mirror_zfs/module/zfs/zfs_vfsops.c
Brian Behlendorf 3558fd73b5 Prototype/structure update for Linux
I appologize in advance why to many things ended up in this commit.
When it could be seperated in to a whole series of commits teasing
that all apart now would take considerable time and I'm not sure
there's much merrit in it.  As such I'll just summerize the intent
of the changes which are all (or partly) in this commit.  Broadly
the intent is to remove as much Solaris specific code as possible
and replace it with native Linux equivilants.  More specifically:

1) Replace all instances of zfsvfs_t with zfs_sb_t.  While the
type is largely the same calling it private super block data
rather than a zfsvfs is more consistent with how Linux names
this.  While non critical it makes the code easier to read when
your thinking in Linux friendly VFS terms.

2) Replace vnode_t with struct inode.  The Linux VFS doesn't have
the notion of a vnode and there's absolutely no good reason to
create one.  There are in fact several good reasons to remove it.
It just adds overhead on Linux if we were to manage one, it
conplicates the code, and it likely will lead to bugs so there's
a good change it will be out of date.  The code has been updated
to remove all need for this type.

3) Replace all vtype_t's with umode types.  Along with this shift
all uses of types to mode bits.  The Solaris code would pass a
vtype which is redundant with the Linux mode.  Just update all the
code to use the Linux mode macros and remove this redundancy.

4) Remove using of vn_* helpers and replace where needed with
inode helpers.  The big example here is creating iput_aync to
replace vn_rele_async.  Other vn helpers will be addressed as
needed but they should be be emulated.  They are a Solaris VFS'ism
and should simply be replaced with Linux equivilants.

5) Update znode alloc/free code.  Under Linux it's common to
embed the inode specific data with the inode itself.  This removes
the need for an extra memory allocation.  In zfs this information
is called a znode and it now embeds the inode with it.  Allocators
have been updated accordingly.

6) Minimal integration with the vfs flags for setting up the
super block and handling mount options has been added this
code will need to be refined but functionally it's all there.

This will be the first and last of these to large to review commits.
2011-02-10 09:27:21 -08:00

1586 lines
38 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/pathname.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/cmn_err.h>
#include "fs/fs_subr.h"
#include <sys/zfs_znode.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_dir.h>
#include <sys/zil.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_deleg.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/varargs.h>
#include <sys/policy.h>
#include <sys/atomic.h>
#include <sys/mkdev.h>
#include <sys/modctl.h>
#include <sys/refstr.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_fuid.h>
#include <sys/bootconf.h>
#include <sys/sunddi.h>
#include <sys/dnlc.h>
#include <sys/dmu_objset.h>
#include <sys/spa_boot.h>
#include <sys/sa.h>
#include <sys/zpl.h>
#include "zfs_comutil.h"
/*ARGSUSED*/
int
zfs_sync(zfs_sb_t *zsb, short flag, cred_t *cr)
{
/*
* Data integrity is job one. We don't want a compromised kernel
* writing to the storage pool, so we never sync during panic.
*/
if (unlikely(oops_in_progress))
return (0);
if (zsb != NULL) {
/*
* Sync a specific filesystem.
*/
dsl_pool_t *dp;
ZFS_ENTER(zsb);
dp = dmu_objset_pool(zsb->z_os);
#ifdef HAVE_SHUTDOWN
/*
* If the system is shutting down, then skip any
* filesystems which may exist on a suspended pool.
*
* XXX: This can be implemented using the Linux reboot
* notifiers: {un}register_reboot_notifier().
*/
if (sys_shutdown && spa_suspended(dp->dp_spa)) {
ZFS_EXIT(zsb);
return (0);
}
#endif /* HAVE_SHUTDOWN */
if (zsb->z_log != NULL)
zil_commit(zsb->z_log, 0);
ZFS_EXIT(zsb);
} else {
/*
* Sync all ZFS filesystems. This is what happens when you
* run sync(1M). Unlike other filesystems, ZFS honors the
* request by waiting for all pools to commit all dirty data.
