mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-26 18:04:22 +03:00
35155c0132
fxsave and xsave require the target address to be 16-/64-byte aligned. kmalloc(_node) does not (yet) offer such fine-grained control over alignment[0,1], even though it does "the right thing" most of the time for power-of-2 sizes. unfortunately, alignment is completely off when using certain debugging or hardening features/configs, such as KASAN, slub_debug=Z or the not-yet-upstream SLAB_CANARY. Use alloc_pages_node() instead which allows us to allocate page-aligned memory. Since fpregs_state is padded to a full page anyway, and this code is only relevant for x86 which has 4k pages, this approach should not allocate any unnecessary memory but still guarantee the needed alignment. 0: https://lwn.net/Articles/787740/ 1: https://lore.kernel.org/linux-block/20190826111627.7505-1-vbabka@suse.cz/ Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Fabian Grünbichler <f.gruenbichler@proxmox.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #9608 Closes #9674
922 lines
20 KiB
C
922 lines
20 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2016 Gvozden Neskovic <neskovic@compeng.uni-frankfurt.de>.
|
|
*/
|
|
|
|
/*
|
|
* USER API:
|
|
*
|
|
* Kernel fpu methods:
|
|
* kfpu_allowed()
|
|
* kfpu_begin()
|
|
* kfpu_end()
|
|
* kfpu_init()
|
|
* kfpu_fini()
|
|
*
|
|
* SIMD support:
|
|
*
|
|
* Following functions should be called to determine whether CPU feature
|
|
* is supported. All functions are usable in kernel and user space.
|
|
* If a SIMD algorithm is using more than one instruction set
|
|
* all relevant feature test functions should be called.
|
|
*
|
|
* Supported features:
|
|
* zfs_sse_available()
|
|
* zfs_sse2_available()
|
|
* zfs_sse3_available()
|
|
* zfs_ssse3_available()
|
|
* zfs_sse4_1_available()
|
|
* zfs_sse4_2_available()
|
|
*
|
|
* zfs_avx_available()
|
|
* zfs_avx2_available()
|
|
*
|
|
* zfs_bmi1_available()
|
|
* zfs_bmi2_available()
|
|
*
|
|
* zfs_avx512f_available()
|
|
* zfs_avx512cd_available()
|
|
* zfs_avx512er_available()
|
|
* zfs_avx512pf_available()
|
|
* zfs_avx512bw_available()
|
|
* zfs_avx512dq_available()
|
|
* zfs_avx512vl_available()
|
|
* zfs_avx512ifma_available()
|
|
* zfs_avx512vbmi_available()
|
|
*
|
|
* NOTE(AVX-512VL): If using AVX-512 instructions with 128Bit registers
|
|
* also add zfs_avx512vl_available() to feature check.
|
|
*/
|
|
|
|
#ifndef _SIMD_X86_H
|
|
#define _SIMD_X86_H
|
|
|
|
#include <sys/isa_defs.h>
|
|
|
|
/* only for __x86 */
|
|
#if defined(__x86)
|
|
|
|
#include <sys/types.h>
|
|
|
|
#if defined(_KERNEL)
|
|
#include <asm/cpufeature.h>
|
|
#else
|
|
#include <cpuid.h>
|
|
#endif
|
|
|
|
#if defined(_KERNEL)
|
|
|
|
/*
|
|
* Disable the WARN_ON_FPU() macro to prevent additional dependencies
|
|
* when providing the kfpu_* functions. Relevant warnings are included
|
|
* as appropriate and are unconditionally enabled.
|
|
*/
|
|
#if defined(CONFIG_X86_DEBUG_FPU) && !defined(KERNEL_EXPORTS_X86_FPU)
|
|
#undef CONFIG_X86_DEBUG_FPU
|
|
#endif
|
|
|
|
#if defined(HAVE_KERNEL_FPU_API_HEADER)
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/internal.h>
|
|
#else
|
|
#include <asm/i387.h>
|
|
#include <asm/xcr.h>
|
|
#endif
|
|
|
|
/*
|
|
* The following cases are for kernels which export either the
|
|
* kernel_fpu_* or __kernel_fpu_* functions.
