mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-27 18:34:22 +03:00
2e7f664f04
I recently gained the ability to run Clang's static analyzer on the linux kernel modules via a few hacks. This extended coverage to code that was previously missed since Clang's static analyzer only looked at code that we built in userspace. Running it against the Linux kernel modules built from my local branch produced a total of 72 reports against my local branch. Of those, 50 were reports of logic errors and 22 were reports of dead code. Since we already had cleaned up all of the previous dead code reports, I felt it would be a good next step to clean up these dead code reports. Clang did a further breakdown of the dead code reports into: Dead assignment 15 Dead increment 2 Dead nested assignment 5 The benefit of cleaning these up, especially in the case of dead nested assignment, is that they can expose places where our error handling is incorrect. A number of them were fairly straight forward. However several were not: In vdev_disk_physio_completion(), not only were we not using the return value from the static function vdev_disk_dio_put(), but nothing used it, so I changed it to return void and removed the existing (void) cast in the other area where we call it in addition to no longer storing it to a stack value. In FSE_createDTable(), the function is dead code. Its helper function FSE_freeDTable() is also dead code, as are the CPP definitions in `module/zstd/include/zstd_compat_wrapper.h`. We just delete it all. In zfs_zevent_wait(), we have an optimization opportunity. cv_wait_sig() returns 0 if there are waiting signals and 1 if there are none. The Linux SPL version literally returns `signal_pending(current) ? 0 : 1)` and FreeBSD implements the same semantics, we can just do `!cv_wait_sig()` in place of `signal_pending(current)` to avoid unnecessarily calling it again. zfs_setattr() on FreeBSD version did not have error handling issue because the code was removed entirely from FreeBSD version. The error is from updating the attribute directory's files. After some thought, I decided to propapage errors on it to userspace. In zfs_secpolicy_tmp_snapshot(), we ignore a lack of permission from the first check in favor of checking three other permissions. I assume this is intentional. In zfs_create_fs(), the return value of zap_update() was not checked despite setting an important version number. I see no backward compatibility reason to permit failures, so we add an assertion to catch failures. Interestingly, Linux is still using ASSERT(error == 0) from OpenSolaris while FreeBSD has switched to the improved ASSERT0(error) from illumos, although illumos has yet to adopt it here. ASSERT(error == 0) was used on Linux while ASSERT0(error) was used on FreeBSD since the entire file needs conversion and that should be the subject of another patch. dnode_move()'s issue was caused by us not having implemented POINTER_IS_VALID() on Linux. We have a stub in `include/os/linux/spl/sys/kmem_cache.h` for it, when it really should be in `include/os/linux/spl/sys/kmem.h` to be consistent with Illumos/OpenSolaris. FreeBSD put both `POINTER_IS_VALID()` and `POINTER_INVALIDATE()` in `include/os/freebsd/spl/sys/kmem.h`, so we copy what it did. Whenever a report was in platform-specific code, I checked the FreeBSD version to see if it also applied to FreeBSD, but it was only relevant a few times. Lastly, the patch that enabled Clang's static analyzer to be run on the Linux kernel modules needs more work before it can be put into a PR. I plan to do that in the future as part of the on-going static analysis work that I am doing. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14380
1057 lines
27 KiB
C
1057 lines
27 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_trim.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/msdos_fs.h>
|
|
#include <linux/vfs_compat.h>
|
|
#ifdef HAVE_LINUX_BLK_CGROUP_HEADER
|
|
#include <linux/blk-cgroup.h>
|
|
#endif
|
|
|
|
typedef struct vdev_disk {
|
|
struct block_device *vd_bdev;
|
|
krwlock_t vd_lock;
|
|
} vdev_disk_t;
|
|
|
|
/*
|
|
* Unique identifier for the exclusive vdev holder.
|
|
*/
|
|
static void *zfs_vdev_holder = VDEV_HOLDER;
|
|
|
|
/*
|
|
* Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
|
|
* device is missing. The missing path may be transient since the links
|
|
* can be briefly removed and recreated in response to udev events.
|
|
*/
|
|
static uint_t zfs_vdev_open_timeout_ms = 1000;
|
|
|
|
/*
|
|
* Size of the "reserved" partition, in blocks.