*/
spa_sync_allpools();
}
return (0);
}
EXPORT_SYMBOL(zfs_sync);
static void
atime_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval == TRUE) {
vfs->mnt_flags &= ~MNT_NOATIME;
sb->s_flags &= ~MS_NOATIME;
zsb->z_atime = TRUE;
} else {
vfs->mnt_flags |= MNT_NOATIME;
sb->s_flags |= MS_NOATIME;
zsb->z_atime = FALSE;
}
}
static void
xattr_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
if (newval == TRUE) {
zsb->z_flags |= ZSB_XATTR_USER;
} else {
zsb->z_flags &= ~ZSB_XATTR_USER;
}
}
static void
blksz_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
if (newval < SPA_MINBLOCKSIZE ||
newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
newval = SPA_MAXBLOCKSIZE;
zsb->z_max_blksz = newval;
}
static void
readonly_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval) {
vfs->mnt_flags |= MNT_READONLY;
sb->s_flags |= MS_RDONLY;
} else {
vfs->mnt_flags &= ~MNT_READONLY;
sb->s_flags &= ~MS_RDONLY;
}
}
static void
devices_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval == FALSE) {
vfs->mnt_flags |= MNT_NODEV;
sb->s_flags |= MS_NODEV;
} else {
vfs->mnt_flags &= ~MNT_NODEV;
sb->s_flags &= ~MS_NODEV;
}
}
static void
setuid_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval == FALSE) {
vfs->mnt_flags |= MNT_NOSUID;
sb->s_flags |= MS_NOSUID;
} else {
vfs->mnt_flags &= ~MNT_NOSUID;
sb->s_flags &= ~MS_NOSUID;
}
}
static void
exec_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval == FALSE) {
vfs->mnt_flags |= MNT_NOEXEC;
sb->s_flags |= MS_NOEXEC;
} else {
vfs->mnt_flags &= ~MNT_NOEXEC;
sb->s_flags &= ~MS_NOEXEC;
}
}
/*
* The nbmand mount option can be changed at mount time.
* We can't allow it to be toggled on live file systems or incorrect
* behavior may be seen from cifs clients
*
* This property isn't registered via dsl_prop_register(), but this callback
* will be called when a file system is first mounted
*/
static void
nbmand_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
if (newval == TRUE) {
sb->s_flags |= MS_MANDLOCK;
} else {
sb->s_flags &= ~MS_MANDLOCK;
}
}
static void
snapdir_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_show_ctldir = newval;
}
static void
vscan_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_vscan = newval;
}
static void
acl_inherit_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_acl_inherit = newval;
}
int
zfs_register_callbacks(zfs_sb_t *zsb)
{
struct vfsmount *vfsp = zsb->z_vfs;
struct dsl_dataset *ds = NULL;
objset_t *os = zsb->z_os;
uint64_t nbmand;
boolean_t readonly = B_FALSE;
boolean_t setuid = B_TRUE;
boolean_t exec = B_TRUE;
boolean_t devices = B_TRUE;
boolean_t xattr = B_TRUE;
boolean_t atime = B_TRUE;
char osname[MAXNAMELEN];
int error = 0;
/*
* While Linux allows multiple vfs mounts per super block we have
* limited it artificially to one in zfs_fill_super. Thus it is
* safe for us to modify the vfs mount fails through the callbacks.
*/
if ((vfsp->mnt_flags & MNT_READONLY) ||
!spa_writeable(dmu_objset_spa(os)))
readonly = B_TRUE;
if (vfsp->mnt_flags & MNT_NOSUID) {
devices = B_FALSE;
setuid = B_FALSE;
} else {
if (vfsp->mnt_flags & MNT_NODEV)
devices = B_FALSE;
}
if (vfsp->mnt_flags & MNT_NOEXEC)
exec = B_FALSE;
if (vfsp->mnt_flags & MNT_NOATIME)
atime = B_FALSE;
/*
* nbmand is a special property which may only be changed at
* mount time. Unfortunately, Linux does not have a VFS mount
* flag instead this is a super block flag. So setting this
* option at mount time will have to wait until we can parse
* the mount option string. For now we rely on the nbmand
* value stored with the object set. Additional mount option
* string to be handled:
*
* case: sensitive|insensitive|mixed
* zerocopy: on|off
*/
dmu_objset_name(os, osname);
if ((error = dsl_prop_get_integer(osname, "nbmand", &nbmand, NULL)))
return (error);
/*
* Register property callbacks.
*
* It would probably be fine to just check for i/o error from
* the first prop_register(), but I guess I like to go
* overboard...
*/
ds = dmu_objset_ds(os);
error = dsl_prop_register(ds,
"atime", atime_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"xattr", xattr_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"recordsize", blksz_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"readonly", readonly_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"devices", devices_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"setuid", setuid_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"exec", exec_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"snapdir", snapdir_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"aclinherit", acl_inherit_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"vscan", vscan_changed_cb, zsb);
if (error)
goto unregister;
/*
* Invoke our callbacks to set required flags.