|
|
*/
|
|
#if defined(KERNEL_EXPORTS_X86_FPU)
|
|
|
|
#define kfpu_allowed() 1
|
|
#define kfpu_init() 0
|
|
#define kfpu_fini() ((void) 0)
|
|
|
|
#if defined(HAVE_UNDERSCORE_KERNEL_FPU)
|
|
#define kfpu_begin() \
|
|
{ \
|
|
preempt_disable(); \
|
|
__kernel_fpu_begin(); \
|
|
}
|
|
#define kfpu_end() \
|
|
{ \
|
|
__kernel_fpu_end(); \
|
|
preempt_enable(); \
|
|
}
|
|
|
|
#elif defined(HAVE_KERNEL_FPU)
|
|
#define kfpu_begin() kernel_fpu_begin()
|
|
#define kfpu_end() kernel_fpu_end()
|
|
|
|
#else
|
|
/*
|
|
* This case is unreachable. When KERNEL_EXPORTS_X86_FPU is defined then
|
|
* either HAVE_UNDERSCORE_KERNEL_FPU or HAVE_KERNEL_FPU must be defined.
|
|
*/
|
|
#error "Unreachable kernel configuration"
|
|
#endif
|
|
|
|
#else /* defined(KERNEL_EXPORTS_X86_FPU) */
|
|
|
|
/*
|
|
* When the kernel_fpu_* symbols are unavailable then provide our own
|
|
* versions which allow the FPU to be safely used.
|
|
*/
|
|
#if defined(HAVE_KERNEL_FPU_INTERNAL)
|
|
|
|
#include <linux/mm.h>
|
|
|
|
extern union fpregs_state **zfs_kfpu_fpregs;
|
|
|
|
/*
|
|
* Initialize per-cpu variables to store FPU state.
|
|
*/
|
|
static inline void
|
|
kfpu_fini(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (zfs_kfpu_fpregs[cpu] != NULL) {
|
|
free_pages((unsigned long)zfs_kfpu_fpregs[cpu],
|
|
get_order(sizeof (union fpregs_state)));
|
|
}
|
|
}
|
|
|
|
kfree(zfs_kfpu_fpregs);
|
|
}
|
|
|
|
static inline int
|
|
kfpu_init(void)
|
|
{
|
|
zfs_kfpu_fpregs = kzalloc(num_possible_cpus() *
|
|
sizeof (union fpregs_state *), GFP_KERNEL);
|
|
if (zfs_kfpu_fpregs == NULL)
|
|
return (-ENOMEM);
|
|
|
|
/*
|
|
* The fxsave and xsave operations require 16-/64-byte alignment of
|
|
* the target memory. Since kmalloc() provides no alignment
|
|
* guarantee instead use alloc_pages_node().
|
|
*/
|
|
unsigned int order = get_order(sizeof (union fpregs_state));
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct page *page = alloc_pages_node(cpu_to_node(cpu),
|
|
GFP_KERNEL | __GFP_ZERO, order);
|
|
if (page == NULL) {
|
|
kfpu_fini();
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
zfs_kfpu_fpregs[cpu] = page_address(page);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#define kfpu_allowed() 1
|
|
#define ex_handler_fprestore ex_handler_default
|
|
|
|
/*
|
|
* FPU save and restore instructions.
|
|
*/
|
|
#define __asm __asm__ __volatile__
|
|
#define kfpu_fxsave(addr) __asm("fxsave %0" : "=m" (*(addr)))
|
|
#define kfpu_fxsaveq(addr) __asm("fxsaveq %0" : "=m" (*(addr)))
|
|
#define kfpu_fnsave(addr) __asm("fnsave %0; fwait" : "=m" (*(addr)))
|
|
#define kfpu_fxrstor(addr) __asm("fxrstor %0" : : "m" (*(addr)))
|
|
#define kfpu_fxrstorq(addr) __asm("fxrstorq %0" : : "m" (*(addr)))
|
|
#define kfpu_frstor(addr) __asm("frstor %0" : : "m" (*(addr)))
|
|
#define kfpu_fxsr_clean(rval) __asm("fnclex; emms; fildl %P[addr]" \
|
|
: : [addr] "m" (rval));
|
|
|
|
static inline void
|
|
kfpu_save_xsave(struct xregs_state *addr, uint64_t mask)
|
|
{
|
|
uint32_t low, hi;
|
|
int err;
|
|
|
|
low = mask;
|
|
hi = mask >> 32;
|
|
XSTATE_XSAVE(addr, low, hi, err);
|
|
WARN_ON_ONCE(err);
|
|
}
|
|
|
|
static inline void
|
|
kfpu_save_fxsr(struct fxregs_state *addr)
|
|
{
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
kfpu_fxsave(addr);
|
|
else
|
|
kfpu_fxsaveq(addr);
|
|
}
|
|
|
|
static inline void
|
|
kfpu_save_fsave(struct fregs_state *addr)
|
|
{
|
|
kfpu_fnsave(addr);
|
|
}
|
|
|
|
static inline void
|
|
kfpu_begin(void)
|
|
{
|
|
/*
|
|
* Preemption and interrupts must be disabled for the critical
|
|
* region where the FPU state is being modified.
