mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 19:19:32 +03:00
6955b40138
Object allocation performance can be improved for complex operations by providing an interface which returns the newly allocated dnode. This allows the caller to immediately use the dnode without incurring the expense of looking up the dnode by object number. The functions dmu_object_alloc_hold(), zap_create_hold(), and dmu_bonus_hold_by_dnode() were added for this purpose. The zap_create_* functions have been updated to take advantage of this new functionality. The dmu_bonus_hold_impl() function should really have never been included in sys/dmu.h and was removed. It's sole caller was converted to use dmu_bonus_hold_by_dnode(). The new symbols have been exported for use by Lustre. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed by: Matt Ahrens <mahrens@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8015
503 lines
14 KiB
C
503 lines
14 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
|
|
* Copyright 2014 HybridCluster. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/dsl_dataset.h>
|
|
|
|
/*
|
|
* Each of the concurrent object allocators will grab
|
|
* 2^dmu_object_alloc_chunk_shift dnode slots at a time. The default is to
|
|
* grab 128 slots, which is 4 blocks worth. This was experimentally
|
|
* determined to be the lowest value that eliminates the measurable effect
|
|
* of lock contention from this code path.
|
|
*/
|
|
int dmu_object_alloc_chunk_shift = 7;
|
|
|
|
static uint64_t
|
|
dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
|
|
int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
|
|
int dnodesize, dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
|
|
{
|
|
uint64_t object;
|
|
uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
|
|
(DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
|
|
dnode_t *dn = NULL;
|
|
int dn_slots = dnodesize >> DNODE_SHIFT;
|
|
boolean_t restarted = B_FALSE;
|
|
uint64_t *cpuobj = NULL;
|
|
int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
|
|
int error;
|
|
|
|
kpreempt_disable();
|
|
cpuobj = &os->os_obj_next_percpu[CPU_SEQID %
|
|
os->os_obj_next_percpu_len];
|
|
kpreempt_enable();
|
|
|
|
if (dn_slots == 0) {
|
|
dn_slots = DNODE_MIN_SLOTS;
|
|
} else {
|
|
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
|
|
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
|
|
}
|
|
|
|
/*
|
|
* The "chunk" of dnodes that is assigned to a CPU-specific
|
|
* allocator needs to be at least one block's worth, to avoid
|
|
* lock contention on the dbuf. It can be at most one L1 block's
|
|
* worth, so that the "rescan after polishing off a L1's worth"
|
|
* logic below will be sure to kick in.
|
|
*/
|
|
if (dnodes_per_chunk < DNODES_PER_BLOCK)
|
|
dnodes_per_chunk = DNODES_PER_BLOCK;
|
|
if (dnodes_per_chunk > L1_dnode_count)
|
|
dnodes_per_chunk = L1_dnode_count;
|
|
|
|
/*
|
|
* The caller requested the dnode be returned as a performance
|
|
* optimization in order to avoid releasing the hold only to
|
|
* immediately reacquire it. Since they caller is responsible
|
|
* for releasing the hold they must provide the tag.
|
|
*/
|
|
if (allocated_dnode != NULL) {
|
|
ASSERT3P(tag, !=, NULL);
|
|
} else {
|
|
ASSERT3P(tag, ==, NULL);
|
|
tag = FTAG;
|
|
}
|
|
|
|
object = *cpuobj;
|
|
for (;;) {
|
|
/*
|
|
* If we finished a chunk of dnodes, get a new one from
|
|
* the global allocator.
