mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
0dc2f70c5c
Device removal allocates a new location for each allocated segment on the disk that's being removed. Each allocation results in one entry in the mapping table, which maps from old location + length to new location. When a fragmented disk is removed, this can result in a large number of mapping entries, and thus a large amount of memory consumed by the mapping table. In the worst real-world cases, we've seen around 1GB of RAM per 1TB of storage removed. We can improve on this situation by allocating larger segments, which span across both allocated and free regions of the device being removed. By including free regions in the allocation (and thus mapping), we reduce the number of mapping entries. For example, if we have a 4K allocation followed by 1K free and then 4K allocated, we would allocate 4+1+4 = 9KB, and then move the entire region (including allocated and free parts). In this case we used one mapping where previously we would have used two, but often the ratio is much higher (up to 20:1 in real-world use). We then need to mark the regions that were free on the removing device as free in the new locations, and also obsolete in the mapping entry. This method preserves the fragmentation of the removing device, rather than consolidating its allocated space into a small number of chunks where possible. But it results in drastic reduction of memory used by the mapping table - around 20x in the most-fragmented cases. In the most fragmented real-world cases, this reduces memory used by the mapping from ~1GB to ~50MB of RAM per 1TB of storage removed. Less fragmented cases will typically also see around 50-100MB of RAM per 1TB of storage. Porting notes: * Add the following as module parameters: * zfs_condense_indirect_vdevs_enable * zfs_condense_max_obsolete_bytes * Document the following module parameters: * zfs_condense_indirect_vdevs_enable * zfs_condense_max_obsolete_bytes * zfs_condense_min_mapping_bytes Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9486 OpenZFS-commit: https://github.com/ahrens/illumos/commit/07152e142e44c External-issue: DLPX-57962 Closes #7536
1630 lines
48 KiB
C
1630 lines
48 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2016 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* Virtual Device Labels
|
|
* ---------------------
|
|
*
|
|
* The vdev label serves several distinct purposes:
|
|
*
|
|
* 1. Uniquely identify this device as part of a ZFS pool and confirm its
|
|
* identity within the pool.
|
|
*
|
|
* 2. Verify that all the devices given in a configuration are present
|
|
* within the pool.
|
|
*
|
|
* 3. Determine the uberblock for the pool.
|
|
*
|
|
* 4. In case of an import operation, determine the configuration of the
|
|
* toplevel vdev of which it is a part.
|
|
*
|
|
* 5. If an import operation cannot find all the devices in the pool,
|
|
* provide enough information to the administrator to determine which
|
|
* devices are missing.
|
|
*
|
|
* It is important to note that while the kernel is responsible for writing the
|
|
* label, it only consumes the information in the first three cases. The
|
|
* latter information is only consumed in userland when determining the
|
|
* configuration to import a pool.
|
|
*
|
|
*
|
|
* Label Organization
|
|
* ------------------
|
|
*
|
|
* Before describing the contents of the label, it's important to understand how
|
|
* the labels are written and updated with respect to the uberblock.
|
|
*
|
|
* When the pool configuration is altered, either because it was newly created
|
|
* or a device was added, we want to update all the labels such that we can deal
|
|
* with fatal failure at any point. To this end, each disk has two labels which
|
|
* are updated before and after the uberblock is synced. Assuming we have
|
|
* labels and an uberblock with the following transaction groups:
|
|
*
|
|
* L1 UB L2
|
|
* +------+ +------+ +------+
|
|
* | | | | | |
|
|
* | t10 | | t10 | | t10 |
|
|
* | | | | | |
|
|
* +------+ +------+ +------+
|
|
*
|
|
* In this stable state, the labels and the uberblock were all updated within
|
|
* the same transaction group (10). Each label is mirrored and checksummed, so
|
|
* that we can detect when we fail partway through writing the label.
|
|
*
|
|
* In order to identify which labels are valid, the labels are written in the
|
|
* following manner:
|
|
*
|
|
* 1. For each vdev, update 'L1' to the new label
|
|
* 2. Update the uberblock
|
|
* 3. For each vdev, update 'L2' to the new label
|
|
*
|
|
* Given arbitrary failure, we can determine the correct label to use based on
|
|
* the transaction group. If we fail after updating L1 but before updating the
|
|
* UB, we will notice that L1's transaction group is greater than the uberblock,
|
|
* so L2 must be valid. If we fail after writing the uberblock but before
|
|
* writing L2, we will notice that L2's transaction group is less than L1, and
|
|
* therefore L1 is valid.
|
|
*
|
|
* Another added complexity is that not every label is updated when the config
|
|
* is synced. If we add a single device, we do not want to have to re-write
|
|
* every label for every device in the pool. This means that both L1 and L2 may
|
|
* be older than the pool uberblock, because the necessary information is stored
|
|
* on another vdev.
|
|
*
|
|
*
|
|
* On-disk Format
|
|
* --------------
|
|
*
|
|
* The vdev label consists of two distinct parts, and is wrapped within the
|
|
* vdev_label_t structure. The label includes 8k of padding to permit legacy
|
|
* VTOC disk labels, but is otherwise ignored.
|
|
*
|
|
* The first half of the label is a packed nvlist which contains pool wide
|
|
* properties, per-vdev properties, and configuration information. It is
|
|
* described in more detail below.
|
|
*
|
|
* The latter half of the label consists of a redundant array of uberblocks.
|
|
* These uberblocks are updated whenever a transaction group is committed,
|
|
* or when the configuration is updated. When a pool is loaded, we scan each
|
|
* vdev for the 'best' uberblock.
|
|
*
|
|
*
|
|
* Configuration Information
|
|
* -------------------------
|
|
*
|
|
* The nvlist describing the pool and vdev contains the following elements:
|
|
*
|
|
* version ZFS on-disk version
|
|
* name Pool name
|
|
* state Pool state
|
|
* txg Transaction group in which this label was written
|
|
* pool_guid Unique identifier for this pool
|
|
* vdev_tree An nvlist describing vdev tree.