|
|
*/
|
|
preempt_disable();
|
|
local_irq_disable();
|
|
|
|
/*
|
|
* The current FPU registers need to be preserved by kfpu_begin()
|
|
* and restored by kfpu_end(). They are stored in a dedicated
|
|
* per-cpu variable, not in the task struct, this allows any user
|
|
* FPU state to be correctly preserved and restored.
|
|
*/
|
|
union fpregs_state *state = zfs_kfpu_fpregs[smp_processor_id()];
|
|
|
|
if (static_cpu_has(X86_FEATURE_XSAVE)) {
|
|
kfpu_save_xsave(&state->xsave, ~0);
|
|
} else if (static_cpu_has(X86_FEATURE_FXSR)) {
|
|
kfpu_save_fxsr(&state->fxsave);
|
|
} else {
|
|
kfpu_save_fsave(&state->fsave);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
kfpu_restore_xsave(struct xregs_state *addr, uint64_t mask)
|
|
{
|
|
uint32_t low, hi;
|
|
|
|
low = mask;
|
|
hi = mask >> 32;
|
|
XSTATE_XRESTORE(addr, low, hi);
|
|
}
|
|
|
|
static inline void
|
|
kfpu_restore_fxsr(struct fxregs_state *addr)
|
|
{
|
|
/*
|
|
* On AuthenticAMD K7 and K8 processors the fxrstor instruction only
|
|
* restores the _x87 FOP, FIP, and FDP registers when an exception
|
|
* is pending. Clean the _x87 state to force the restore.
|
|
*/
|
|
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK)))
|
|
kfpu_fxsr_clean(addr);
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
kfpu_fxrstor(addr);
|
|
} else {
|
|
kfpu_fxrstorq(addr);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
kfpu_restore_fsave(struct fregs_state *addr)
|
|
{
|
|
kfpu_frstor(addr);
|
|
}
|
|
|
|
static inline void
|
|
kfpu_end(void)
|
|
{
|
|
union fpregs_state *state = zfs_kfpu_fpregs[smp_processor_id()];
|
|
|
|
if (static_cpu_has(X86_FEATURE_XSAVE)) {
|
|
kfpu_restore_xsave(&state->xsave, ~0);
|
|
} else if (static_cpu_has(X86_FEATURE_FXSR)) {
|
|
kfpu_restore_fxsr(&state->fxsave);
|
|
} else {
|
|
kfpu_restore_fsave(&state->fsave);
|
|
}
|
|
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
* FPU support is unavailable.
|
|
*/
|
|
#define kfpu_allowed() 0
|
|
#define kfpu_begin() do {} while (0)
|
|
#define kfpu_end() do {} while (0)
|
|
#define kfpu_init() 0
|
|
#define kfpu_fini() ((void) 0)
|
|
|
|
#endif /* defined(HAVE_KERNEL_FPU_INTERNAL) */
|
|
#endif /* defined(KERNEL_EXPORTS_X86_FPU) */
|
|
|
|
#else /* defined(_KERNEL) */
|
|
/*
|
|
* FPU dummy methods for user space.
|
|
*/
|
|
#define kfpu_allowed() 1
|
|
#define kfpu_begin() do {} while (0)
|
|
#define kfpu_end() do {} while (0)
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
/*
|
|
* CPUID feature tests for user-space. Linux kernel provides an interface for
|
|
* CPU feature testing.