*/
readonly_changed_cb(zsb, readonly);
setuid_changed_cb(zsb, setuid);
exec_changed_cb(zsb, exec);
devices_changed_cb(zsb, devices);
xattr_changed_cb(zsb, xattr);
atime_changed_cb(zsb, atime);
nbmand_changed_cb(zsb, nbmand);
return (0);
unregister:
/*
* We may attempt to unregister some callbacks that are not
* registered, but this is OK; it will simply return ENOMSG,
* which we will ignore.
*/
(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
zsb);
(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zsb);
return (error);
}
EXPORT_SYMBOL(zfs_register_callbacks);
static int
zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
uint64_t *userp, uint64_t *groupp)
{
znode_phys_t *znp = data;
int error = 0;
/*
* Is it a valid type of object to track?
*/
if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
return (ENOENT);
/*
* If we have a NULL data pointer
* then assume the id's aren't changing and
* return EEXIST to the dmu to let it know to
* use the same ids
*/
if (data == NULL)
return (EEXIST);
if (bonustype == DMU_OT_ZNODE) {
*userp = znp->zp_uid;
*groupp = znp->zp_gid;
} else {
int hdrsize;
ASSERT(bonustype == DMU_OT_SA);
hdrsize = sa_hdrsize(data);
if (hdrsize != 0) {
*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
SA_UID_OFFSET));
*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
SA_GID_OFFSET));
} else {
/*
* This should only happen for newly created
* files that haven't had the znode data filled
* in yet.
*/
*userp = 0;
*groupp = 0;
}
}
return (error);
}
static void
fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
char *domainbuf, int buflen, uid_t *ridp)
{
uint64_t fuid;
const char *domain;
fuid = strtonum(fuidstr, NULL);
domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
if (domain)
(void) strlcpy(domainbuf, domain, buflen);
else
domainbuf[0] = '\0';
*ridp = FUID_RID(fuid);
}
static uint64_t
zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
{
switch (type) {
case ZFS_PROP_USERUSED:
return (DMU_USERUSED_OBJECT);
case ZFS_PROP_GROUPUSED:
return (DMU_GROUPUSED_OBJECT);
case ZFS_PROP_USERQUOTA:
return (zsb->z_userquota_obj);
case ZFS_PROP_GROUPQUOTA:
return (zsb->z_groupquota_obj);
default:
return (ENOTSUP);
}
return (0);
}
int
zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
{
int error;
zap_cursor_t zc;
zap_attribute_t za;
zfs_useracct_t *buf = vbuf;
uint64_t obj;
if (!dmu_objset_userspace_present(zsb->z_os))
return (ENOTSUP);
obj = zfs_userquota_prop_to_obj(zsb, type);
if (obj == 0) {
*bufsizep = 0;
return (0);
}
for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
*bufsizep)
break;
fuidstr_to_sid(zsb, za.za_name,
buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
buf->zu_space = za.za_first_integer;
buf++;
}
if (error == ENOENT)
error = 0;
ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
*cookiep = zap_cursor_serialize(&zc);
zap_cursor_fini(&zc);
return (error);
}
EXPORT_SYMBOL(zfs_userspace_many);
/*
* buf must be big enough (eg, 32 bytes)
*/
static int
id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
char *buf, boolean_t addok)
{
uint64_t fuid;
int domainid = 0;
if (domain && domain[0]) {
domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
if (domainid == -1)
return (ENOENT);
}
fuid = FUID_ENCODE(domainid, rid);
(void) sprintf(buf, "%llx", (longlong_t)fuid);
return (0);
}
int
zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
const char *domain, uint64_t rid, uint64_t *valp)
{
char buf[32];
int err;
uint64_t obj;
*valp = 0;
if (!dmu_objset_userspace_present(zsb->z_os))
return (ENOTSUP);
obj = zfs_userquota_prop_to_obj(zsb, type);
if (obj == 0)
return (0);
err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
if (err)
return (err);
err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
if (err == ENOENT)
err = 0;
return (err);
}
EXPORT_SYMBOL(zfs_userspace_one);
int
zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
const char *domain, uint64_t rid, uint64_t quota)
{
char buf[32];
int err;
dmu_tx_t *tx;
uint64_t *objp;
boolean_t fuid_dirtied;
if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
return (EINVAL);
if (zsb->z_version < ZPL_VERSION_USERSPACE)
return (ENOTSUP);
objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
&zsb->z_groupquota_obj;
err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
if (err)
return (err);
fuid_dirtied = zsb->z_fuid_dirty;
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
if (*objp == 0) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
zfs_userquota_prop_prefixes[type]);
}
if (fuid_dirtied)
zfs_fuid_txhold(zsb, tx);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err) {
dmu_tx_abort(tx);
return (err);
}
mutex_enter(&zsb->z_lock);
if (*objp == 0) {
*objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