|
|
* features_for_read
|
|
* An nvlist of the features necessary for reading the MOS.
|
|
*
|
|
* Each leaf device label also contains the following:
|
|
*
|
|
* top_guid Unique ID for top-level vdev in which this is contained
|
|
* guid Unique ID for the leaf vdev
|
|
*
|
|
* The 'vs' configuration follows the format described in 'spa_config.c'.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/vdev.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/fs/zfs.h>
|
|
|
|
/*
|
|
* Basic routines to read and write from a vdev label.
|
|
* Used throughout the rest of this file.
|
|
*/
|
|
uint64_t
|
|
vdev_label_offset(uint64_t psize, int l, uint64_t offset)
|
|
{
|
|
ASSERT(offset < sizeof (vdev_label_t));
|
|
ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
|
|
|
|
return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
|
|
0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
|
|
}
|
|
|
|
/*
|
|
* Returns back the vdev label associated with the passed in offset.
|
|
*/
|
|
int
|
|
vdev_label_number(uint64_t psize, uint64_t offset)
|
|
{
|
|
int l;
|
|
|
|
if (offset >= psize - VDEV_LABEL_END_SIZE) {
|
|
offset -= psize - VDEV_LABEL_END_SIZE;
|
|
offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
|
|
}
|
|
l = offset / sizeof (vdev_label_t);
|
|
return (l < VDEV_LABELS ? l : -1);
|
|
}
|
|
|
|
static void
|
|
vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
|
|
uint64_t size, zio_done_func_t *done, void *private, int flags)
|
|
{
|
|
ASSERT(
|
|
spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
|
|
spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
|
|
ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
|
|
|
|
zio_nowait(zio_read_phys(zio, vd,
|
|
vdev_label_offset(vd->vdev_psize, l, offset),
|
|
size, buf, ZIO_CHECKSUM_LABEL, done, private,
|
|
ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
|
|
}
|
|
|
|
void
|
|
vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
|
|
uint64_t size, zio_done_func_t *done, void *private, int flags)
|
|
{
|
|
ASSERT(
|
|
spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
|
|
spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
|
|
ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
|
|
|
|
zio_nowait(zio_write_phys(zio, vd,
|
|
vdev_label_offset(vd->vdev_psize, l, offset),
|
|
size, buf, ZIO_CHECKSUM_LABEL, done, private,
|
|
ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
|
|
}
|
|
|
|
/*
|
|
* Generate the nvlist representing this vdev's stats
|
|
*/
|
|
void
|
|
vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
|
|
{
|
|
nvlist_t *nvx;
|
|
vdev_stat_t *vs;
|
|
vdev_stat_ex_t *vsx;
|
|
|
|
vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
|
|
vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
|
|
|
|
vdev_get_stats_ex(vd, vs, vsx);
|
|
fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
|
|
(uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
|
|
|
|
kmem_free(vs, sizeof (*vs));
|
|
|
|
/*
|
|
* Add extended stats into a special extended stats nvlist. This keeps
|
|
* all the extended stats nicely grouped together. The extended stats
|
|
* nvlist is then added to the main nvlist.
|
|
*/
|
|
nvx = fnvlist_alloc();
|
|
|
|
/* ZIOs in flight to disk */
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
|
|
vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
|
|
|
|
/* ZIOs pending */
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
|
|
|
|
fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
|
|
vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
|
|
|
|
/* Histograms */
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
|
|
vsx->vsx_total_histo[ZIO_TYPE_READ],
|
|
ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
|
|
vsx->vsx_total_histo[ZIO_TYPE_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
|
|
vsx->vsx_disk_histo[ZIO_TYPE_READ],
|
|
ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
|
|
vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
|
|
vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
|
|
ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
|
|
|
|
/* Request sizes */
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
|
|
vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
|
|
ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
|
|
|
|
fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
|
|
vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
|
|
ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
|
|
|
|
/* Add extended stats nvlist to main nvlist */
|
|
fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
|
|
|
|
fnvlist_free(nvx);
|
|
kmem_free(vsx, sizeof (*vsx));
|
|
}
|
|
|
|
/*
|
|
* Generate the nvlist representing this vdev's config.
|
|
*/
|
|
nvlist_t *
|
|
vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
|
|
vdev_config_flag_t flags)
|
|
{
|
|
nvlist_t *nv = NULL;
|
|
vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
|
|
|
|
nv = fnvlist_alloc();
|
|
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
|
|
if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
|
|
|
|
if (vd->vdev_path != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
|
|
|
|
if (vd->vdev_devid != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
|
|
|
|
if (vd->vdev_physpath != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
|
|
vd->vdev_physpath);
|
|
|
|
if (vd->vdev_enc_sysfs_path != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
|
|
vd->vdev_enc_sysfs_path);
|
|
|
|
if (vd->vdev_fru != NULL)
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
|
|
|
|
if (vd->vdev_nparity != 0) {
|
|
ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
|
|
VDEV_TYPE_RAIDZ) == 0);
|
|
|
|
/*
|
|
* Make sure someone hasn't managed to sneak a fancy new vdev
|
|
* into a crufty old storage pool.
|
|
*/
|
|
ASSERT(vd->vdev_nparity == 1 ||
|
|
(vd->vdev_nparity <= 2 &&
|
|
spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
|
|
(vd->vdev_nparity <= 3 &&
|
|
spa_version(spa) >= SPA_VERSION_RAIDZ3));
|
|
|
|
/*
|
|
* Note that we'll add the nparity tag even on storage pools
|
|
* that only support a single parity device -- older software
|
|
* will just ignore it.