|
|
*/
|
|
if ((P2PHASE(object, dnodes_per_chunk) == 0) ||
|
|
(P2PHASE(object + dn_slots - 1, dnodes_per_chunk) <
|
|
dn_slots)) {
|
|
DNODE_STAT_BUMP(dnode_alloc_next_chunk);
|
|
mutex_enter(&os->os_obj_lock);
|
|
ASSERT0(P2PHASE(os->os_obj_next_chunk,
|
|
dnodes_per_chunk));
|
|
object = os->os_obj_next_chunk;
|
|
|
|
/*
|
|
* Each time we polish off a L1 bp worth of dnodes
|
|
* (2^12 objects), move to another L1 bp that's
|
|
* still reasonably sparse (at most 1/4 full). Look
|
|
* from the beginning at most once per txg. If we
|
|
* still can't allocate from that L1 block, search
|
|
* for an empty L0 block, which will quickly skip
|
|
* to the end of the metadnode if no nearby L0
|
|
* blocks are empty. This fallback avoids a
|
|
* pathology where full dnode blocks containing
|
|
* large dnodes appear sparse because they have a
|
|
* low blk_fill, leading to many failed allocation
|
|
* attempts. In the long term a better mechanism to
|
|
* search for sparse metadnode regions, such as
|
|
* spacemaps, could be implemented.
|
|
*
|
|
* os_scan_dnodes is set during txg sync if enough
|
|
* objects have been freed since the previous
|
|
* rescan to justify backfilling again.
|
|
*
|
|
* Note that dmu_traverse depends on the behavior
|
|
* that we use multiple blocks of the dnode object
|
|
* before going back to reuse objects. Any change
|
|
* to this algorithm should preserve that property
|
|
* or find another solution to the issues described
|
|
* in traverse_visitbp.
|
|
*/
|
|
if (P2PHASE(object, L1_dnode_count) == 0) {
|
|
uint64_t offset;
|
|
uint64_t blkfill;
|
|
int minlvl;
|
|
if (os->os_rescan_dnodes) {
|
|
offset = 0;
|
|
os->os_rescan_dnodes = B_FALSE;
|
|
} else {
|
|
offset = object << DNODE_SHIFT;
|
|
}
|
|
blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
|
|
minlvl = restarted ? 1 : 2;
|
|
restarted = B_TRUE;
|
|
error = dnode_next_offset(DMU_META_DNODE(os),
|
|
DNODE_FIND_HOLE, &offset, minlvl,
|
|
blkfill, 0);
|
|
if (error == 0) {
|
|
object = offset >> DNODE_SHIFT;
|
|
}
|
|
}
|
|
/*
|
|
* Note: if "restarted", we may find a L0 that
|
|
* is not suitably aligned.
|
|
*/
|
|
os->os_obj_next_chunk =
|
|
P2ALIGN(object, dnodes_per_chunk) +
|
|
dnodes_per_chunk;
|
|
(void) atomic_swap_64(cpuobj, object);
|
|
mutex_exit(&os->os_obj_lock);
|
|
}
|
|
|
|
/*
|
|
* The value of (*cpuobj) before adding dn_slots is the object
|
|
* ID assigned to us. The value afterwards is the object ID
|
|
* assigned to whoever wants to do an allocation next.
|
|
*/
|
|
object = atomic_add_64_nv(cpuobj, dn_slots) - dn_slots;
|
|
|
|
/*
|
|
* XXX We should check for an i/o error here and return
|
|
* up to our caller. Actually we should pre-read it in
|
|
* dmu_tx_assign(), but there is currently no mechanism
|
|
* to do so.
|
|
*/
|
|
error = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
|
|
dn_slots, tag, &dn);
|
|
if (error == 0) {
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
/*
|
|
* Another thread could have allocated it; check
|
|
* again now that we have the struct lock.
|
|
*/
|
|
if (dn->dn_type == DMU_OT_NONE) {
|
|
dnode_allocate(dn, ot, blocksize,
|
|
indirect_blockshift, bonustype,
|
|
bonuslen, dn_slots, tx);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dmu_tx_add_new_object(tx, dn);
|
|
|
|
/*
|
|
* Caller requested the allocated dnode be
|
|
* returned and is responsible for the hold.