|
|
*/
|
|
#define EFI_MIN_RESV_SIZE (16 * 1024)
|
|
|
|
/*
|
|
* Virtual device vector for disks.
|
|
*/
|
|
typedef struct dio_request {
|
|
zio_t *dr_zio; /* Parent ZIO */
|
|
atomic_t dr_ref; /* References */
|
|
int dr_error; /* Bio error */
|
|
int dr_bio_count; /* Count of bio's */
|
|
struct bio *dr_bio[]; /* Attached bio's */
|
|
} dio_request_t;
|
|
|
|
/*
|
|
* BIO request failfast mask.
|
|
*/
|
|
|
|
static unsigned int zfs_vdev_failfast_mask = 1;
|
|
|
|
static fmode_t
|
|
vdev_bdev_mode(spa_mode_t spa_mode)
|
|
{
|
|
fmode_t mode = 0;
|
|
|
|
if (spa_mode & SPA_MODE_READ)
|
|
mode |= FMODE_READ;
|
|
|
|
if (spa_mode & SPA_MODE_WRITE)
|
|
mode |= FMODE_WRITE;
|
|
|
|
return (mode);
|
|
}
|
|
|
|
/*
|
|
* Returns the usable capacity (in bytes) for the partition or disk.
|
|
*/
|
|
static uint64_t
|
|
bdev_capacity(struct block_device *bdev)
|
|
{
|
|
return (i_size_read(bdev->bd_inode));
|
|
}
|
|
|
|
#if !defined(HAVE_BDEV_WHOLE)
|
|
static inline struct block_device *
|
|
bdev_whole(struct block_device *bdev)
|
|
{
|
|
return (bdev->bd_contains);
|
|
}
|
|
#endif
|
|
|
|
#if defined(HAVE_BDEVNAME)
|
|
#define vdev_bdevname(bdev, name) bdevname(bdev, name)
|
|
#else
|
|
static inline void
|
|
vdev_bdevname(struct block_device *bdev, char *name)
|
|
{
|
|
snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Returns the maximum expansion capacity of the block device (in bytes).
|
|
*
|
|
* It is possible to expand a vdev when it has been created as a wholedisk
|
|
* and the containing block device has increased in capacity. Or when the
|
|
* partition containing the pool has been manually increased in size.
|
|
*
|
|
* This function is only responsible for calculating the potential expansion
|
|
* size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
|
|
* responsible for verifying the expected partition layout in the wholedisk
|
|
* case, and updating the partition table if appropriate. Once the partition
|
|
* size has been increased the additional capacity will be visible using
|
|
* bdev_capacity().
|
|
*
|
|
* The returned maximum expansion capacity is always expected to be larger, or
|
|
* at the very least equal, to its usable capacity to prevent overestimating
|
|
* the pool expandsize.
|
|
*/
|
|
static uint64_t
|
|
bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
|
|
{
|
|
uint64_t psize;
|
|
int64_t available;
|
|
|
|
if (wholedisk && bdev != bdev_whole(bdev)) {
|
|
/*
|
|
* When reporting maximum expansion capacity for a wholedisk
|
|
* deduct any capacity which is expected to be lost due to
|
|
* alignment restrictions. Over reporting this value isn't
|
|
* harmful and would only result in slightly less capacity
|
|
* than expected post expansion.
|
|
* The estimated available space may be slightly smaller than
|
|
* bdev_capacity() for devices where the number of sectors is
|
|
* not a multiple of the alignment size and the partition layout
|
|
* is keeping less than PARTITION_END_ALIGNMENT bytes after the
|
|
* "reserved" EFI partition: in such cases return the device
|
|
* usable capacity.
|
|
*/
|
|
available = i_size_read(bdev_whole(bdev)->bd_inode) -
|
|
((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
|
|
PARTITION_END_ALIGNMENT) << SECTOR_BITS);
|
|
psize = MAX(available, bdev_capacity(bdev));
|
|
} else {
|
|
psize = bdev_capacity(bdev);
|
|
}
|
|
|
|
return (psize);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_error(zio_t *zio)
|
|
{
|
|
/*
|
|
* This function can be called in interrupt context, for instance while
|
|
* handling IRQs coming from a misbehaving disk device; use printk()
|
|
* which is safe from any context.
