1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-25 01:16:34 +03:00
mirror_zfs/module/os/linux/spl/spl-proc.c
Rob Norris 816d2b2bfc spl-proc: remove old taskq stats
These had minimal useful information for the admin, didn't work properly
in some places, and knew far too much about taskq internals.

With the new stats available, these should never be needed anymore.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Syneto
Closes 
2024-08-19 09:50:45 -07:00

540 lines
13 KiB
C

/*
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
*
* Solaris Porting Layer (SPL) Proc Implementation.
*/
/*
* Copyright (c) 2024, Rob Norris <robn@despairlabs.com>
*/
#include <sys/systeminfo.h>
#include <sys/kstat.h>
#include <sys/kmem.h>
#include <sys/kmem_cache.h>
#include <sys/vmem.h>
#include <sys/proc.h>
#include <linux/ctype.h>
#include <linux/kmod.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/version.h>
#include "zfs_gitrev.h"
#if defined(CONSTIFY_PLUGIN) && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)
typedef struct ctl_table __no_const spl_ctl_table;
#else
typedef struct ctl_table spl_ctl_table;
#endif
#ifdef HAVE_PROC_HANDLER_CTL_TABLE_CONST
#define CONST_CTL_TABLE const struct ctl_table
#else
#define CONST_CTL_TABLE struct ctl_table
#endif
static unsigned long table_min = 0;
static unsigned long table_max = ~0;
static struct ctl_table_header *spl_header = NULL;
#ifndef HAVE_REGISTER_SYSCTL_TABLE
static struct ctl_table_header *spl_kmem = NULL;
static struct ctl_table_header *spl_kstat = NULL;
#endif
static struct proc_dir_entry *proc_spl = NULL;
static struct proc_dir_entry *proc_spl_kmem = NULL;
static struct proc_dir_entry *proc_spl_kmem_slab = NULL;
struct proc_dir_entry *proc_spl_kstat = NULL;
#ifdef DEBUG_KMEM
static int
proc_domemused(CONST_CTL_TABLE *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int rc = 0;
unsigned long val;
spl_ctl_table dummy = *table;
dummy.data = &val;
dummy.proc_handler = &proc_dointvec;
dummy.extra1 = &table_min;
dummy.extra2 = &table_max;
if (write) {
*ppos += *lenp;
} else {
#ifdef HAVE_ATOMIC64_T
val = atomic64_read((atomic64_t *)table->data);
#else
val = atomic_read((atomic_t *)table->data);
#endif /* HAVE_ATOMIC64_T */
rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos);
}
return (rc);
}
#endif /* DEBUG_KMEM */
static int
proc_doslab(CONST_CTL_TABLE *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int rc = 0;
unsigned long val = 0, mask;
spl_ctl_table dummy = *table;
spl_kmem_cache_t *skc = NULL;
dummy.data = &val;
dummy.proc_handler = &proc_dointvec;
dummy.extra1 = &table_min;
dummy.extra2 = &table_max;
if (write) {
*ppos += *lenp;
} else {
down_read(&spl_kmem_cache_sem);
mask = (unsigned long)table->data;
list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
/* Only use slabs of the correct kmem/vmem type */
if (!(skc->skc_flags & mask))
continue;
/* Sum the specified field for selected slabs */
switch (mask & (KMC_TOTAL | KMC_ALLOC | KMC_MAX)) {
case KMC_TOTAL:
val += skc->skc_slab_size * skc->skc_slab_total;
break;
case KMC_ALLOC:
val += skc->skc_obj_size * skc->skc_obj_alloc;
break;
case KMC_MAX:
val += skc->skc_obj_size * skc->skc_obj_max;
break;
}
}
up_read(&spl_kmem_cache_sem);
rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos);
}
return (rc);
}
static int
proc_dohostid(CONST_CTL_TABLE *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
char *end, str[32];
unsigned long hid;
spl_ctl_table dummy = *table;
dummy.data = str;
dummy.maxlen = sizeof (str) - 1;
if (!write)
snprintf(str, sizeof (str), "%lx",
(unsigned long) zone_get_hostid(NULL));
/* always returns 0 */
proc_dostring(&dummy, write, buffer, lenp, ppos);
if (write) {
/*
* We can't use proc_doulongvec_minmax() in the write
* case here because hostid, while a hex value, has no
* leading 0x, which confuses the helper function.
*/
hid = simple_strtoul(str, &end, 16);
if (str == end)
return (-EINVAL);
spl_hostid = hid;
}
return (0);
}
static void
slab_seq_show_headers(struct seq_file *f)
{
seq_printf(f,
"--------------------- cache ----------"
"--------------------------------------------- "
"----- slab ------ "
"---- object ----- "
"--- emergency ---\n");
seq_printf(f,
"name "
" flags size alloc slabsize objsize "
"total alloc max "
"total alloc max "
"dlock alloc max\n");
}
static int
slab_seq_show(struct seq_file *f, void *p)
{
spl_kmem_cache_t *skc = p;
ASSERT(skc->skc_magic == SKC_MAGIC);
if (skc->skc_flags & KMC_SLAB) {
/*
* This cache is backed by a generic Linux kmem cache which
* has its own accounting. For these caches we only track
* the number of active allocated objects that exist within
* the underlying Linux slabs. For the overall statistics of
* the underlying Linux cache please refer to /proc/slabinfo.
