);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_MOUNT_NODEV
static struct dentry *
zpl_mount(struct file_system_type *fs_type, int flags,
const char *osname, void *data)
{
zfs_mntopts_t *zmo = zfs_mntopts_alloc();
int error;
error = zpl_parse_options((char *)osname, (char *)data, zmo, B_FALSE);
if (error) {
zfs_mntopts_free(zmo);
return (ERR_PTR(error));
}
return (mount_nodev(fs_type, flags, zmo, zpl_fill_super));
}
#else
static int
zpl_get_sb(struct file_system_type *fs_type, int flags,
const char *osname, void *data, struct vfsmount *mnt)
{
zfs_mntopts_t *zmo = zfs_mntopts_alloc();
int error;
error = zpl_parse_options((char *)osname, (char *)data, zmo, B_FALSE);
if (error) {
zfs_mntopts_free(zmo);
return (error);
}
return (get_sb_nodev(fs_type, flags, zmo, zpl_fill_super, mnt));
}
#endif /* HAVE_MOUNT_NODEV */
static void
zpl_kill_sb(struct super_block *sb)
{
zfs_preumount(sb);
kill_anon_super(sb);
#ifdef HAVE_S_INSTANCES_LIST_HEAD
sb->s_instances.next = &(zpl_fs_type.fs_supers);
#endif /* HAVE_S_INSTANCES_LIST_HEAD */
}
void
zpl_prune_sb(int64_t nr_to_scan, void *arg)
{
struct super_block *sb = (struct super_block *)arg;
int objects = 0;
(void) -zfs_sb_prune(sb, nr_to_scan, &objects);
}
#ifdef HAVE_NR_CACHED_OBJECTS
static int
zpl_nr_cached_objects(struct super_block *sb)
{
zfs_sb_t *zsb = sb->s_fs_info;
int nr;
mutex_enter(&zsb->z_znodes_lock);
nr = zsb->z_nr_znodes;
mutex_exit(&zsb->z_znodes_lock);
return (nr);
}
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
/*
* Attempt to evict some meta data from the cache. The ARC operates in
* terms of bytes while the Linux VFS uses objects. Now because this is
* just a best effort eviction and the exact values aren't critical so we
* extrapolate from an object count to a byte size using the znode_t size.
*/
static void
zpl_free_cached_objects(struct super_block *sb, int nr_to_scan)
{
/* noop */
}
#endif /* HAVE_FREE_CACHED_OBJECTS */
const struct super_operations zpl_super_operations = {
.alloc_inode = zpl_inode_alloc,
.destroy_inode = zpl_inode_destroy,
.dirty_inode = zpl_dirty_inode,
.write_inode = NULL,
#ifdef HAVE_EVICT_INODE
.evict_inode = zpl_evict_inode,
#else
.drop_inode = zpl_drop_inode,
.clear_inode = zpl_clear_inode,
.delete_inode = zpl_inode_delete,
#endif /* HAVE_EVICT_INODE */
.put_super = zpl_put_super,
.sync_fs = zpl_sync_fs,
.statfs = zpl_statfs,
.remount_fs = zpl_remount_fs,
.show_options = zpl_show_options,
.show_stats = NULL,
#ifdef HAVE_NR_CACHED_OBJECTS
.nr_cached_objects = zpl_nr_cached_objects,
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
.free_cached_objects = zpl_free_cached_objects,
#endif /* HAVE_FREE_CACHED_OBJECTS */
};
struct file_system_type zpl_fs_type = {
.owner = THIS_MODULE,
.name = ZFS_DRIVER,
#ifdef HAVE_MOUNT_NODEV
.mount = zpl_mount,
#else
.get_sb = zpl_get_sb,
#endif /* HAVE_MOUNT_NODEV */
.kill_sb = zpl_kill_sb,
};