mirror_zfs/module/os/linux/zfs/zpl_xattr.c
Brian Behlendorf 066e825221
Linux compat: Minimum kernel version 3.10
Increase the minimum supported kernel version from 2.6.32 to 3.10.
This removes support for the following Linux enterprise distributions.

    Distribution     | Kernel | End of Life
    ---------------- | ------ | -------------
    Ubuntu 12.04 LTS | 3.2    | Apr 28, 2017
    SLES 11          | 3.0    | Mar 32, 2019
    RHEL / CentOS 6  | 2.6.32 | Nov 30, 2020

The following changes were made as part of removing support.

* Updated `configure` to enforce a minimum kernel version as
  specified in the META file (Linux-Minimum: 3.10).

    configure: error:
        *** Cannot build against kernel version 2.6.32.
        *** The minimum supported kernel version is 3.10.

* Removed all `configure` kABI checks and matching C code for
  interfaces which solely predate the Linux 3.10 kernel.

* Updated all `configure` kABI checks to fail when an interface is
  missing which was in the 3.10 kernel up to the latest 5.1 kernel.
  Removed the HAVE_* preprocessor defines for these checks and
  updated the code to unconditionally use the verified interface.

* Inverted the detection logic in several kABI checks to match
  the new interface as it appears in 3.10 and newer and not the
  legacy interface.

* Consolidated the following checks in to individual files. Due
  the large number of changes in the checks it made sense to handle
  this now.  It would be desirable to group other related checks in
  the same fashion, but this as left as future work.

  - config/kernel-blkdev.m4 - Block device kABI checks
  - config/kernel-blk-queue.m4 - Block queue kABI checks
  - config/kernel-bio.m4 - Bio interface kABI checks

* Removed the kABI checks for sops->nr_cached_objects() and
  sops->free_cached_objects().  These interfaces are currently unused.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #9566
2019-11-12 08:59:06 -08:00