|
|
*/
|
|
printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
|
|
"offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
|
|
zio->io_vd->vdev_path, zio->io_error, zio->io_type,
|
|
(u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
|
|
zio->io_flags);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_kobj_evt_post(vdev_t *v)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
if (vd && vd->vd_bdev) {
|
|
spl_signal_kobj_evt(vd->vd_bdev);
|
|
} else {
|
|
vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
|
|
v->vdev_path);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
|
|
uint64_t *logical_ashift, uint64_t *physical_ashift)
|
|
{
|
|
struct block_device *bdev;
|
|
fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
|
|
hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
|
|
vdev_disk_t *vd;
|
|
|
|
/* Must have a pathname and it must be absolute. */
|
|
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
|
|
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
vdev_dbgmsg(v, "invalid vdev_path");
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Reopen the device if it is currently open. When expanding a
|
|
* partition force re-scanning the partition table if userland
|
|
* did not take care of this already. We need to do this while closed
|
|
* in order to get an accurate updated block device size. Then
|
|
* since udev may need to recreate the device links increase the
|
|
* open retry timeout before reporting the device as unavailable.
|
|
*/
|
|
vd = v->vdev_tsd;
|
|
if (vd) {
|
|
char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
|
|
boolean_t reread_part = B_FALSE;
|
|
|
|
rw_enter(&vd->vd_lock, RW_WRITER);
|
|
bdev = vd->vd_bdev;
|
|
vd->vd_bdev = NULL;
|
|
|
|
if (bdev) {
|
|
if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
|
|
vdev_bdevname(bdev_whole(bdev), disk_name + 5);
|
|
/*
|
|
* If userland has BLKPG_RESIZE_PARTITION,
|
|
* then it should have updated the partition
|
|
* table already. We can detect this by
|
|
* comparing our current physical size
|
|
* with that of the device. If they are
|
|
* the same, then we must not have
|
|
* BLKPG_RESIZE_PARTITION or it failed to
|
|
* update the partition table online. We
|
|
* fallback to rescanning the partition
|
|
* table from the kernel below. However,
|
|
* if the capacity already reflects the
|
|
* updated partition, then we skip
|
|
* rescanning the partition table here.
|
|
*/
|
|
if (v->vdev_psize == bdev_capacity(bdev))
|
|
reread_part = B_TRUE;
|
|
}
|
|
|
|
blkdev_put(bdev, mode | FMODE_EXCL);
|
|
}
|
|
|
|
if (reread_part) {
|
|
bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
|
|
zfs_vdev_holder);
|
|
if (!IS_ERR(bdev)) {
|
|
int error = vdev_bdev_reread_part(bdev);
|
|
blkdev_put(bdev, mode | FMODE_EXCL);
|
|
if (error == 0) {
|
|
timeout = MSEC2NSEC(
|
|
zfs_vdev_open_timeout_ms * 2);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
|
|
|
|
rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
|
|
rw_enter(&vd->vd_lock, RW_WRITER);
|
|
}
|
|
|
|
/*
|
|
* Devices are always opened by the path provided at configuration
|
|
* time. This means that if the provided path is a udev by-id path
|
|
* then drives may be re-cabled without an issue. If the provided
|
|
* path is a udev by-path path, then the physical location information
|
|
* will be preserved. This can be critical for more complicated
|
|
* configurations where drives are located in specific physical
|
|
* locations to maximize the systems tolerance to component failure.
|
|
*
|
|
* Alternatively, you can provide your own udev rule to flexibly map
|
|
* the drives as you see fit. It is not advised that you use the
|
|
* /dev/[hd]d devices which may be reordered due to probing order.
|
|
* Devices in the wrong locations will be detected by the higher
|
|
* level vdev validation.
|
|
*
|
|
* The specified paths may be briefly removed and recreated in
|
|
* response to udev events. This should be exceptionally unlikely
|
|
* because the zpool command makes every effort to verify these paths
|
|
* have already settled prior to reaching this point. Therefore,
|
|
* a ENOENT failure at this point is highly likely to be transient
|
|
* and it is reasonable to sleep and retry before giving up. In
|
|
* practice delays have been observed to be on the order of 100ms.