|
|
*/
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
|
|
}
|
|
|
|
if (vd->vdev_wholedisk != -1ULL)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
|
|
vd->vdev_wholedisk);
|
|
|
|
if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
|
|
|
|
if (vd->vdev_isspare)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
|
|
|
|
if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
|
|
vd == vd->vdev_top) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
|
|
vd->vdev_ms_array);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
|
|
vd->vdev_ms_shift);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
|
|
vd->vdev_asize);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
|
|
if (vd->vdev_removing) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
|
|
vd->vdev_removing);
|
|
}
|
|
}
|
|
|
|
if (vd->vdev_dtl_sm != NULL) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
|
|
space_map_object(vd->vdev_dtl_sm));
|
|
}
|
|
|
|
if (vic->vic_mapping_object != 0) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
|
|
vic->vic_mapping_object);
|
|
}
|
|
|
|
if (vic->vic_births_object != 0) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
|
|
vic->vic_births_object);
|
|
}
|
|
|
|
if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
|
|
vic->vic_prev_indirect_vdev);
|
|
}
|
|
|
|
if (vd->vdev_crtxg)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
|
|
|
|
if (flags & VDEV_CONFIG_MOS) {
|
|
if (vd->vdev_leaf_zap != 0) {
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
|
|
vd->vdev_leaf_zap);
|
|
}
|
|
|
|
if (vd->vdev_top_zap != 0) {
|
|
ASSERT(vd == vd->vdev_top);
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
|
|
vd->vdev_top_zap);
|
|
}
|
|
}
|
|
|
|
if (getstats) {
|
|
vdev_config_generate_stats(vd, nv);
|
|
|
|
/* provide either current or previous scan information */
|
|
pool_scan_stat_t ps;
|
|
if (spa_scan_get_stats(spa, &ps) == 0) {
|
|
fnvlist_add_uint64_array(nv,
|
|
ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
|
|
sizeof (pool_scan_stat_t) / sizeof (uint64_t));
|
|
}
|
|
|
|
pool_removal_stat_t prs;
|
|
if (spa_removal_get_stats(spa, &prs) == 0) {
|
|
fnvlist_add_uint64_array(nv,
|
|
ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
|
|
sizeof (prs) / sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* Note: this can be called from open context
|
|
* (spa_get_stats()), so we need the rwlock to prevent
|
|
* the mapping from being changed by condensing.
|
|
*/
|
|
rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
|
|
if (vd->vdev_indirect_mapping != NULL) {
|
|
ASSERT(vd->vdev_indirect_births != NULL);
|
|
vdev_indirect_mapping_t *vim =
|
|
vd->vdev_indirect_mapping;
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
|
|
vdev_indirect_mapping_size(vim));
|
|
}
|
|
rw_exit(&vd->vdev_indirect_rwlock);
|
|
if (vd->vdev_mg != NULL &&
|
|
vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
|
|
/*
|
|
* Compute approximately how much memory would be used
|
|
* for the indirect mapping if this device were to
|
|
* be removed.
|
|
*
|
|
* Note: If the frag metric is invalid, then not
|
|
* enough metaslabs have been converted to have
|
|
* histograms.
|
|
*/
|
|
uint64_t seg_count = 0;
|
|
uint64_t to_alloc = vd->vdev_stat.vs_alloc;
|
|
|
|
/*
|
|
* There are the same number of allocated segments
|
|
* as free segments, so we will have at least one
|
|
* entry per free segment. However, small free
|
|
* segments (smaller than vdev_removal_max_span)
|
|
* will be combined with adjacent allocated segments
|
|
* as a single mapping.
|
|
*/
|
|
for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
if (1ULL << (i + 1) < vdev_removal_max_span) {
|
|
to_alloc +=
|
|
vd->vdev_mg->mg_histogram[i] <<
|
|
(i + 1);
|
|
} else {
|
|
seg_count +=
|
|
vd->vdev_mg->mg_histogram[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The maximum length of a mapping is
|
|
* zfs_remove_max_segment, so we need at least one entry
|
|
* per zfs_remove_max_segment of allocated data.
|
|
*/
|
|
seg_count += to_alloc / zfs_remove_max_segment;
|
|
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
|
|
seg_count *
|
|
sizeof (vdev_indirect_mapping_entry_phys_t));
|
|
}
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
nvlist_t **child;
|
|
int c, idx;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
|
|
KM_SLEEP);
|
|
|
|
for (c = 0, idx = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
/*
|
|
* If we're generating an nvlist of removing
|
|
* vdevs then skip over any device which is
|
|
* not being removed.
|
|
*/
|
|
if ((flags & VDEV_CONFIG_REMOVING) &&
|
|
!cvd->vdev_removing)
|
|
continue;
|
|
|
|
child[idx++] = vdev_config_generate(spa, cvd,
|
|
getstats, flags);
|
|
}
|
|
|
|
if (idx) {
|
|
fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
child, idx);
|
|
}
|
|
|
|
for (c = 0; c < idx; c++)
|
|
nvlist_free(child[c]);
|
|
|
|
kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
|
|
|
|
} else {
|
|
const char *aux = NULL;
|
|
|
|
if (vd->vdev_offline && !vd->vdev_tmpoffline)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
|
|
if (vd->vdev_resilver_txg != 0)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
|
|
vd->vdev_resilver_txg);
|
|
if (vd->vdev_faulted)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
|
|
if (vd->vdev_degraded)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
|
|
if (vd->vdev_removed)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
|
|
if (vd->vdev_unspare)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
|
|
if (vd->vdev_ishole)
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
|
|
|
|
/* Set the reason why we're FAULTED/DEGRADED. */
|
|
switch (vd->vdev_stat.vs_aux) {
|
|
case VDEV_AUX_ERR_EXCEEDED:
|
|
aux = "err_exceeded";
|
|
break;
|
|
|
|
case VDEV_AUX_EXTERNAL:
|
|
aux = "external";
|
|
break;
|
|
}
|
|
|
|
if (aux != NULL && !vd->vdev_tmpoffline) {
|
|
fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
|
|
} else {
|
|
/*
|
|
* We're healthy - clear any previous AUX_STATE values.