|
|
*/
|
|
#if !defined(_KERNEL)
|
|
|
|
/*
|
|
* x86 registers used implicitly by CPUID
|
|
*/
|
|
typedef enum cpuid_regs {
|
|
EAX = 0,
|
|
EBX,
|
|
ECX,
|
|
EDX,
|
|
CPUID_REG_CNT = 4
|
|
} cpuid_regs_t;
|
|
|
|
/*
|
|
* List of instruction sets identified by CPUID
|
|
*/
|
|
typedef enum cpuid_inst_sets {
|
|
SSE = 0,
|
|
SSE2,
|
|
SSE3,
|
|
SSSE3,
|
|
SSE4_1,
|
|
SSE4_2,
|
|
OSXSAVE,
|
|
AVX,
|
|
AVX2,
|
|
BMI1,
|
|
BMI2,
|
|
AVX512F,
|
|
AVX512CD,
|
|
AVX512DQ,
|
|
AVX512BW,
|
|
AVX512IFMA,
|
|
AVX512VBMI,
|
|
AVX512PF,
|
|
AVX512ER,
|
|
AVX512VL,
|
|
AES,
|
|
PCLMULQDQ
|
|
} cpuid_inst_sets_t;
|
|
|
|
/*
|
|
* Instruction set descriptor.
|
|
*/
|
|
typedef struct cpuid_feature_desc {
|
|
uint32_t leaf; /* CPUID leaf */
|
|
uint32_t subleaf; /* CPUID sub-leaf */
|
|
uint32_t flag; /* bit mask of the feature */
|
|
cpuid_regs_t reg; /* which CPUID return register to test */
|
|
} cpuid_feature_desc_t;
|
|
|
|
#define _AVX512F_BIT (1U << 16)
|
|
#define _AVX512CD_BIT (_AVX512F_BIT | (1U << 28))
|
|
#define _AVX512DQ_BIT (_AVX512F_BIT | (1U << 17))
|
|
#define _AVX512BW_BIT (_AVX512F_BIT | (1U << 30))
|
|
#define _AVX512IFMA_BIT (_AVX512F_BIT | (1U << 21))
|
|
#define _AVX512VBMI_BIT (1U << 1) /* AVX512F_BIT is on another leaf */
|
|
#define _AVX512PF_BIT (_AVX512F_BIT | (1U << 26))
|
|
#define _AVX512ER_BIT (_AVX512F_BIT | (1U << 27))
|
|
#define _AVX512VL_BIT (1U << 31) /* if used also check other levels */
|
|
#define _AES_BIT (1U << 25)
|
|
#define _PCLMULQDQ_BIT (1U << 1)
|
|
|
|
/*
|
|
* Descriptions of supported instruction sets
|
|
*/
|
|
static const cpuid_feature_desc_t cpuid_features[] = {
|
|
[SSE] = {1U, 0U, 1U << 25, EDX },
|
|
[SSE2] = {1U, 0U, 1U << 26, EDX },
|
|
[SSE3] = {1U, 0U, 1U << 0, ECX },
|
|
[SSSE3] = {1U, 0U, 1U << 9, ECX },
|
|
[SSE4_1] = {1U, 0U, 1U << 19, ECX },
|
|
[SSE4_2] = {1U, 0U, 1U << 20, ECX },
|
|
[OSXSAVE] = {1U, 0U, 1U << 27, ECX },
|
|
[AVX] = {1U, 0U, 1U << 28, ECX },
|
|
[AVX2] = {7U, 0U, 1U << 5, EBX },
|
|
[BMI1] = {7U, 0U, 1U << 3, EBX },
|
|
[BMI2] = {7U, 0U, 1U << 8, EBX },
|
|
[AVX512F] = {7U, 0U, _AVX512F_BIT, EBX },
|
|
[AVX512CD] = {7U, 0U, _AVX512CD_BIT, EBX },
|
|
[AVX512DQ] = {7U, 0U, _AVX512DQ_BIT, EBX },
|
|
[AVX512BW] = {7U, 0U, _AVX512BW_BIT, EBX },
|
|
[AVX512IFMA] = {7U, 0U, _AVX512IFMA_BIT, EBX },
|
|
[AVX512VBMI] = {7U, 0U, _AVX512VBMI_BIT, ECX },
|
|
[AVX512PF] = {7U, 0U, _AVX512PF_BIT, EBX },
|
|
[AVX512ER] = {7U, 0U, _AVX512ER_BIT, EBX },
|
|
[AVX512VL] = {7U, 0U, _AVX512ER_BIT, EBX },
|
|
[AES] = {1U, 0U, _AES_BIT, ECX },
|
|
[PCLMULQDQ] = {1U, 0U, _PCLMULQDQ_BIT, ECX },
|
|
};
|
|
|
|
/*
|
|
* Check if OS supports AVX and AVX2 by checking XCR0
|
|
* Only call this function if CPUID indicates that AVX feature is
|
|
* supported by the CPU, otherwise it might be an illegal instruction.