|
|
*/
|
|
if (allocated_dnode != NULL)
|
|
*allocated_dnode = dn;
|
|
else
|
|
dnode_rele(dn, tag);
|
|
|
|
return (object);
|
|
}
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dnode_rele(dn, tag);
|
|
DNODE_STAT_BUMP(dnode_alloc_race);
|
|
}
|
|
|
|
/*
|
|
* Skip to next known valid starting point on error. This
|
|
* is the start of the next block of dnodes.
|
|
*/
|
|
if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
|
|
object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
|
|
DNODE_STAT_BUMP(dnode_alloc_next_block);
|
|
}
|
|
(void) atomic_swap_64(cpuobj, object);
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
|
|
bonuslen, 0, NULL, NULL, tx);
|
|
}
|
|
|
|
uint64_t
|
|
dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
|
|
int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
|
|
dmu_tx_t *tx)
|
|
{
|
|
return dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
|
|
bonustype, bonuslen, 0, NULL, NULL, tx);
|
|
}
|
|
|
|
uint64_t
|
|
dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
|
|
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
|
|
bonuslen, dnodesize, NULL, NULL, tx));
|
|
}
|
|
|
|
/*
|
|
* Allocate a new object and return a pointer to the newly allocated dnode
|
|
* via the allocated_dnode argument. The returned dnode will be held and
|
|
* the caller is responsible for releasing the hold by calling dnode_rele().
|
|
*/
|
|
uint64_t
|
|
dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot, int blocksize,
|
|
int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
|
|
int dnodesize, dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
|
|
{
|
|
return (dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
|
|
bonustype, bonuslen, dnodesize, allocated_dnode, tag, tx));
|
|
}
|
|
|
|
int
|
|
dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
|
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
|
|
bonuslen, 0, tx));
|
|
}
|
|
|
|
int
|
|
dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
|
int blocksize, dmu_object_type_t bonustype, int bonuslen,
|
|
int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int dn_slots = dnodesize >> DNODE_SHIFT;
|
|
int err;
|
|
|
|
if (dn_slots == 0)
|
|
dn_slots = DNODE_MIN_SLOTS;
|
|
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
|
|
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
|
|
|
|
if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
|
|
return (SET_ERROR(EBADF));
|
|
|
|
err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
|
|
FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
|
|
dmu_tx_add_new_object(tx, dn);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
|
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
|
|
bonuslen, DNODE_MIN_SIZE, tx));
|
|
}
|
|
|
|
int
|
|
dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
|
int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int dn_slots = dnodesize >> DNODE_SHIFT;
|
|
int err;
|
|
|
|
if (dn_slots == 0)
|
|
dn_slots = DNODE_MIN_SLOTS;
|
|
|
|
if (object == DMU_META_DNODE_OBJECT)
|
|
return (SET_ERROR(EBADF));
|
|
|
|
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
|
|
FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots, tx);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
|
|
|
|
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
|
|
FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
ASSERT(dn->dn_type != DMU_OT_NONE);
|
|
/*
|
|
* If we don't create this free range, we'll leak indirect blocks when
|
|
* we get to freeing the dnode in syncing context.
|
|
*/
|
|
dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
|
|
dnode_free(dn, tx);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return (in *objectp) the next object which is allocated (or a hole)
|
|
* after *object, taking into account only objects that may have been modified
|
|
* after the specified txg.
|
|
*/
|
|
int
|
|
dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
|
|
{
|
|
uint64_t offset;
|
|
uint64_t start_obj;
|
|
struct dsl_dataset *ds = os->os_dsl_dataset;
|
|
int error;
|
|
|
|
if (*objectp == 0) {
|
|
start_obj = 1;
|
|
} else if (ds && dsl_dataset_feature_is_active(ds,
|
|
SPA_FEATURE_LARGE_DNODE)) {
|
|
uint64_t i = *objectp + 1;
|
|
uint64_t last_obj = *objectp | (DNODES_PER_BLOCK - 1);
|
|
dmu_object_info_t doi;
|
|
|
|
/*
|
|
* Scan through the remaining meta dnode block. The contents
|
|
* of each slot in the block are known so it can be quickly
|
|
* checked. If the block is exhausted without a match then
|
|
* hand off to dnode_next_offset() for further scanning.