DMU_OT_NONE, 0, tx);
VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
}
mutex_exit(&zsb->z_lock);
if (quota == 0) {
err = zap_remove(zsb->z_os, *objp, buf, tx);
if (err == ENOENT)
err = 0;
} else {
err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
}
ASSERT(err == 0);
if (fuid_dirtied)
zfs_fuid_sync(zsb, tx);
dmu_tx_commit(tx);
return (err);
}
EXPORT_SYMBOL(zfs_set_userquota);
boolean_t
zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
{
char buf[32];
uint64_t used, quota, usedobj, quotaobj;
int err;
usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
if (quotaobj == 0 || zsb->z_replay)
return (B_FALSE);
(void) sprintf(buf, "%llx", (longlong_t)fuid);
err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
if (err != 0)
return (B_FALSE);
err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
if (err != 0)
return (B_FALSE);
return (used >= quota);
}
EXPORT_SYMBOL(zfs_fuid_overquota);
boolean_t
zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
{
uint64_t fuid;
uint64_t quotaobj;
quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
fuid = isgroup ? zp->z_gid : zp->z_uid;
if (quotaobj == 0 || zsb->z_replay)
return (B_FALSE);
return (zfs_fuid_overquota(zsb, isgroup, fuid));
}
EXPORT_SYMBOL(zfs_owner_overquota);
int
zfs_sb_create(const char *osname, zfs_sb_t **zsbp)
{
objset_t *os;
zfs_sb_t *zsb;
uint64_t zval;
int i, error;
uint64_t sa_obj;
zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
/*
* We claim to always be readonly so we can open snapshots;
* other ZPL code will prevent us from writing to snapshots.
*/
error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
if (error) {
kmem_free(zsb, sizeof (zfs_sb_t));
return (error);
}
/*
* Initialize the zfs-specific filesystem structure.
* Should probably make this a kmem cache, shuffle fields,
* and just bzero up to z_hold_mtx[].
*/
zsb->z_vfs = NULL;
zsb->z_parent = zsb;
zsb->z_max_blksz = SPA_MAXBLOCKSIZE;
zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
zsb->z_os = os;
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
if (error) {
goto out;
} else if (zsb->z_version >
zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
(void) printk("Can't mount a version %lld file system "
"on a version %lld pool\n. Pool must be upgraded to mount "
"this file system.", (u_longlong_t)zsb->z_version,
(u_longlong_t)spa_version(dmu_objset_spa(os)));
error = ENOTSUP;
goto out;
}
if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
goto out;
zsb->z_norm = (int)zval;
if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
goto out;
zsb->z_utf8 = (zval != 0);
if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
goto out;
zsb->z_case = (uint_t)zval;
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
zsb->z_case == ZFS_CASE_MIXED)
zsb->z_norm |= U8_TEXTPREP_TOUPPER;
zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
if (zsb->z_use_sa) {
/* should either have both of these objects or none */
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
&sa_obj);
if (error)
return (error);
} else {
/*
* Pre SA versions file systems should never touch
* either the attribute registration or layout objects.
*/
sa_obj = 0;
}
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
&zsb->z_attr_table);
if (error)
goto out;
if (zsb->z_version >= ZPL_VERSION_SA)
sa_register_update_callback(os, zfs_sa_upgrade);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
&zsb->z_root);
if (error)
goto out;
ASSERT(zsb->z_root != 0);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
&zsb->z_unlinkedobj);
if (error)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
8, 1, &zsb->z_userquota_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
8, 1, &zsb->z_groupquota_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
&zsb->z_fuid_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
&zsb->z_shares_dir);
if (error && error != ENOENT)
goto out;
mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zsb->z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
rrw_init(&zsb->z_teardown_lock);
rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
*zsbp = zsb;
return (0);
out:
dmu_objset_disown(os, zsb);
*zsbp = NULL;
kmem_free(zsb, sizeof (zfs_sb_t));
return (error);
}
static int
zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
{
int error;
error = zfs_register_callbacks(zsb);
if (error)
return (error);
/*
* Set the objset user_ptr to track its zsb.
*/
mutex_enter(&zsb->z_os->os_user_ptr_lock);
dmu_objset_set_user(zsb->z_os, zsb);
mutex_exit(&zsb->z_os->os_user_ptr_lock);
zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
/*
* If we are not mounting (ie: online recv), then we don't
* have to worry about replaying the log as we blocked all
* operations out since we closed the ZIL.