*/
spin_lock(&skc->skc_lock);
uint64_t objs_allocated =
percpu_counter_sum(&skc->skc_linux_alloc);
seq_printf(f, "%-36s ", skc->skc_name);
seq_printf(f, "0x%05lx %9s %9lu %8s %8u "
"%5s %5s %5s %5s %5lu %5s %5s %5s %5s\n",
(long unsigned)skc->skc_flags,
"-",
(long unsigned)(skc->skc_obj_size * objs_allocated),
"-",
(unsigned)skc->skc_obj_size,
"-", "-", "-", "-",
(long unsigned)objs_allocated,
"-", "-", "-", "-");
spin_unlock(&skc->skc_lock);
return (0);
}
spin_lock(&skc->skc_lock);
seq_printf(f, "%-36s ", skc->skc_name);
seq_printf(f, "0x%05lx %9lu %9lu %8u %8u "
"%5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu\n",
(long unsigned)skc->skc_flags,
(long unsigned)(skc->skc_slab_size * skc->skc_slab_total),
(long unsigned)(skc->skc_obj_size * skc->skc_obj_alloc),
(unsigned)skc->skc_slab_size,
(unsigned)skc->skc_obj_size,
(long unsigned)skc->skc_slab_total,
(long unsigned)skc->skc_slab_alloc,
(long unsigned)skc->skc_slab_max,
(long unsigned)skc->skc_obj_total,
(long unsigned)skc->skc_obj_alloc,
(long unsigned)skc->skc_obj_max,
(long unsigned)skc->skc_obj_deadlock,
(long unsigned)skc->skc_obj_emergency,
(long unsigned)skc->skc_obj_emergency_max);
spin_unlock(&skc->skc_lock);
return (0);
}
static void *
slab_seq_start(struct seq_file *f, loff_t *pos)
{
struct list_head *p;
loff_t n = *pos;
down_read(&spl_kmem_cache_sem);
if (!n)
slab_seq_show_headers(f);
p = spl_kmem_cache_list.next;
while (n--) {
p = p->next;
if (p == &spl_kmem_cache_list)
return (NULL);
}
return (list_entry(p, spl_kmem_cache_t, skc_list));
}
static void *
slab_seq_next(struct seq_file *f, void *p, loff_t *pos)
{
spl_kmem_cache_t *skc = p;
++*pos;
return ((skc->skc_list.next == &spl_kmem_cache_list) ?
NULL : list_entry(skc->skc_list.next, spl_kmem_cache_t, skc_list));
}
static void
slab_seq_stop(struct seq_file *f, void *v)
{
up_read(&spl_kmem_cache_sem);
}
static const struct seq_operations slab_seq_ops = {
.show = slab_seq_show,
.start = slab_seq_start,
.next = slab_seq_next,
.stop = slab_seq_stop,
};
static int
proc_slab_open(struct inode *inode, struct file *filp)
{
return (seq_open(filp, &slab_seq_ops));
}
static const kstat_proc_op_t proc_slab_operations = {
#ifdef HAVE_PROC_OPS_STRUCT
.proc_open = proc_slab_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = seq_release,
#else
.open = proc_slab_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
#endif
};
static struct ctl_table spl_kmem_table[] = {
#ifdef DEBUG_KMEM
{
.procname = "kmem_used",
.data = &kmem_alloc_used,
#ifdef HAVE_ATOMIC64_T
.maxlen = sizeof (atomic64_t),
#else
.maxlen = sizeof (atomic_t),
#endif /* HAVE_ATOMIC64_T */
.mode = 0444,
.proc_handler = &proc_domemused,
},
{
.procname = "kmem_max",
.data = &kmem_alloc_max,
.maxlen = sizeof (unsigned long),
.extra1 = &table_min,
.extra2 = &table_max,
.mode = 0444,
.proc_handler = &proc_doulongvec_minmax,
},
#endif /* DEBUG_KMEM */
{
.procname = "slab_kvmem_total",
.data = (void *)(KMC_KVMEM | KMC_TOTAL),
.maxlen = sizeof (unsigned long),
.extra1 = &table_min,
.extra2 = &table_max,
.mode = 0444,
.proc_handler = &proc_doslab,
},
{
.procname = "slab_kvmem_alloc",
.data = (void *)(KMC_KVMEM | KMC_ALLOC),
.maxlen = sizeof (unsigned long),
.extra1 = &table_min,
.extra2 = &table_max,
.mode = 0444,
.proc_handler = &proc_doslab,
},
{
.procname = "slab_kvmem_max",
.data = (void *)(KMC_KVMEM | KMC_MAX),
.maxlen = sizeof (unsigned long),
.extra1 = &table_min,
.extra2 = &table_max,
.mode = 0444,
.proc_handler = &proc_doslab,
},
{},
};
static struct ctl_table spl_kstat_table[] = {
{},
};
static struct ctl_table spl_table[] = {
/*
* NB No .strategy entries have been provided since
* sysctl(8) prefers to go via /proc for portability.