|
|
*/
|
|
while (i <= last_obj) {
|
|
error = dmu_object_info(os, i, &doi);
|
|
if (error == ENOENT) {
|
|
if (hole) {
|
|
*objectp = i;
|
|
return (0);
|
|
} else {
|
|
i++;
|
|
}
|
|
} else if (error == EEXIST) {
|
|
i++;
|
|
} else if (error == 0) {
|
|
if (hole) {
|
|
i += doi.doi_dnodesize >> DNODE_SHIFT;
|
|
} else {
|
|
*objectp = i;
|
|
return (0);
|
|
}
|
|
} else {
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
start_obj = i;
|
|
} else {
|
|
start_obj = *objectp + 1;
|
|
}
|
|
|
|
offset = start_obj << DNODE_SHIFT;
|
|
|
|
error = dnode_next_offset(DMU_META_DNODE(os),
|
|
(hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
|
|
|
|
*objectp = offset >> DNODE_SHIFT;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
|
|
* refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
|
|
*
|
|
* Only for use from syncing context, on MOS objects.
|
|
*/
|
|
void
|
|
dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
|
|
if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
|
|
dnode_rele(dn, FTAG);
|
|
return;
|
|
}
|
|
ASSERT3U(dn->dn_type, ==, old_type);
|
|
ASSERT0(dn->dn_maxblkid);
|
|
|
|
/*
|
|
* We must initialize the ZAP data before changing the type,
|
|
* so that concurrent calls to *_is_zapified() can determine if
|
|
* the object has been completely zapified by checking the type.
|
|
*/
|
|
mzap_create_impl(dn, 0, 0, tx);
|
|
|
|
dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
|
|
DMU_OTN_ZAP_METADATA;
|
|
dnode_setdirty(dn, tx);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
spa_feature_incr(dmu_objset_spa(mos),
|
|
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
|
|
}
|
|
|
|
void
|
|
dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
dmu_object_type_t t;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
|
|
t = dn->dn_type;
|
|
dnode_rele(dn, FTAG);
|
|
|
|
if (t == DMU_OTN_ZAP_METADATA) {
|
|
spa_feature_decr(dmu_objset_spa(mos),
|
|
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
|
|
}
|
|
VERIFY0(dmu_object_free(mos, object, tx));
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
EXPORT_SYMBOL(dmu_object_alloc);
|
|
EXPORT_SYMBOL(dmu_object_alloc_ibs);
|
|
EXPORT_SYMBOL(dmu_object_alloc_dnsize);
|
|
EXPORT_SYMBOL(dmu_object_alloc_hold);
|
|
EXPORT_SYMBOL(dmu_object_claim);
|
|
EXPORT_SYMBOL(dmu_object_claim_dnsize);
|
|
EXPORT_SYMBOL(dmu_object_reclaim);
|
|
EXPORT_SYMBOL(dmu_object_reclaim_dnsize);
|
|
EXPORT_SYMBOL(dmu_object_free);
|
|
EXPORT_SYMBOL(dmu_object_next);
|
|
EXPORT_SYMBOL(dmu_object_zapify);
|
|
EXPORT_SYMBOL(dmu_object_free_zapified);
|
|
|
|
/* BEGIN CSTYLED */
|
|
module_param(dmu_object_alloc_chunk_shift, int, 0644);
|
|
MODULE_PARM_DESC(dmu_object_alloc_chunk_shift,
|
|
"CPU-specific allocator grabs 2^N objects at once");
|
|
/* END CSTYLED */
|
|
#endif
|