*/
if (mounting) {
boolean_t readonly;
/*
* During replay we remove the read only flag to
* allow replays to succeed.
*/
readonly = zsb->z_vfs->mnt_flags & MNT_READONLY;
if (readonly != 0)
zsb->z_vfs->mnt_flags &= ~MNT_READONLY;
else
zfs_unlinked_drain(zsb);
/*
* Parse and replay the intent log.
*
* Because of ziltest, this must be done after
* zfs_unlinked_drain(). (Further note: ziltest
* doesn't use readonly mounts, where
* zfs_unlinked_drain() isn't called.) This is because
* ziltest causes spa_sync() to think it's committed,
* but actually it is not, so the intent log contains
* many txg's worth of changes.
*
* In particular, if object N is in the unlinked set in
* the last txg to actually sync, then it could be
* actually freed in a later txg and then reallocated
* in a yet later txg. This would write a "create
* object N" record to the intent log. Normally, this
* would be fine because the spa_sync() would have
* written out the fact that object N is free, before
* we could write the "create object N" intent log
* record.
*
* But when we are in ziltest mode, we advance the "open
* txg" without actually spa_sync()-ing the changes to
* disk. So we would see that object N is still
* allocated and in the unlinked set, and there is an
* intent log record saying to allocate it.
*/
if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
if (zil_replay_disable) {
zil_destroy(zsb->z_log, B_FALSE);
} else {
zsb->z_replay = B_TRUE;
zil_replay(zsb->z_os, zsb,
zfs_replay_vector);
zsb->z_replay = B_FALSE;
}
}
zsb->z_vfs->mnt_flags |= readonly; /* restore readonly bit */
}
return (0);
}
void
zfs_sb_free(zfs_sb_t *zsb)
{
int i;
zfs_fuid_destroy(zsb);
mutex_destroy(&zsb->z_znodes_lock);
mutex_destroy(&zsb->z_lock);
list_destroy(&zsb->z_all_znodes);
rrw_destroy(&zsb->z_teardown_lock);
rw_destroy(&zsb->z_teardown_inactive_lock);
rw_destroy(&zsb->z_fuid_lock);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_destroy(&zsb->z_hold_mtx[i]);
kmem_free(zsb, sizeof (zfs_sb_t));
}
static void
zfs_set_fuid_feature(zfs_sb_t *zsb)
{
zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
}
void
zfs_unregister_callbacks(zfs_sb_t *zsb)
{
objset_t *os = zsb->z_os;
struct dsl_dataset *ds;
/*
* Unregister properties.
*/
if (!dmu_objset_is_snapshot(os)) {
ds = dmu_objset_ds(os);
VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "aclinherit",
acl_inherit_changed_cb, zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "vscan",
vscan_changed_cb, zsb) == 0);
}
}
EXPORT_SYMBOL(zfs_unregister_callbacks);
#ifdef HAVE_MLSLABEL
/*
* zfs_check_global_label:
* Check that the hex label string is appropriate for the dataset
* being mounted into the global_zone proper.
*
* Return an error if the hex label string is not default or
* admin_low/admin_high. For admin_low labels, the corresponding
* dataset must be readonly.
*/
int
zfs_check_global_label(const char *dsname, const char *hexsl)
{
if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
return (0);
if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
return (0);
if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
/* must be readonly */
uint64_t rdonly;
if (dsl_prop_get_integer(dsname,
zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
return (EACCES);
return (rdonly ? 0 : EACCES);
}
return (EACCES);
}
#endif /* HAVE_MLSLABEL */
int
zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
{
zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
uint64_t refdbytes, availbytes, usedobjs, availobjs;
uint32_t bshift;
ZFS_ENTER(zsb);
dmu_objset_space(zsb->z_os,
&refdbytes, &availbytes, &usedobjs, &availobjs);
/*
* The underlying storage pool actually uses multiple block sizes.
* We report the fragsize as the smallest block size we support,
* and we report our blocksize as the filesystem's maximum blocksize.
*/
statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
statp->f_bsize = zsb->z_max_blksz;
bshift = fls(statp->f_bsize) - 1;
/*
* The following report "total" blocks of various kinds in
* the file system, but reported in terms of f_bsize - the
* "preferred" size.
*/
statp->f_blocks = (refdbytes + availbytes) >> bshift;
statp->f_bfree = availbytes >> bshift;
statp->f_bavail = statp->f_bfree; /* no root reservation */
/*
* statvfs() should really be called statufs(), because it assumes
* static metadata. ZFS doesn't preallocate files, so the best
* we can do is report the max that could possibly fit in f_files,
* and that minus the number actually used in f_ffree.