|
|
*
|
|
* When ERESTARTSYS is returned it indicates the block device is
|
|
* a zvol which could not be opened due to the deadlock detection
|
|
* logic in zvol_open(). Extend the timeout and retry the open
|
|
* subsequent attempts are expected to eventually succeed.
|
|
*/
|
|
hrtime_t start = gethrtime();
|
|
bdev = ERR_PTR(-ENXIO);
|
|
while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
|
|
bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
|
|
zfs_vdev_holder);
|
|
if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
|
|
/*
|
|
* There is no point of waiting since device is removed
|
|
* explicitly
|
|
*/
|
|
if (v->vdev_removed)
|
|
break;
|
|
|
|
schedule_timeout(MSEC_TO_TICK(10));
|
|
} else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
|
|
timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
|
|
continue;
|
|
} else if (IS_ERR(bdev)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IS_ERR(bdev)) {
|
|
int error = -PTR_ERR(bdev);
|
|
vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
|
|
(u_longlong_t)(gethrtime() - start),
|
|
(u_longlong_t)timeout);
|
|
vd->vd_bdev = NULL;
|
|
v->vdev_tsd = vd;
|
|
rw_exit(&vd->vd_lock);
|
|
return (SET_ERROR(error));
|
|
} else {
|
|
vd->vd_bdev = bdev;
|
|
v->vdev_tsd = vd;
|
|
rw_exit(&vd->vd_lock);
|
|
}
|
|
|
|
/* Determine the physical block size */
|
|
int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
|
|
|
|
/* Determine the logical block size */
|
|
int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
|
|
|
|
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
|
|
v->vdev_nowritecache = B_FALSE;
|
|
|
|
/* Set when device reports it supports TRIM. */
|
|
v->vdev_has_trim = bdev_discard_supported(vd->vd_bdev);
|
|
|
|
/* Set when device reports it supports secure TRIM. */
|
|
v->vdev_has_securetrim = bdev_secure_discard_supported(vd->vd_bdev);
|
|
|
|
/* Inform the ZIO pipeline that we are non-rotational */
|
|
v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
|
|
|
|
/* Physical volume size in bytes for the partition */
|
|
*psize = bdev_capacity(vd->vd_bdev);
|
|
|
|
/* Physical volume size in bytes including possible expansion space */
|
|
*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
|
|
|
|
/* Based on the minimum sector size set the block size */
|
|
*physical_ashift = highbit64(MAX(physical_block_size,
|
|
SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
*logical_ashift = highbit64(MAX(logical_block_size,
|
|
SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_close(vdev_t *v)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (v->vdev_reopening || vd == NULL)
|
|
return;
|
|
|
|
if (vd->vd_bdev != NULL) {
|
|
blkdev_put(vd->vd_bdev,
|
|
vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
|
|
}
|
|
|
|
rw_destroy(&vd->vd_lock);
|
|
kmem_free(vd, sizeof (vdev_disk_t));
|
|
v->vdev_tsd = NULL;
|
|
}
|
|
|
|
static dio_request_t *
|
|
vdev_disk_dio_alloc(int bio_count)
|
|
{
|
|
dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * bio_count, KM_SLEEP);
|
|
atomic_set(&dr->dr_ref, 0);
|
|
dr->dr_bio_count = bio_count;
|
|
dr->dr_error = 0;
|
|
|
|
for (int i = 0; i < dr->dr_bio_count; i++)
|
|
dr->dr_bio[i] = NULL;
|
|
|
|
return (dr);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_free(dio_request_t *dr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
bio_put(dr->dr_bio[i]);
|
|
|
|