*/
{
.procname = "gitrev",
.data = (char *)ZFS_META_GITREV,
.maxlen = sizeof (ZFS_META_GITREV),
.mode = 0444,
.proc_handler = &proc_dostring,
},
{
.procname = "hostid",
.data = &spl_hostid,
.maxlen = sizeof (unsigned long),
.mode = 0644,
.proc_handler = &proc_dohostid,
},
#ifdef HAVE_REGISTER_SYSCTL_TABLE
{
.procname = "kmem",
.mode = 0555,
.child = spl_kmem_table,
},
{
.procname = "kstat",
.mode = 0555,
.child = spl_kstat_table,
},
#endif
{},
};
#ifdef HAVE_REGISTER_SYSCTL_TABLE
static struct ctl_table spl_dir[] = {
{
.procname = "spl",
.mode = 0555,
.child = spl_table,
},
{}
};
static struct ctl_table spl_root[] = {
{
.procname = "kernel",
.mode = 0555,
.child = spl_dir,
},
{}
};
#endif
static void spl_proc_cleanup(void)
{
remove_proc_entry("kstat", proc_spl);
remove_proc_entry("slab", proc_spl_kmem);
remove_proc_entry("kmem", proc_spl);
remove_proc_entry("spl", NULL);
#ifndef HAVE_REGISTER_SYSCTL_TABLE
if (spl_kstat) {
unregister_sysctl_table(spl_kstat);
spl_kstat = NULL;
}
if (spl_kmem) {
unregister_sysctl_table(spl_kmem);
spl_kmem = NULL;
}
#endif
if (spl_header) {
unregister_sysctl_table(spl_header);
spl_header = NULL;
}
}
#ifndef HAVE_REGISTER_SYSCTL_TABLE
/*
* Traditionally, struct ctl_table arrays have been terminated by an "empty"
* sentinel element (specifically, one with .procname == NULL).
*
* Linux 6.6 began migrating away from this, adding register_sysctl_sz() so
* that callers could provide the size directly, and redefining
* register_sysctl() to just call register_sysctl_sz() with the array size. It
* retained support for the terminating element so that existing callers would
* continue to work.
*
* Linux 6.11 removed support for the terminating element, instead interpreting
* it as a real malformed element, and rejecting it.
*
* In order to continue support older kernels, we retain the terminating
* sentinel element for our sysctl tables, but instead detect availability of
* register_sysctl_sz(). If it exists, we pass it the array size -1, stopping
* the kernel from trying to process the terminator. For pre-6.6 kernels that
* don't have register_sysctl_sz(), we just use register_sysctl(), which can
* handle the terminating element as it always has.
*/
#ifdef HAVE_REGISTER_SYSCTL_SZ
#define spl_proc_register_sysctl(p, t) \
register_sysctl_sz(p, t, ARRAY_SIZE(t)-1)
#else
#define spl_proc_register_sysctl(p, t) \
register_sysctl(p, t)
#endif
#endif
int
spl_proc_init(void)
{
int rc = 0;
#ifdef HAVE_REGISTER_SYSCTL_TABLE
spl_header = register_sysctl_table(spl_root);
if (spl_header == NULL)
return (-EUNATCH);
#else
spl_header = spl_proc_register_sysctl("kernel/spl", spl_table);
if (spl_header == NULL)
return (-EUNATCH);
spl_kmem = spl_proc_register_sysctl("kernel/spl/kmem", spl_kmem_table);
if (spl_kmem == NULL) {
rc = -EUNATCH;
goto out;
}
spl_kstat = spl_proc_register_sysctl("kernel/spl/kstat",
spl_kstat_table);
if (spl_kstat == NULL) {
rc = -EUNATCH;
goto out;
}
#endif
proc_spl = proc_mkdir("spl", NULL);
if (proc_spl == NULL) {
rc = -EUNATCH;
goto out;
}
proc_spl_kmem = proc_mkdir("kmem", proc_spl);
if (proc_spl_kmem == NULL) {
rc = -EUNATCH;
goto out;
}
proc_spl_kmem_slab = proc_create_data("slab", 0444, proc_spl_kmem,
&proc_slab_operations, NULL);
if (proc_spl_kmem_slab == NULL) {
rc = -EUNATCH;
goto out;
}
proc_spl_kstat = proc_mkdir("kstat", proc_spl);
if (proc_spl_kstat == NULL) {
rc = -EUNATCH;
goto out;
}
out:
if (rc)
spl_proc_cleanup();
return (rc);
}
void
spl_proc_fini(void)
{
spl_proc_cleanup();
}