|
|
*/
|
|
static inline uint64_t
|
|
xgetbv(uint32_t index)
|
|
{
|
|
uint32_t eax, edx;
|
|
/* xgetbv - instruction byte code */
|
|
__asm__ __volatile__(".byte 0x0f; .byte 0x01; .byte 0xd0"
|
|
: "=a" (eax), "=d" (edx)
|
|
: "c" (index));
|
|
|
|
return ((((uint64_t)edx)<<32) | (uint64_t)eax);
|
|
}
|
|
|
|
/*
|
|
* Check if CPU supports a feature
|
|
*/
|
|
static inline boolean_t
|
|
__cpuid_check_feature(const cpuid_feature_desc_t *desc)
|
|
{
|
|
uint32_t r[CPUID_REG_CNT];
|
|
|
|
if (__get_cpuid_max(0, NULL) >= desc->leaf) {
|
|
/*
|
|
* __cpuid_count is needed to properly check
|
|
* for AVX2. It is a macro, so return parameters
|
|
* are passed by value.
|
|
*/
|
|
__cpuid_count(desc->leaf, desc->subleaf,
|
|
r[EAX], r[EBX], r[ECX], r[EDX]);
|
|
return ((r[desc->reg] & desc->flag) == desc->flag);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
#define CPUID_FEATURE_CHECK(name, id) \
|
|
static inline boolean_t \
|
|
__cpuid_has_ ## name(void) \
|
|
{ \
|
|
return (__cpuid_check_feature(&cpuid_features[id])); \
|
|
}
|
|
|
|
/*
|
|
* Define functions for user-space CPUID features testing
|
|
*/
|
|
CPUID_FEATURE_CHECK(sse, SSE);
|
|
CPUID_FEATURE_CHECK(sse2, SSE2);
|
|
CPUID_FEATURE_CHECK(sse3, SSE3);
|
|
CPUID_FEATURE_CHECK(ssse3, SSSE3);
|
|
CPUID_FEATURE_CHECK(sse4_1, SSE4_1);
|
|
CPUID_FEATURE_CHECK(sse4_2, SSE4_2);
|
|
CPUID_FEATURE_CHECK(avx, AVX);
|
|
CPUID_FEATURE_CHECK(avx2, AVX2);
|
|
CPUID_FEATURE_CHECK(osxsave, OSXSAVE);
|
|
CPUID_FEATURE_CHECK(bmi1, BMI1);
|
|
CPUID_FEATURE_CHECK(bmi2, BMI2);
|
|
CPUID_FEATURE_CHECK(avx512f, AVX512F);
|
|
CPUID_FEATURE_CHECK(avx512cd, AVX512CD);
|
|
CPUID_FEATURE_CHECK(avx512dq, AVX512DQ);
|
|
CPUID_FEATURE_CHECK(avx512bw, AVX512BW);
|
|
CPUID_FEATURE_CHECK(avx512ifma, AVX512IFMA);
|
|
CPUID_FEATURE_CHECK(avx512vbmi, AVX512VBMI);
|
|
CPUID_FEATURE_CHECK(avx512pf, AVX512PF);
|
|
CPUID_FEATURE_CHECK(avx512er, AVX512ER);
|
|
CPUID_FEATURE_CHECK(avx512vl, AVX512VL);
|
|
CPUID_FEATURE_CHECK(aes, AES);
|
|
CPUID_FEATURE_CHECK(pclmulqdq, PCLMULQDQ);
|
|
|
|
#endif /* !defined(_KERNEL) */
|
|
|
|
/*
|
|
* Detect register set support
|
|
*/
|
|
static inline boolean_t
|
|
__simd_state_enabled(const uint64_t state)
|
|
{
|
|
boolean_t has_osxsave;
|
|
uint64_t xcr0;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_OSXSAVE)
|
|
has_osxsave = !!boot_cpu_has(X86_FEATURE_OSXSAVE);
|
|
#else
|
|
has_osxsave = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_osxsave = __cpuid_has_osxsave();
|
|
#endif
|
|
|
|
if (!has_osxsave)
|
|
return (B_FALSE);
|
|
|
|
xcr0 = xgetbv(0);
|
|
return ((xcr0 & state) == state);
|
|
}
|
|
|
|
#define _XSTATE_SSE_AVX (0x2 | 0x4)
|
|
#define _XSTATE_AVX512 (0xE0 | _XSTATE_SSE_AVX)
|
|
|
|
#define __ymm_enabled() __simd_state_enabled(_XSTATE_SSE_AVX)
|
|
#define __zmm_enabled() __simd_state_enabled(_XSTATE_AVX512)
|
|
|
|
|
|
/*
|
|
* Check if SSE instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM));
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_sse());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSE2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse2_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM2));
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_sse2());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSE3 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse3_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM3));
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_sse3());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSSE3 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_ssse3_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_SSSE3));
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_ssse3());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSE4.1 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse4_1_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM4_1));
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_sse4_1());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSE4.2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse4_2_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM4_2));
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_sse4_2());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if AVX instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx_available(void)
|
|
{
|
|
boolean_t has_avx;
|
|
#if defined(_KERNEL)
|
|
has_avx = !!boot_cpu_has(X86_FEATURE_AVX);
|
|
#elif !defined(_KERNEL)
|
|
has_avx = __cpuid_has_avx();
|
|
#endif
|
|
|
|
return (has_avx && __ymm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx2_available(void)
|
|
{
|
|
boolean_t has_avx2;
|
|
#if defined(_KERNEL)
|
|
has_avx2 = !!boot_cpu_has(X86_FEATURE_AVX2);
|
|
#elif !defined(_KERNEL)
|
|
has_avx2 = __cpuid_has_avx2();
|
|
#endif
|
|
|
|