kmem_free(dr, sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * dr->dr_bio_count);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_get(dio_request_t *dr)
|
|
{
|
|
atomic_inc(&dr->dr_ref);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_put(dio_request_t *dr)
|
|
{
|
|
int rc = atomic_dec_return(&dr->dr_ref);
|
|
|
|
/*
|
|
* Free the dio_request when the last reference is dropped and
|
|
* ensure zio_interpret is called only once with the correct zio
|
|
*/
|
|
if (rc == 0) {
|
|
zio_t *zio = dr->dr_zio;
|
|
int error = dr->dr_error;
|
|
|
|
vdev_disk_dio_free(dr);
|
|
|
|
if (zio) {
|
|
zio->io_error = error;
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
|
|
zio_delay_interrupt(zio);
|
|
}
|
|
}
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
|
|
{
|
|
dio_request_t *dr = bio->bi_private;
|
|
|
|
if (dr->dr_error == 0) {
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
dr->dr_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
if (error)
|
|
dr->dr_error = -(error);
|
|
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
dr->dr_error = EIO;
|
|
#endif
|
|
}
|
|
|
|
/* Drop reference acquired by __vdev_disk_physio */
|
|
vdev_disk_dio_put(dr);
|
|
}
|
|
|
|
static inline void
|
|
vdev_submit_bio_impl(struct bio *bio)
|
|
{
|
|
#ifdef HAVE_1ARG_SUBMIT_BIO
|
|
(void) submit_bio(bio);
|
|
#else
|
|
(void) submit_bio(bio_data_dir(bio), bio);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
|
|
* replace it with preempt_schedule under the following condition:
|
|
*/
|
|
#if defined(CONFIG_ARM64) && \
|
|
defined(CONFIG_PREEMPTION) && \
|
|
defined(CONFIG_BLK_CGROUP)
|
|
#define preempt_schedule_notrace(x) preempt_schedule(x)
|
|
#endif
|
|
|
|
/*
|
|
* As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
|
|
* as an argument removing the need to set it with bio_set_dev(). This
|
|
* removes the need for all of the following compatibility code.
|
|
*/
|
|
#if !defined(HAVE_BIO_ALLOC_4ARG)
|
|
|
|
#ifdef HAVE_BIO_SET_DEV
|
|
#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
|
|
/*
|
|
* The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
|
|
* blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
|
|
* As a side effect the function was converted to GPL-only. Define our
|
|
* own version when needed which uses rcu_read_lock_sched().
|
|
*
|
|
* The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
|
|
* part, moving blkg_tryget into the private one. Define our own version.
|
|
*/
|
|
#if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
|
|
static inline bool
|
|
vdev_blkg_tryget(struct blkcg_gq *blkg)
|
|
{
|
|
struct percpu_ref *ref = &blkg->refcnt;
|
|
unsigned long __percpu *count;
|
|
bool rc;
|
|
|
|
rcu_read_lock_sched();
|
|
|
|
if (__ref_is_percpu(ref, &count)) {
|
|
this_cpu_inc(*count);
|
|
rc = true;
|
|
} else {
|
|
#ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
|
|
rc = atomic_long_inc_not_zero(&ref->data->count);
|
|
#else
|
|
rc = atomic_long_inc_not_zero(&ref->count);
|
|
#endif
|
|
}
|
|
|
|
rcu_read_unlock_sched();
|
|
|
|
return (rc);
|
|
}
|
|
#else
|
|
#define vdev_blkg_tryget(bg) blkg_tryget(bg)
|
|
#endif
|
|
#ifdef HAVE_BIO_SET_DEV_MACRO
|
|
/*
|
|
* The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
|
|
* GPL-only bio_associate_blkg() symbol thus inadvertently converting
|
|
* the entire macro. Provide a minimal version which always assigns the
|
|
* request queue's root_blkg to the bio.