* For f_ffree, report the smaller of the number of object available
* and the number of blocks (each object will take at least a block).
*/
statp->f_ffree = MIN(availobjs, statp->f_bfree);
statp->f_files = statp->f_ffree + usedobjs;
statp->f_fsid.val[0] = 0; /* XXX: Map up some unique ID */
statp->f_fsid.val[1] = 0;
statp->f_type = ZFS_SUPER_MAGIC;
statp->f_namelen = ZFS_MAXNAMELEN;
/*
* We have all of 40 characters to stuff a string here.
* Is there anything useful we could/should provide?
*/
bzero(statp->f_spare, sizeof (statp->f_spare));
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_statvfs);
int
zfs_root(zfs_sb_t *zsb, struct inode **ipp)
{
znode_t *rootzp;
int error;
ZFS_ENTER(zsb);
error = zfs_zget(zsb, zsb->z_root, &rootzp);
if (error == 0)
*ipp = ZTOI(rootzp);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_root);
/*
* Teardown the zfs_sb_t::z_os.
*
* Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
* and 'z_teardown_inactive_lock' held.
*/
int
zfsvfs_teardown(zfs_sb_t *zsb, boolean_t unmounting)
{
znode_t *zp;
rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
#ifdef HAVE_DNLC
if (!unmounting) {
/*
* We purge the parent filesystem's vfsp as the parent
* filesystem and all of its snapshots have their vnode's
* v_vfsp set to the parent's filesystem's vfsp. Note,
* 'z_parent' is self referential for non-snapshots.
*/
(void) dnlc_purge_vfsp(zsb->z_parent->z_vfs, 0);
}
#endif /* HAVE_DNLC */
/*
* Close the zil. NB: Can't close the zil while zfs_inactive
* threads are blocked as zil_close can call zfs_inactive.
*/
if (zsb->z_log) {
zil_close(zsb->z_log);
zsb->z_log = NULL;
}
rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
/*
* If we are not unmounting (ie: online recv) and someone already
* unmounted this file system while we were doing the switcheroo,
* or a reopen of z_os failed then just bail out now.
*/
if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
rw_exit(&zsb->z_teardown_inactive_lock);
rrw_exit(&zsb->z_teardown_lock, FTAG);
return (EIO);
}
/*
* At this point there are no vops active, and any new vops will
* fail with EIO since we have z_teardown_lock for writer (only
* relavent for forced unmount).
*
* Release all holds on dbufs.
*/
mutex_enter(&zsb->z_znodes_lock);
for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
zp = list_next(&zsb->z_all_znodes, zp))
if (zp->z_sa_hdl) {
ASSERT(atomic_read(&ZTOI(zp)->i_count) > 0);
zfs_znode_dmu_fini(zp);
}
mutex_exit(&zsb->z_znodes_lock);
/*
* If we are unmounting, set the unmounted flag and let new vops
* unblock. zfs_inactive will have the unmounted behavior, and all
* other vops will fail with EIO.
*/
if (unmounting) {
zsb->z_unmounted = B_TRUE;
rrw_exit(&zsb->z_teardown_lock, FTAG);
rw_exit(&zsb->z_teardown_inactive_lock);
}
/*
* z_os will be NULL if there was an error in attempting to reopen
* zsb, so just return as the properties had already been
*
* unregistered and cached data had been evicted before.
*/
if (zsb->z_os == NULL)
return (0);
/*
* Unregister properties.
*/
zfs_unregister_callbacks(zsb);
/*
* Evict cached data
*/
if (dmu_objset_is_dirty_anywhere(zsb->z_os))
if (!(zsb->z_vfs->mnt_flags & MNT_READONLY))
txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
(void) dmu_objset_evict_dbufs(zsb->z_os);
return (0);
}
int
zfs_domount(struct super_block *sb, void *data, int silent)
{
zpl_mount_data_t *zmd = data;
const char *osname = zmd->z_osname;
zfs_sb_t *zsb;
struct inode *root_inode;
uint64_t recordsize;
int error;
/*
* Linux allows multiple vfs mounts per super block. However, the
* zfs_sb_t only contains a pointer for a single vfs mount. This
* back reference in the long term could be extended to a list of
* vfs mounts if a hook were added to the kernel to notify us when
* a vfsmount is destroyed. Until then we must limit the number
* of mounts per super block to one.