|
|
*/
|
|
if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
|
|
nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
|
|
}
|
|
|
|
if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
|
|
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
|
|
vd->vdev_orig_guid);
|
|
}
|
|
}
|
|
|
|
return (nv);
|
|
}
|
|
|
|
/*
|
|
* Generate a view of the top-level vdevs. If we currently have holes
|
|
* in the namespace, then generate an array which contains a list of holey
|
|
* vdevs. Additionally, add the number of top-level children that currently
|
|
* exist.
|
|
*/
|
|
void
|
|
vdev_top_config_generate(spa_t *spa, nvlist_t *config)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t *array;
|
|
uint_t c, idx;
|
|
|
|
array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
|
|
|
|
for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
|
|
if (tvd->vdev_ishole) {
|
|
array[idx++] = c;
|
|
}
|
|
}
|
|
|
|
if (idx) {
|
|
VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
|
|
array, idx) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
|
|
rvd->vdev_children) == 0);
|
|
|
|
kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* Returns the configuration from the label of the given vdev. For vdevs
|
|
* which don't have a txg value stored on their label (i.e. spares/cache)
|
|
* or have not been completely initialized (txg = 0) just return
|
|
* the configuration from the first valid label we find. Otherwise,
|
|
* find the most up-to-date label that does not exceed the specified
|
|
* 'txg' value.
|
|
*/
|
|
nvlist_t *
|
|
vdev_label_read_config(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
nvlist_t *config = NULL;
|
|
vdev_phys_t *vp;
|
|
abd_t *vp_abd;
|
|
zio_t *zio;
|
|
uint64_t best_txg = 0;
|
|
uint64_t label_txg = 0;
|
|
int error = 0;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_SPECULATIVE;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
if (!vdev_readable(vd))
|
|
return (NULL);
|
|
|
|
vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
|
|
vp = abd_to_buf(vp_abd);
|
|
|
|
retry:
|
|
for (int l = 0; l < VDEV_LABELS; l++) {
|
|
nvlist_t *label = NULL;
|
|
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
vdev_label_read(zio, vd, l, vp_abd,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t), NULL, NULL, flags);
|
|
|
|
if (zio_wait(zio) == 0 &&
|
|
nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
|
|
&label, 0) == 0) {
|
|
/*
|
|
* Auxiliary vdevs won't have txg values in their
|
|
* labels and newly added vdevs may not have been
|
|
* completely initialized so just return the
|
|
* configuration from the first valid label we
|
|
* encounter.
|
|
*/
|
|
error = nvlist_lookup_uint64(label,
|
|
ZPOOL_CONFIG_POOL_TXG, &label_txg);
|
|
if ((error || label_txg == 0) && !config) {
|
|
config = label;
|
|
break;
|
|
} else if (label_txg <= txg && label_txg > best_txg) {
|
|
best_txg = label_txg;
|
|
nvlist_free(config);
|
|
config = fnvlist_dup(label);
|
|
}
|
|
}
|
|
|
|
if (label != NULL) {
|
|
nvlist_free(label);
|
|
label = NULL;
|
|
}
|
|
}
|
|
|
|
if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
|
|
flags |= ZIO_FLAG_TRYHARD;
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* We found a valid label but it didn't pass txg restrictions.
|
|
*/
|
|
if (config == NULL && label_txg != 0) {
|
|
vdev_dbgmsg(vd, "label discarded as txg is too large "
|
|
"(%llu > %llu)", (u_longlong_t)label_txg,
|
|
(u_longlong_t)txg);
|
|
}
|
|
|
|
abd_free(vp_abd);
|
|
|
|
return (config);
|
|
}
|
|
|
|
/*
|
|
* Determine if a device is in use. The 'spare_guid' parameter will be filled
|
|
* in with the device guid if this spare is active elsewhere on the system.
|
|
*/
|
|
static boolean_t
|
|
vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
|
|
uint64_t *spare_guid, uint64_t *l2cache_guid)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t state, pool_guid, device_guid, txg, spare_pool;
|
|
uint64_t vdtxg = 0;
|
|
nvlist_t *label;
|
|
|
|
if (spare_guid)
|
|
*spare_guid = 0ULL;
|
|
if (l2cache_guid)
|
|
*l2cache_guid = 0ULL;
|
|
|
|
/*
|
|
* Read the label, if any, and perform some basic sanity checks.
|
|
*/
|
|
if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
|
|
return (B_FALSE);
|
|
|
|
(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
|
|
&vdtxg);
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
|
|
&device_guid) != 0) {
|
|
nvlist_free(label);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
|
|
&pool_guid) != 0 ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0)) {
|
|
nvlist_free(label);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
nvlist_free(label);
|
|
|
|
/*
|
|
* Check to see if this device indeed belongs to the pool it claims to
|
|
* be a part of. The only way this is allowed is if the device is a hot
|
|
* spare (which we check for later on).
|
|
*/
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
!spa_guid_exists(pool_guid, device_guid) &&
|
|
!spa_spare_exists(device_guid, NULL, NULL) &&
|
|
!spa_l2cache_exists(device_guid, NULL))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* If the transaction group is zero, then this an initialized (but
|
|
* unused) label. This is only an error if the create transaction
|
|
* on-disk is the same as the one we're using now, in which case the
|
|
* user has attempted to add the same vdev multiple times in the same
|
|
* transaction.
|
|
*/
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
txg == 0 && vdtxg == crtxg)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Check to see if this is a spare device. We do an explicit check for
|
|
* spa_has_spare() here because it may be on our pending list of spares
|
|
* to add. We also check if it is an l2cache device.
|
|
*/
|
|
if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
|
|
spa_has_spare(spa, device_guid)) {
|
|
if (spare_guid)
|
|
*spare_guid = device_guid;
|
|
|
|
switch (reason) {
|
|
case VDEV_LABEL_CREATE:
|
|
case VDEV_LABEL_L2CACHE:
|
|
return (B_TRUE);
|
|
|
|
case VDEV_LABEL_REPLACE:
|
|
return (!spa_has_spare(spa, device_guid) ||
|
|
spare_pool != 0ULL);
|
|
|
|
case VDEV_LABEL_SPARE:
|
|
return (spa_has_spare(spa, device_guid));
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if this is an l2cache device.