|
|
*/
|
|
static inline void
|
|
vdev_bio_associate_blkg(struct bio *bio)
|
|
{
|
|
#if defined(HAVE_BIO_BDEV_DISK)
|
|
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
|
|
#else
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
#endif
|
|
|
|
ASSERT3P(q, !=, NULL);
|
|
ASSERT3P(bio->bi_blkg, ==, NULL);
|
|
|
|
if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
|
|
bio->bi_blkg = q->root_blkg;
|
|
}
|
|
|
|
#define bio_associate_blkg vdev_bio_associate_blkg
|
|
#else
|
|
static inline void
|
|
vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
|
|
{
|
|
#if defined(HAVE_BIO_BDEV_DISK)
|
|
struct request_queue *q = bdev->bd_disk->queue;
|
|
#else
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
#endif
|
|
bio_clear_flag(bio, BIO_REMAPPED);
|
|
if (bio->bi_bdev != bdev)
|
|
bio_clear_flag(bio, BIO_THROTTLED);
|
|
bio->bi_bdev = bdev;
|
|
|
|
ASSERT3P(q, !=, NULL);
|
|
ASSERT3P(bio->bi_blkg, ==, NULL);
|
|
|
|
if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
|
|
bio->bi_blkg = q->root_blkg;
|
|
}
|
|
#define bio_set_dev vdev_bio_set_dev
|
|
#endif
|
|
#endif
|
|
#else
|
|
/*
|
|
* Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
|
|
*/
|
|
static inline void
|
|
bio_set_dev(struct bio *bio, struct block_device *bdev)
|
|
{
|
|
bio->bi_bdev = bdev;
|
|
}
|
|
#endif /* HAVE_BIO_SET_DEV */
|
|
#endif /* !HAVE_BIO_ALLOC_4ARG */
|
|
|
|
static inline void
|
|
vdev_submit_bio(struct bio *bio)
|
|
{
|
|
struct bio_list *bio_list = current->bio_list;
|
|
current->bio_list = NULL;
|
|
vdev_submit_bio_impl(bio);
|
|
current->bio_list = bio_list;
|
|
}
|
|
|
|
static inline struct bio *
|
|
vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
|
|
unsigned short nr_vecs)
|
|
{
|
|
struct bio *bio;
|
|
|
|
#ifdef HAVE_BIO_ALLOC_4ARG
|
|
bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
|
|
#else
|
|
bio = bio_alloc(gfp_mask, nr_vecs);
|
|
if (likely(bio != NULL))
|
|
bio_set_dev(bio, bdev);
|
|
#endif
|
|
|
|
return (bio);
|
|
}
|
|
|
|
static inline unsigned int
|
|
vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
|
|
{
|
|
unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
|
|
bio_size, abd_offset);
|
|
|
|
#ifdef HAVE_BIO_MAX_SEGS
|
|
return (bio_max_segs(nr_segs));
|
|
#else
|
|
return (MIN(nr_segs, BIO_MAX_PAGES));
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
__vdev_disk_physio(struct block_device *bdev, zio_t *zio,
|
|
size_t io_size, uint64_t io_offset, int rw, int flags)
|
|
{
|
|
dio_request_t *dr;
|
|
uint64_t abd_offset;
|
|
uint64_t bio_offset;
|
|
int bio_size;
|
|
int bio_count = 16;
|
|
int error = 0;
|
|
struct blk_plug plug;
|
|
unsigned short nr_vecs;
|
|
|
|
/*
|
|
* Accessing outside the block device is never allowed.
|
|
*/
|
|
if (io_offset + io_size > bdev->bd_inode->i_size) {
|
|
vdev_dbgmsg(zio->io_vd,
|
|
"Illegal access %llu size %llu, device size %llu",
|
|
(u_longlong_t)io_offset,
|
|
(u_longlong_t)io_size,
|
|
(u_longlong_t)i_size_read(bdev->bd_inode));
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
retry:
|
|
dr = vdev_disk_dio_alloc(bio_count);
|
|
|
|
if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
|
|
zio->io_vd->vdev_failfast == B_TRUE) {
|
|
bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
|
|
zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
|
|
}
|
|
|
|
dr->dr_zio = zio;
|
|
|
|
/*
|
|
* Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
|
|
* is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
|
|
* can cover at least 128KB and at most 1MB. When the required number
|
|
* of iovec's exceeds this, we are forced to break the IO in multiple
|
|
* bio's and wait for them all to complete. This is likely if the
|
|
* recordsize property is increased beyond 1MB. The default
|
|
* bio_count=16 should typically accommodate the maximum-size zio of
|
|
* 16MB.
|
|
*/
|
|
|
|
abd_offset = 0;
|
|
bio_offset = io_offset;
|
|
bio_size = io_size;
|
|
for (int i = 0; i <= dr->dr_bio_count; i++) {
|
|
|
|
/* Finished constructing bio's for given buffer */
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
/*
|
|
* If additional bio's are required, we have to retry, but
|
|
* this should be rare - see the comment above.