return (has_avx2 && __ymm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if BMI1 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_bmi1_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_BMI1)
|
|
return (!!boot_cpu_has(X86_FEATURE_BMI1));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_bmi1());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if BMI2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_bmi2_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_BMI2)
|
|
return (!!boot_cpu_has(X86_FEATURE_BMI2));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_bmi2());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if AES instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_aes_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AES)
|
|
return (!!boot_cpu_has(X86_FEATURE_AES));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_aes());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if PCLMULQDQ instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_pclmulqdq_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_PCLMULQDQ)
|
|
return (!!boot_cpu_has(X86_FEATURE_PCLMULQDQ));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
return (__cpuid_has_pclmulqdq());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* AVX-512 family of instruction sets:
|
|
*
|
|
* AVX512F Foundation
|
|
* AVX512CD Conflict Detection Instructions
|
|
* AVX512ER Exponential and Reciprocal Instructions
|
|
* AVX512PF Prefetch Instructions
|
|
*
|
|
* AVX512BW Byte and Word Instructions
|
|
* AVX512DQ Double-word and Quadword Instructions
|
|
* AVX512VL Vector Length Extensions
|
|
*
|
|
* AVX512IFMA Integer Fused Multiply Add (Not supported by kernel 4.4)
|
|
* AVX512VBMI Vector Byte Manipulation Instructions
|
|
*/
|
|
|
|
|
|
/* Check if AVX512F instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512f_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512F)
|
|
has_avx512 = !!boot_cpu_has(X86_FEATURE_AVX512F);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512f();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/* Check if AVX512CD instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512cd_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512CD)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512CD);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512cd();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/* Check if AVX512ER instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512er_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512ER)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512ER);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512er();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/* Check if AVX512PF instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512pf_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512PF)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512PF);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512pf();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/* Check if AVX512BW instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512bw_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512BW)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512BW);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512bw();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/* Check if AVX512DQ instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512dq_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512DQ)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512DQ);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512dq();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/* Check if AVX512VL instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512vl_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512VL)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512VL);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512vl();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/* Check if AVX512IFMA instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512ifma_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512IFMA)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512IFMA);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512ifma();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/* Check if AVX512VBMI instruction set is available */
|
|
static inline boolean_t
|
|
zfs_avx512vbmi_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(X86_FEATURE_AVX512VBMI)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512VBMI);
|
|
#else
|
|
has_avx512 = B_FALSE;
|
|
#endif
|
|
#elif !defined(_KERNEL)
|
|
has_avx512 = __cpuid_has_avx512f() &&
|
|
__cpuid_has_avx512vbmi();
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
#endif /* defined(__x86) */
|
|
|
|
#endif /* _SIMD_X86_H */
|