|
|
*/
|
|
if (spa_l2cache_exists(device_guid, NULL))
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* We can't rely on a pool's state if it's been imported
|
|
* read-only. Instead we look to see if the pools is marked
|
|
* read-only in the namespace and set the state to active.
|
|
*/
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
(spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
|
|
spa_mode(spa) == FREAD)
|
|
state = POOL_STATE_ACTIVE;
|
|
|
|
/*
|
|
* If the device is marked ACTIVE, then this device is in use by another
|
|
* pool on the system.
|
|
*/
|
|
return (state == POOL_STATE_ACTIVE);
|
|
}
|
|
|
|
/*
|
|
* Initialize a vdev label. We check to make sure each leaf device is not in
|
|
* use, and writable. We put down an initial label which we will later
|
|
* overwrite with a complete label. Note that it's important to do this
|
|
* sequentially, not in parallel, so that we catch cases of multiple use of the
|
|
* same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
|
|
* itself.
|
|
*/
|
|
int
|
|
vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
nvlist_t *label;
|
|
vdev_phys_t *vp;
|
|
abd_t *vp_abd;
|
|
abd_t *pad2;
|
|
uberblock_t *ub;
|
|
abd_t *ub_abd;
|
|
zio_t *zio;
|
|
char *buf;
|
|
size_t buflen;
|
|
int error;
|
|
uint64_t spare_guid = 0, l2cache_guid = 0;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
if ((error = vdev_label_init(vd->vdev_child[c],
|
|
crtxg, reason)) != 0)
|
|
return (error);
|
|
|
|
/* Track the creation time for this vdev */
|
|
vd->vdev_crtxg = crtxg;
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
|
|
return (0);
|
|
|
|
/*
|
|
* Dead vdevs cannot be initialized.
|
|
*/
|
|
if (vdev_is_dead(vd))
|
|
return (SET_ERROR(EIO));
|
|
|
|
/*
|
|
* Determine if the vdev is in use.
|
|
*/
|
|
if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
|
|
vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
/*
|
|
* If this is a request to add or replace a spare or l2cache device
|
|
* that is in use elsewhere on the system, then we must update the
|
|
* guid (which was initialized to a random value) to reflect the
|
|
* actual GUID (which is shared between multiple pools).
|
|
*/
|
|
if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
|
|
spare_guid != 0ULL) {
|
|
uint64_t guid_delta = spare_guid - vd->vdev_guid;
|
|
|
|
vd->vdev_guid += guid_delta;
|
|
|
|
for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum += guid_delta;
|
|
|
|
/*
|
|
* If this is a replacement, then we want to fallthrough to the
|
|
* rest of the code. If we're adding a spare, then it's already
|
|
* labeled appropriately and we can just return.
|
|
*/
|
|
if (reason == VDEV_LABEL_SPARE)
|
|
return (0);
|
|
ASSERT(reason == VDEV_LABEL_REPLACE ||
|
|
reason == VDEV_LABEL_SPLIT);
|
|
}
|
|
|
|
if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
|
|
l2cache_guid != 0ULL) {
|
|
uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
|
|
|
|
vd->vdev_guid += guid_delta;
|
|
|
|
for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum += guid_delta;
|
|
|
|
/*
|
|
* If this is a replacement, then we want to fallthrough to the
|
|
* rest of the code. If we're adding an l2cache, then it's
|
|
* already labeled appropriately and we can just return.
|
|
*/
|
|
if (reason == VDEV_LABEL_L2CACHE)
|
|
return (0);
|
|
ASSERT(reason == VDEV_LABEL_REPLACE);
|
|
}
|
|
|
|
/*
|
|
* Initialize its label.
|
|
*/
|
|
vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
|
|
abd_zero(vp_abd, sizeof (vdev_phys_t));
|
|
vp = abd_to_buf(vp_abd);
|
|
|
|
/*
|
|
* Generate a label describing the pool and our top-level vdev.
|
|
* We mark it as being from txg 0 to indicate that it's not
|
|
* really part of an active pool just yet. The labels will
|
|
* be written again with a meaningful txg by spa_sync().
|
|
*/
|
|
if (reason == VDEV_LABEL_SPARE ||
|
|
(reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
|
|
/*
|
|
* For inactive hot spares, we generate a special label that
|
|
* identifies as a mutually shared hot spare. We write the
|
|
* label if we are adding a hot spare, or if we are removing an
|
|
* active hot spare (in which case we want to revert the
|
|
* labels).
|
|
*/
|
|
VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
|
|
spa_version(spa)) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
POOL_STATE_SPARE) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
} else if (reason == VDEV_LABEL_L2CACHE ||
|
|
(reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
|
|
/*
|
|
* For level 2 ARC devices, add a special label.
|
|
*/
|
|
VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
|
|
spa_version(spa)) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
POOL_STATE_L2CACHE) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
} else {
|
|
uint64_t txg = 0ULL;
|
|
|
|
if (reason == VDEV_LABEL_SPLIT)
|
|
txg = spa->spa_uberblock.ub_txg;
|
|
label = spa_config_generate(spa, vd, txg, B_FALSE);
|
|
|
|
/*
|
|
* Add our creation time. This allows us to detect multiple
|
|
* vdev uses as described above, and automatically expires if we
|
|
* fail.
|
|
*/
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
|
|
crtxg) == 0);
|
|
}
|
|
|
|
buf = vp->vp_nvlist;
|
|
buflen = sizeof (vp->vp_nvlist);
|
|
|
|
error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
|
|
if (error != 0) {
|
|
nvlist_free(label);
|
|
abd_free(vp_abd);
|
|
/* EFAULT means nvlist_pack ran out of room */
|
|
return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Initialize uberblock template.