|
|
*/
|
|
if (dr->dr_bio_count == i) {
|
|
vdev_disk_dio_free(dr);
|
|
bio_count *= 2;
|
|
goto retry;
|
|
}
|
|
|
|
nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
|
|
dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
|
|
if (unlikely(dr->dr_bio[i] == NULL)) {
|
|
vdev_disk_dio_free(dr);
|
|
return (SET_ERROR(ENOMEM));
|
|
}
|
|
|
|
/* Matching put called by vdev_disk_physio_completion */
|
|
vdev_disk_dio_get(dr);
|
|
|
|
BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
|
|
dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
|
|
dr->dr_bio[i]->bi_private = dr;
|
|
bio_set_op_attrs(dr->dr_bio[i], rw, flags);
|
|
|
|
/* Remaining size is returned to become the new size */
|
|
bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
|
|
bio_size, abd_offset);
|
|
|
|
/* Advance in buffer and construct another bio if needed */
|
|
abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
}
|
|
|
|
/* Extra reference to protect dio_request during vdev_submit_bio */
|
|
vdev_disk_dio_get(dr);
|
|
|
|
if (dr->dr_bio_count > 1)
|
|
blk_start_plug(&plug);
|
|
|
|
/* Submit all bio's associated with this dio */
|
|
for (int i = 0; i < dr->dr_bio_count; i++) {
|
|
if (dr->dr_bio[i])
|
|
vdev_submit_bio(dr->dr_bio[i]);
|
|
}
|
|
|
|
if (dr->dr_bio_count > 1)
|
|
blk_finish_plug(&plug);
|
|
|
|
vdev_disk_dio_put(dr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
|
|
{
|
|
zio_t *zio = bio->bi_private;
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
zio->io_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
zio->io_error = -error;
|
|
#endif
|
|
|
|
if (zio->io_error && (zio->io_error == EOPNOTSUPP))
|
|
zio->io_vd->vdev_nowritecache = B_TRUE;
|
|
|
|
bio_put(bio);
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
|
|
{
|
|
struct request_queue *q;
|
|
struct bio *bio;
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (!q)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
|
|
if (unlikely(bio == NULL))
|
|
return (SET_ERROR(ENOMEM));
|
|
|
|
bio->bi_end_io = vdev_disk_io_flush_completion;
|
|
bio->bi_private = zio;
|
|
bio_set_flush(bio);
|
|
vdev_submit_bio(bio);
|
|
invalidate_bdev(bdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_trim(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
|
|
if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
|
|
return (-blkdev_issue_secure_erase(vd->vd_bdev,
|
|
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
|
|
} else {
|
|
return (-blkdev_issue_discard(vd->vd_bdev,
|
|
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
|
|
}
|
|
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
|
|
unsigned long trim_flags = 0;
|
|
#if defined(BLKDEV_DISCARD_SECURE)
|
|
if (zio->io_trim_flags & ZIO_TRIM_SECURE)
|
|
trim_flags |= BLKDEV_DISCARD_SECURE;
|
|
#endif
|
|
return (-blkdev_issue_discard(vd->vd_bdev,
|
|
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
|
|
#else
|
|
#error "Unsupported kernel"
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
int rw, error;
|
|
|
|
/*
|
|
* If the vdev is closed, it's likely in the REMOVED or FAULTED state.
|
|
* Nothing to be done here but return failure.
|
|
*/
|
|
if (vd == NULL) {
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
rw_enter(&vd->vd_lock, RW_READER);
|
|
|
|
/*
|
|
* If the vdev is closed, it's likely due to a failed reopen and is
|
|
* in the UNAVAIL state. Nothing to be done here but return failure.