*/
if (atomic_read(&sb->s_active) > 1)
return (EBUSY);
error = zfs_sb_create(osname, &zsb);
if (error)
return (error);
if ((error = dsl_prop_get_integer(osname, "recordsize",
&recordsize, NULL)))
goto out;
zsb->z_sb = sb;
zsb->z_vfs = zmd->z_vfs;
sb->s_fs_info = zsb;
sb->s_magic = ZFS_SUPER_MAGIC;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_time_gran = 1;
sb->s_blocksize = recordsize;
sb->s_blocksize_bits = ilog2(recordsize);
/* Set callback operations for the file system. */
sb->s_op = &zpl_super_operations;
sb->s_xattr = zpl_xattr_handlers;
#ifdef HAVE_EXPORTS
sb->s_export_op = &zpl_export_operations;
#endif /* HAVE_EXPORTS */
/* Set features for file system. */
zfs_set_fuid_feature(zsb);
if (dmu_objset_is_snapshot(zsb->z_os)) {
uint64_t pval;
atime_changed_cb(zsb, B_FALSE);
readonly_changed_cb(zsb, B_TRUE);
if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
goto out;
xattr_changed_cb(zsb, pval);
zsb->z_issnap = B_TRUE;
zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
mutex_enter(&zsb->z_os->os_user_ptr_lock);
dmu_objset_set_user(zsb->z_os, zsb);
mutex_exit(&zsb->z_os->os_user_ptr_lock);
} else {
error = zfs_sb_setup(zsb, B_TRUE);
#ifdef HAVE_SNAPSHOT
(void) zfs_snap_create(zsb);
#endif /* HAVE_SNAPSHOT */
}
/* Allocate a root inode for the filesystem. */
error = zfs_root(zsb, &root_inode);
if (error) {
(void) zfs_umount(sb);
goto out;
}
/* Allocate a root dentry for the filesystem */
sb->s_root = d_alloc_root(root_inode);
if (sb->s_root == NULL) {
(void) zfs_umount(sb);
error = ENOMEM;
goto out;
}
out:
if (error) {
dmu_objset_disown(zsb->z_os, zsb);
zfs_sb_free(zsb);
}
return (error);
}
EXPORT_SYMBOL(zfs_domount);
/*ARGSUSED*/
int
zfs_umount(struct super_block *sb)
{
zfs_sb_t *zsb = sb->s_fs_info;
objset_t *os;
VERIFY(zfsvfs_teardown(zsb, B_TRUE) == 0);
os = zsb->z_os;
/*
* z_os will be NULL if there was an error in
* attempting to reopen zsb.
*/
if (os != NULL) {
/*
* Unset the objset user_ptr.
*/
mutex_enter(&os->os_user_ptr_lock);
dmu_objset_set_user(os, NULL);
mutex_exit(&os->os_user_ptr_lock);
/*
* Finally release the objset
*/
dmu_objset_disown(os, zsb);
}
zfs_sb_free(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_umount);
int
zfs_vget(struct vfsmount *vfsp, struct inode **ipp, fid_t *fidp)
{
zfs_sb_t *zsb = VTOZSB(vfsp);
znode_t *zp;
uint64_t object = 0;
uint64_t fid_gen = 0;
uint64_t gen_mask;
uint64_t zp_gen;
int i, err;
*ipp = NULL;
ZFS_ENTER(zsb);
if (fidp->fid_len == LONG_FID_LEN) {
zfid_long_t *zlfid = (zfid_long_t *)fidp;
uint64_t objsetid = 0;
uint64_t setgen = 0;
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
ZFS_EXIT(zsb);
#ifdef HAVE_SNAPSHOT
err = zfsctl_lookup_objset(vfsp, objsetid, &zsb);
if (err)
return (EINVAL);
#endif /* HAVE_SNAPSHOT */
ZFS_ENTER(zsb);
}
if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
zfid_short_t *zfid = (zfid_short_t *)fidp;
for (i = 0; i < sizeof (zfid->zf_object); i++)
object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
for (i = 0; i < sizeof (zfid->zf_gen); i++)
fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
} else {
ZFS_EXIT(zsb);
return (EINVAL);
}
#ifdef HAVE_SNAPSHOT
/* A zero fid_gen means we are in the .zfs control directories */
if (fid_gen == 0 &&
(object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
*ipp = zsb->z_ctldir;
ASSERT(*ipp != NULL);
if (object == ZFSCTL_INO_SNAPDIR) {
VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, NULL,
0, NULL, NULL, NULL, NULL, NULL) == 0);
} else {
igrab(*ipp);
}
ZFS_EXIT(zsb);
return (0);
}
#endif /* HAVE_SNAPSHOT */
gen_mask = -1ULL >> (64 - 8 * i);
dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
if ((err = zfs_zget(zsb, object, &zp))) {
ZFS_EXIT(zsb);
return (err);
}
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
sizeof (uint64_t));
zp_gen = zp_gen & gen_mask;
if (zp_gen == 0)
zp_gen = 1;
if (zp->z_unlinked || zp_gen != fid_gen) {
dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
iput(ZTOI(zp));
ZFS_EXIT(zsb);
return (EINVAL);
}
*ipp = ZTOI(zp);
if (*ipp)
zfs_inode_update(ITOZ(*ipp));
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_vget);
/*
* Block out VOPs and close zfs_sb_t::z_os
*
* Note, if successful, then we return with the 'z_teardown_lock' and
* 'z_teardown_inactive_lock' write held.