|
|
*/
|
|
ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
|
|
abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
|
|
abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
|
|
ub = abd_to_buf(ub_abd);
|
|
ub->ub_txg = 0;
|
|
|
|
/* Initialize the 2nd padding area. */
|
|
pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
|
|
abd_zero(pad2, VDEV_PAD_SIZE);
|
|
|
|
/*
|
|
* Write everything in parallel.
|
|
*/
|
|
retry:
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (int l = 0; l < VDEV_LABELS; l++) {
|
|
|
|
vdev_label_write(zio, vd, l, vp_abd,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t), NULL, NULL, flags);
|
|
|
|
/*
|
|
* Skip the 1st padding area.
|
|
* Zero out the 2nd padding area where it might have
|
|
* left over data from previous filesystem format.
|
|
*/
|
|
vdev_label_write(zio, vd, l, pad2,
|
|
offsetof(vdev_label_t, vl_pad2),
|
|
VDEV_PAD_SIZE, NULL, NULL, flags);
|
|
|
|
vdev_label_write(zio, vd, l, ub_abd,
|
|
offsetof(vdev_label_t, vl_uberblock),
|
|
VDEV_UBERBLOCK_RING, NULL, NULL, flags);
|
|
}
|
|
|
|
error = zio_wait(zio);
|
|
|
|
if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
|
|
flags |= ZIO_FLAG_TRYHARD;
|
|
goto retry;
|
|
}
|
|
|
|
nvlist_free(label);
|
|
abd_free(pad2);
|
|
abd_free(ub_abd);
|
|
abd_free(vp_abd);
|
|
|
|
/*
|
|
* If this vdev hasn't been previously identified as a spare, then we
|
|
* mark it as such only if a) we are labeling it as a spare, or b) it
|
|
* exists as a spare elsewhere in the system. Do the same for
|
|
* level 2 ARC devices.
|
|
*/
|
|
if (error == 0 && !vd->vdev_isspare &&
|
|
(reason == VDEV_LABEL_SPARE ||
|
|
spa_spare_exists(vd->vdev_guid, NULL, NULL)))
|
|
spa_spare_add(vd);
|
|
|
|
if (error == 0 && !vd->vdev_isl2cache &&
|
|
(reason == VDEV_LABEL_L2CACHE ||
|
|
spa_l2cache_exists(vd->vdev_guid, NULL)))
|
|
spa_l2cache_add(vd);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* uberblock load/sync
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Consider the following situation: txg is safely synced to disk. We've
|
|
* written the first uberblock for txg + 1, and then we lose power. When we
|
|
* come back up, we fail to see the uberblock for txg + 1 because, say,
|
|
* it was on a mirrored device and the replica to which we wrote txg + 1
|
|
* is now offline. If we then make some changes and sync txg + 1, and then
|
|
* the missing replica comes back, then for a few seconds we'll have two
|
|
* conflicting uberblocks on disk with the same txg. The solution is simple:
|
|
* among uberblocks with equal txg, choose the one with the latest timestamp.
|
|
*/
|
|
static int
|
|
vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
|
|
{
|
|
int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp));
|
|
}
|
|
|
|
struct ubl_cbdata {
|
|
uberblock_t *ubl_ubbest; /* Best uberblock */
|
|
vdev_t *ubl_vd; /* vdev associated with the above */
|
|
};
|
|
|
|
static void
|
|
vdev_uberblock_load_done(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
spa_t *spa = zio->io_spa;
|
|
zio_t *rio = zio->io_private;
|
|
uberblock_t *ub = abd_to_buf(zio->io_abd);
|
|
struct ubl_cbdata *cbp = rio->io_private;
|
|
|
|
ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
|
|
|
|
if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
|
|
mutex_enter(&rio->io_lock);
|
|
if (ub->ub_txg <= spa->spa_load_max_txg &&
|
|
vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
|
|
/*
|
|
* Keep track of the vdev in which this uberblock
|
|
* was found. We will use this information later
|
|
* to obtain the config nvlist associated with
|
|
* this uberblock.
|
|
*/
|
|
*cbp->ubl_ubbest = *ub;
|
|
cbp->ubl_vd = vd;
|
|
}
|
|
mutex_exit(&rio->io_lock);
|
|
}
|
|
|
|
abd_free(zio->io_abd);
|
|
}
|
|
|
|
static void
|
|
vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
|
|
struct ubl_cbdata *cbp)
|
|
{
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
|
|
for (int l = 0; l < VDEV_LABELS; l++) {
|
|
for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
|
|
vdev_label_read(zio, vd, l,
|
|
abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
|
|
B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
|
|
VDEV_UBERBLOCK_SIZE(vd),
|
|
vdev_uberblock_load_done, zio, flags);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reads the 'best' uberblock from disk along with its associated
|
|
* configuration. First, we read the uberblock array of each label of each
|
|
* vdev, keeping track of the uberblock with the highest txg in each array.
|
|
* Then, we read the configuration from the same vdev as the best uberblock.
|
|
*/
|
|
void
|
|
vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
|
|
{
|
|
zio_t *zio;
|
|
spa_t *spa = rvd->vdev_spa;
|
|
struct ubl_cbdata cb;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
|
|
|
|
ASSERT(ub);
|
|
ASSERT(config);
|
|
|
|
bzero(ub, sizeof (uberblock_t));
|
|
*config = NULL;
|
|
|
|
cb.ubl_ubbest = ub;
|
|
cb.ubl_vd = NULL;
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
zio = zio_root(spa, NULL, &cb, flags);
|
|
vdev_uberblock_load_impl(zio, rvd, flags, &cb);
|
|
(void) zio_wait(zio);
|
|
|
|
/*
|
|
* It's possible that the best uberblock was discovered on a label
|
|
* that has a configuration which was written in a future txg.
|
|
* Search all labels on this vdev to find the configuration that
|
|
* matches the txg for our uberblock.