|
|
*/
|
|
if (vd->vd_bdev == NULL) {
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
switch (zio->io_type) {
|
|
case ZIO_TYPE_IOCTL:
|
|
|
|
if (!vdev_readable(v)) {
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = SET_ERROR(ENXIO);
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
switch (zio->io_cmd) {
|
|
case DKIOCFLUSHWRITECACHE:
|
|
|
|
if (zfs_nocacheflush)
|
|
break;
|
|
|
|
if (v->vdev_nowritecache) {
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
error = vdev_disk_io_flush(vd->vd_bdev, zio);
|
|
if (error == 0) {
|
|
rw_exit(&vd->vd_lock);
|
|
return;
|
|
}
|
|
|
|
zio->io_error = error;
|
|
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
}
|
|
|
|
rw_exit(&vd->vd_lock);
|
|
zio_execute(zio);
|
|
return;
|
|
case ZIO_TYPE_WRITE:
|
|
rw = WRITE;
|
|
break;
|
|
|
|
case ZIO_TYPE_READ:
|
|
rw = READ;
|
|
break;
|
|
|
|
case ZIO_TYPE_TRIM:
|
|
zio->io_error = vdev_disk_io_trim(zio);
|
|
rw_exit(&vd->vd_lock);
|
|
zio_interrupt(zio);
|
|
return;
|
|
|
|
default:
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
zio->io_target_timestamp = zio_handle_io_delay(zio);
|
|
error = __vdev_disk_physio(vd->vd_bdev, zio,
|
|
zio->io_size, zio->io_offset, rw, 0);
|
|
rw_exit(&vd->vd_lock);
|
|
|
|
if (error) {
|
|
zio->io_error = error;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_done(zio_t *zio)
|
|
{
|
|
/*
|
|
* If the device returned EIO, we revalidate the media. If it is
|
|
* determined the media has changed this triggers the asynchronous
|
|
* removal of the device from the configuration.
|
|
*/
|
|
if (zio->io_error == EIO) {
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (!zfs_check_disk_status(vd->vd_bdev)) {
|
|
invalidate_bdev(vd->vd_bdev);
|
|
v->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_hold(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* We must have a pathname, and it must be absolute. */
|
|
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
|
|
return;
|
|
|
|
/*
|
|
* Only prefetch path and devid info if the device has
|
|
* never been opened.
|
|
*/
|
|
if (vd->vdev_tsd != NULL)
|
|
return;
|
|
|
|
}
|
|
|
|
static void
|
|
vdev_disk_rele(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* XXX: Implement me as a vnode rele for the device */
|
|
}
|
|
|
|
vdev_ops_t vdev_disk_ops = {
|
|
.vdev_op_init = NULL,
|
|
.vdev_op_fini = NULL,
|
|
.vdev_op_open = vdev_disk_open,
|
|
.vdev_op_close = vdev_disk_close,
|
|
.vdev_op_asize = vdev_default_asize,
|
|
.vdev_op_min_asize = vdev_default_min_asize,
|
|
.vdev_op_min_alloc = NULL,
|
|
.vdev_op_io_start = vdev_disk_io_start,
|
|
.vdev_op_io_done = vdev_disk_io_done,
|
|
.vdev_op_state_change = NULL,
|
|
.vdev_op_need_resilver = NULL,
|
|
.vdev_op_hold = vdev_disk_hold,
|
|
.vdev_op_rele = vdev_disk_rele,
|
|
.vdev_op_remap = NULL,
|
|
.vdev_op_xlate = vdev_default_xlate,
|
|
.vdev_op_rebuild_asize = NULL,
|
|
.vdev_op_metaslab_init = NULL,
|
|
.vdev_op_config_generate = NULL,
|
|
.vdev_op_nparity = NULL,
|
|
.vdev_op_ndisks = NULL,
|
|
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
|
|
.vdev_op_leaf = B_TRUE, /* leaf vdev */
|
|
.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
|
|
};
|
|
|
|
/*
|
|
* The zfs_vdev_scheduler module option has been deprecated. Setting this
|
|
* value no longer has any effect. It has not yet been entirely removed
|
|
* to allow the module to be loaded if this option is specified in the
|
|
* /etc/modprobe.d/zfs.conf file. The following warning will be logged.
|
|
*/
|
|
static int
|
|
param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
|
|
{
|
|
int error = param_set_charp(val, kp);
|
|
if (error == 0) {
|
|
printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
|
|
"is not supported.\n");
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static const char *zfs_vdev_scheduler = "unused";
|
|
module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
|
|
param_get_charp, &zfs_vdev_scheduler, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
|
|
|
|
int
|
|
param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
uint_t val;
|
|
int error;
|
|
|
|
error = kstrtouint(buf, 0, &val);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
error = param_set_uint(buf, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
uint_t val;
|
|
int error;
|
|
|
|
error = kstrtouint(buf, 0, &val);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
error = param_set_uint(buf, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
return (0);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
|
|
"Timeout before determining that a device is missing");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
|
|
"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
|