*/
int
zfs_suspend_fs(zfs_sb_t *zsb)
{
int error;
if ((error = zfsvfs_teardown(zsb, B_FALSE)) != 0)
return (error);
dmu_objset_disown(zsb->z_os, zsb);
return (0);
}
EXPORT_SYMBOL(zfs_suspend_fs);
/*
* Reopen zfs_sb_t::z_os and release VOPs.
*/
int
zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
{
int err, err2;
ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock));
ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zsb, &zsb->z_os);
if (err) {
zsb->z_os = NULL;
} else {
znode_t *zp;
uint64_t sa_obj = 0;
err2 = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj);
if ((err || err2) && zsb->z_version >= ZPL_VERSION_SA)
goto bail;
if ((err = sa_setup(zsb->z_os, sa_obj,
zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
goto bail;
VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
/*
* Attempt to re-establish all the active znodes with
* their dbufs. If a zfs_rezget() fails, then we'll let
* any potential callers discover that via ZFS_ENTER_VERIFY_VP
* when they try to use their znode.
*/
mutex_enter(&zsb->z_znodes_lock);
for (zp = list_head(&zsb->z_all_znodes); zp;
zp = list_next(&zsb->z_all_znodes, zp)) {
(void) zfs_rezget(zp);
}
mutex_exit(&zsb->z_znodes_lock);
}
bail:
/* release the VOPs */
rw_exit(&zsb->z_teardown_inactive_lock);
rrw_exit(&zsb->z_teardown_lock, FTAG);
if (err) {
/*
* Since we couldn't reopen zfs_sb_t::z_os, force
* unmount this file system.
*/
(void) zfs_umount(zsb->z_sb);
}
return (err);
}
EXPORT_SYMBOL(zfs_resume_fs);
int
zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
{
int error;
objset_t *os = zsb->z_os;
dmu_tx_t *tx;
if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
return (EINVAL);
if (newvers < zsb->z_version)
return (EINVAL);
if (zfs_spa_version_map(newvers) >
spa_version(dmu_objset_spa(zsb->z_os)))
return (ENOTSUP);
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
ZFS_SA_ATTRS);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
}
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
return (error);
}
error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
8, 1, &newvers, tx);
if (error) {
dmu_tx_commit(tx);
return (error);
}
if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
uint64_t sa_obj;
ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
SPA_VERSION_SA);
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
DMU_OT_NONE, 0, tx);
error = zap_add(os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
ASSERT3U(error, ==, 0);
VERIFY(0 == sa_set_sa_object(os, sa_obj));
sa_register_update_callback(os, zfs_sa_upgrade);
}
spa_history_log_internal(LOG_DS_UPGRADE,
dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
zsb->z_version, newvers, dmu_objset_id(os));
dmu_tx_commit(tx);
zsb->z_version = newvers;
if (zsb->z_version >= ZPL_VERSION_FUID)
zfs_set_fuid_feature(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_set_version);
/*
* Read a property stored within the master node.
*/
int
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
{
const char *pname;
int error = ENOENT;
/*
* Look up the file system's value for the property. For the
* version property, we look up a slightly different string.
*/
if (prop == ZFS_PROP_VERSION)
pname = ZPL_VERSION_STR;
else
pname = zfs_prop_to_name(prop);
if (os != NULL)
error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
if (error == ENOENT) {
/* No value set, use the default value */
switch (prop) {
case ZFS_PROP_VERSION:
*value = ZPL_VERSION;
break;
case ZFS_PROP_NORMALIZE:
case ZFS_PROP_UTF8ONLY:
*value = 0;
break;
case ZFS_PROP_CASE:
*value = ZFS_CASE_SENSITIVE;
break;
default:
return (error);
}
error = 0;
}
return (error);
}
void
zfs_init(void)
{
zfs_znode_init();
dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
register_filesystem(&zpl_fs_type);
}
void
zfs_fini(void)
{
unregister_filesystem(&zpl_fs_type);
zfs_znode_fini();
}