|
|
*/
|
|
if (cb.ubl_vd != NULL) {
|
|
vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
|
|
"txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
|
|
|
|
*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
|
|
if (*config == NULL && spa->spa_extreme_rewind) {
|
|
vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
|
|
"Trying again without txg restrictions.");
|
|
*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
|
|
}
|
|
if (*config == NULL) {
|
|
vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
|
|
}
|
|
}
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
|
|
/*
|
|
* For use when a leaf vdev is expanded.
|
|
* The location of labels 2 and 3 changed, and at the new location the
|
|
* uberblock rings are either empty or contain garbage. The sync will write
|
|
* new configs there because the vdev is dirty, but expansion also needs the
|
|
* uberblock rings copied. Read them from label 0 which did not move.
|
|
*
|
|
* Since the point is to populate labels {2,3} with valid uberblocks,
|
|
* we zero uberblocks we fail to read or which are not valid.
|
|
*/
|
|
|
|
static void
|
|
vdev_copy_uberblocks(vdev_t *vd)
|
|
{
|
|
abd_t *ub_abd;
|
|
zio_t *write_zio;
|
|
int locks = (SCL_L2ARC | SCL_ZIO);
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_SPECULATIVE;
|
|
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
|
|
SCL_STATE);
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
|
|
|
|
ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
|
|
|
|
write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
|
|
for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
|
|
const int src_label = 0;
|
|
zio_t *zio;
|
|
|
|
zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
|
|
vdev_label_read(zio, vd, src_label, ub_abd,
|
|
VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
|
|
NULL, NULL, flags);
|
|
|
|
if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
|
|
abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
|
|
|
|
for (int l = 2; l < VDEV_LABELS; l++)
|
|
vdev_label_write(write_zio, vd, l, ub_abd,
|
|
VDEV_UBERBLOCK_OFFSET(vd, n),
|
|
VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
|
|
flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
}
|
|
(void) zio_wait(write_zio);
|
|
|
|
spa_config_exit(vd->vdev_spa, locks, FTAG);
|
|
|
|
abd_free(ub_abd);
|
|
}
|
|
|
|
/*
|
|
* On success, increment root zio's count of good writes.
|
|
* We only get credit for writes to known-visible vdevs; see spa_vdev_add().
|
|
*/
|
|
static void
|
|
vdev_uberblock_sync_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
|
|
atomic_inc_64(good_writes);
|
|
}
|
|
|
|
/*
|
|
* Write the uberblock to all labels of all leaves of the specified vdev.
|
|
*/
|
|
static void
|
|
vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
|
|
uberblock_t *ub, vdev_t *vd, int flags)
|
|
{
|
|
for (uint64_t c = 0; c < vd->vdev_children; c++) {
|
|
vdev_uberblock_sync(zio, good_writes,
|
|
ub, vd->vdev_child[c], flags);
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return;
|
|
|
|
if (!vdev_writeable(vd))
|
|
return;
|
|
|
|
/* If the vdev was expanded, need to copy uberblock rings. */
|
|
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
|
|
vd->vdev_copy_uberblocks == B_TRUE) {
|
|
vdev_copy_uberblocks(vd);
|
|
vd->vdev_copy_uberblocks = B_FALSE;
|
|
}
|
|
|
|
int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
|
|
int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
|
|
|
|
/* Copy the uberblock_t into the ABD */
|
|
abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
|
|
abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
|
|
abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
|
|
|
|
for (int l = 0; l < VDEV_LABELS; l++)
|
|
vdev_label_write(zio, vd, l, ub_abd,
|
|
VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
|
|
vdev_uberblock_sync_done, good_writes,
|
|
flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
|
|
abd_free(ub_abd);
|
|
}
|
|
|
|
/* Sync the uberblocks to all vdevs in svd[] */
|
|
int
|
|
vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
|
|
{
|
|
spa_t *spa = svd[0]->vdev_spa;
|
|
zio_t *zio;
|
|
uint64_t good_writes = 0;
|
|
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (int v = 0; v < svdcount; v++)
|
|
vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
/*
|
|
* Flush the uberblocks to disk. This ensures that the odd labels
|
|
* are no longer needed (because the new uberblocks and the even
|
|
* labels are safely on disk), so it is safe to overwrite them.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (int v = 0; v < svdcount; v++) {
|
|
if (vdev_writeable(svd[v])) {
|
|
zio_flush(zio, svd[v]);
|
|
}
|
|
}
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
return (good_writes >= 1 ? 0 : EIO);
|
|
}
|
|
|
|
/*
|
|
* On success, increment the count of good writes for our top-level vdev.
|
|
*/
|
|
static void
|
|
vdev_label_sync_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (zio->io_error == 0)
|
|
atomic_inc_64(good_writes);
|
|
}
|
|
|
|
/*
|
|
* If there weren't enough good writes, indicate failure to the parent.
|
|
*/
|
|
static void
|
|
vdev_label_sync_top_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (*good_writes == 0)
|
|
zio->io_error = SET_ERROR(EIO);
|
|
|
|
kmem_free(good_writes, sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* We ignore errors for log and cache devices, simply free the private data.
|
|
*/
|
|
static void
|
|
vdev_label_sync_ignore_done(zio_t *zio)
|
|
{
|
|
kmem_free(zio->io_private, sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* Write all even or odd labels to all leaves of the specified vdev.
|
|
*/
|
|
static void
|
|
vdev_label_sync(zio_t *zio, uint64_t *good_writes,
|
|
vdev_t *vd, int l, uint64_t txg, int flags)
|
|
{
|
|
nvlist_t *label;
|
|
vdev_phys_t *vp;
|
|
abd_t *vp_abd;
|
|
char *buf;
|
|
size_t buflen;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_label_sync(zio, good_writes,
|
|
vd->vdev_child[c], l, txg, flags);
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return;
|
|
|
|
if (!vdev_writeable(vd))
|
|
return;
|
|
|
|
/*
|
|
* Generate a label describing the top-level config to which we belong.
|
|
*/
|
|
label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
|
|
|
|
vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
|
|
abd_zero(vp_abd, sizeof (vdev_phys_t));
|
|
vp = abd_to_buf(vp_abd);
|
|
|
|
buf = vp->vp_nvlist;
|
|
buflen = sizeof (vp->vp_nvlist);
|
|
|
|
if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
|
|
for (; l < VDEV_LABELS; l += 2) {
|
|
vdev_label_write(zio, vd, l, vp_abd,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t),
|
|
vdev_label_sync_done, good_writes,
|
|
flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
}
|
|
}
|
|
|
|
abd_free(vp_abd);
|
|
nvlist_free(label);
|
|
}
|
|
|
|
int
|
|
vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
|
|
{
|
|
list_t *dl = &spa->spa_config_dirty_list;
|
|
vdev_t *vd;
|
|
zio_t *zio;
|
|
int error;
|
|
|
|
/*
|
|
* Write the new labels to disk.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
|
|
uint64_t *good_writes;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
zio_t *vio = zio_null(zio, spa, NULL,
|
|
(vd->vdev_islog || vd->vdev_aux != NULL) ?
|
|
vdev_label_sync_ignore_done : vdev_label_sync_top_done,
|
|
good_writes, flags);
|
|
vdev_label_sync(vio, good_writes, vd, l, txg, flags);
|
|
zio_nowait(vio);
|
|
}
|
|
|
|
error = zio_wait(zio);
|
|
|
|
/*
|
|
* Flush the new labels to disk.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
|
|
zio_flush(zio, vd);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sync the uberblock and any changes to the vdev configuration.
|
|
*
|
|
* The order of operations is carefully crafted to ensure that
|
|
* if the system panics or loses power at any time, the state on disk
|
|
* is still transactionally consistent. The in-line comments below
|
|
* describe the failure semantics at each stage.
|
|
*
|
|
* Moreover, vdev_config_sync() is designed to be idempotent: if it fails
|
|
* at any time, you can just call it again, and it will resume its work.
|
|
*/
|
|
int
|
|
vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
|
|
{
|
|
spa_t *spa = svd[0]->vdev_spa;
|
|
uberblock_t *ub = &spa->spa_uberblock;
|
|
vdev_t *vd;
|
|
zio_t *zio;
|
|
int error = 0;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
|
|
|
|
retry:
|
|
/*
|
|
* Normally, we don't want to try too hard to write every label and
|
|
* uberblock. If there is a flaky disk, we don't want the rest of the
|
|
* sync process to block while we retry. But if we can't write a
|
|
* single label out, we should retry with ZIO_FLAG_TRYHARD before
|
|
* bailing out and declaring the pool faulted.
|
|
*/
|
|
if (error != 0) {
|
|
if ((flags & ZIO_FLAG_TRYHARD) != 0)
|
|
return (error);
|
|
flags |= ZIO_FLAG_TRYHARD;
|
|
}
|
|
|
|
ASSERT(ub->ub_txg <= txg);
|
|
|
|
/*
|
|
* If this isn't a resync due to I/O errors,
|
|
* and nothing changed in this transaction group,
|
|
* and the vdev configuration hasn't changed,
|
|
* then there's nothing to do.
|
|
*/
|
|
if (ub->ub_txg < txg) {
|
|
boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
|
|
txg, spa->spa_mmp.mmp_delay);
|
|
|
|
if (!changed && list_is_empty(&spa->spa_config_dirty_list))
|
|
return (0);
|
|
}
|
|
|
|
if (txg > spa_freeze_txg(spa))
|
|
return (0);
|
|
|
|
ASSERT(txg <= spa->spa_final_txg);
|
|
|
|
/*
|
|
* Flush the write cache of every disk that's been written to
|
|
* in this transaction group. This ensures that all blocks
|
|
* written in this txg will be committed to stable storage
|
|
* before any uberblock that references them.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
|
|
vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
|
|
zio_flush(zio, vd);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
/*
|
|
* Sync out the even labels (L0, L2) for every dirty vdev. If the
|
|
* system dies in the middle of this process, that's OK: all of the
|
|
* even labels that made it to disk will be newer than any uberblock,
|
|
* and will therefore be considered invalid. The odd labels (L1, L3),
|
|
* which have not yet been touched, will still be valid. We flush
|
|
* the new labels to disk to ensure that all even-label updates
|
|
* are committed to stable storage before the uberblock update.
|
|
*/
|
|
if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
|
|
goto retry;
|
|
|
|
/*
|
|
* Sync the uberblocks to all vdevs in svd[].
|
|
* If the system dies in the middle of this step, there are two cases
|
|
* to consider, and the on-disk state is consistent either way:
|
|
*
|
|
* (1) If none of the new uberblocks made it to disk, then the
|
|
* previous uberblock will be the newest, and the odd labels
|
|
* (which had not yet been touched) will be valid with respect
|
|
* to that uberblock.
|
|
*
|
|
* (2) If one or more new uberblocks made it to disk, then they
|
|
* will be the newest, and the even labels (which had all
|
|
* been successfully committed) will be valid with respect
|
|
* to the new uberblocks.
|
|
*/
|
|
if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
|
|
goto retry;
|
|
|
|
if (spa_multihost(spa))
|
|
mmp_update_uberblock(spa, ub);
|
|
|
|
/*
|
|
* Sync out odd labels for every dirty vdev. If the system dies
|
|
* in the middle of this process, the even labels and the new
|
|
* uberblocks will suffice to open the pool. The next time
|
|
* the pool is opened, the first thing we'll do -- before any
|
|
* user data is modified -- is mark every vdev dirty so that
|
|
* all labels will be brought up to date. We flush the new labels
|
|
* to disk to ensure that all odd-label updates are committed to
|
|
* stable storage before the next transaction group begins.
|
|
*/
|
|
if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
|
|
goto retry;
|
|
|
|
return (0);
|
|
}
|