1470 lines
36 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
*
* Extended attributes (xattr) on Solaris are implemented as files
* which exist in a hidden xattr directory. These extended attributes
* can be accessed using the attropen() system call which opens
* the extended attribute. It can then be manipulated just like
* a standard file descriptor. This has a couple advantages such
* as practically no size limit on the file, and the extended
* attributes permissions may differ from those of the parent file.
* This interface is really quite clever, but it's also completely
* different than what is supported on Linux. It also comes with a
* steep performance penalty when accessing small xattrs because they
* are not stored with the parent file.
*
* Under Linux extended attributes are manipulated by the system
* calls getxattr(2), setxattr(2), and listxattr(2). They consider
* extended attributes to be name/value pairs where the name is a
* NULL terminated string. The name must also include one of the
* following namespace prefixes:
*
* user - No restrictions and is available to user applications.
* trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use.
* system - Used for access control lists (system.nfs4_acl, etc).
* security - Used by SELinux to store a files security context.
*
* The value under Linux to limited to 65536 bytes of binary data.
* In practice, individual xattrs tend to be much smaller than this
* and are typically less than 100 bytes. A good example of this
* are the security.selinux xattrs which are less than 100 bytes and
* exist for every file when xattr labeling is enabled.
*
* The Linux xattr implementation has been written to take advantage of
* this typical usage. When the dataset property 'xattr=sa' is set,
* then xattrs will be preferentially stored as System Attributes (SA).
* This allows tiny xattrs (~100 bytes) to be stored with the dnode and
* up to 64k of xattrs to be stored in the spill block. If additional
* xattr space is required, which is unlikely under Linux, they will
* be stored using the traditional directory approach.
*
* This optimization results in roughly a 3x performance improvement
* when accessing xattrs because it avoids the need to perform a seek
* for every xattr value. When multiple xattrs are stored per-file
* the performance improvements are even greater because all of the
* xattrs stored in the spill block will be cached.
*
* However, by default SA based xattrs are disabled in the Linux port
* to maximize compatibility with other implementations. If you do
* enable SA based xattrs then they will not be visible on platforms
* which do not support this feature.
*
* NOTE: One additional consequence of the xattr directory implementation
* is that when an extended attribute is manipulated an inode is created.
* This inode will exist in the Linux inode cache but there will be no
* associated entry in the dentry cache which references it. This is
* safe but it may result in some confusion. Enabling SA based xattrs
* largely avoids the issue except in the overflow case.
*/
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zap.h>
#include <sys/vfs.h>
#include <sys/zpl.h>
typedef struct xattr_filldir {
size_t size;
size_t offset;
char *buf;
struct dentry *dentry;
} xattr_filldir_t;
static const struct xattr_handler *zpl_xattr_handler(const char *);
static int
zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len)
{
static const struct xattr_handler *handler;
struct dentry *d = xf->dentry;
handler = zpl_xattr_handler(name);
if (!handler)
return (0);
if (handler->list) {
#if defined(HAVE_XATTR_LIST_SIMPLE)
if (!handler->list(d))
return (0);
#elif defined(HAVE_XATTR_LIST_DENTRY)
if (!handler->list(d, NULL, 0, name, name_len, 0))
return (0);
#elif defined(HAVE_XATTR_LIST_HANDLER)
if (!handler->list(handler, d, NULL, 0, name, name_len))
return (0);
#endif
}
return (1);
}
/*
* Determine is a given xattr name should be visible and if so copy it
* in to the provided buffer (xf->buf).
*/
static int
zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len)
{
/* Check permissions using the per-namespace list xattr handler. */
if (!zpl_xattr_permission(xf, name, name_len))
return (0);
/* When xf->buf is NULL only calculate the required size. */
if (xf->buf) {
if (xf->offset + name_len + 1 > xf->size)
return (-ERANGE);
memcpy(xf->buf + xf->offset, name, name_len);
xf->buf[xf->offset + name_len] = '\0';
}
xf->offset += (name_len + 1);
return (0);
}
/*
* Read as many directory entry names as will fit in to the provided buffer,
* or when no buffer is provided calculate the required buffer size.
*/
int
zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf)
{
zap_cursor_t zc;
zap_attribute_t zap;
int error;
zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id);
while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) {
if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
error = -ENXIO;
break;
}
error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name));
if (error)
break;
zap_cursor_advance(&zc);
}
zap_cursor_fini(&zc);
if (error == -ENOENT)
error = 0;
return (error);
}
static ssize_t
zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr)
{
struct inode *ip = xf->dentry->d_inode;
struct inode *dxip = NULL;
int error;
/* Lookup the xattr directory */
error = -zfs_lookup(ip, NULL, &dxip, LOOKUP_XATTR, cr, NULL, NULL);
if (error) {
if (error == -ENOENT)
error = 0;
return (error);
}
error = zpl_xattr_readdir(dxip, xf);
iput(dxip);
return (error);
}
static ssize_t
zpl_xattr_list_sa(xattr_filldir_t *xf)
{
znode_t *zp = ITOZ(xf->dentry->d_inode);
nvpair_t *nvp = NULL;
int error = 0;
mutex_enter(&zp->z_lock);
if (zp->z_xattr_cached == NULL)
error = -zfs_sa_get_xattr(zp);
mutex_exit(&zp->z_lock);
if (error)
return (error);
ASSERT(zp->z_xattr_cached);
while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) {
ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY);
error = zpl_xattr_filldir(xf, nvpair_name(nvp),
strlen(nvpair_name(nvp)));
if (error)
return (error);
}
return (0);
}
ssize_t
zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size)
{
znode_t *zp = ITOZ(dentry->d_inode);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
xattr_filldir_t xf = { buffer_size, 0, buffer, dentry };
cred_t *cr = CRED();
fstrans_cookie_t cookie;
int error = 0;
crhold(cr);
cookie = spl_fstrans_mark();
ZPL_ENTER(zfsvfs);
ZPL_VERIFY_ZP(zp);
rw_enter(&zp->z_xattr_lock, RW_READER);
if (zfsvfs->z_use_sa && zp->z_is_sa) {
error = zpl_xattr_list_sa(&xf);
if (error)
goto out;
}
error = zpl_xattr_list_dir(&xf, cr);
if (error)
goto out;
error = xf.offset;
out:
rw_exit(&zp->z_xattr_lock);
ZPL_EXIT(zfsvfs);
spl_fstrans_unmark(cookie);
crfree(cr);
return (error);
}
static int
zpl_xattr_get_dir(struct inode *ip, const char *name, void *value,
size_t size, cred_t *cr)
{
struct inode *dxip = NULL;
struct inode *xip = NULL;
loff_t pos = 0;
int error;
/* Lookup the xattr directory */
error = -zfs_lookup(ip, NULL, &dxip, LOOKUP_XATTR, cr, NULL, NULL);
if (error)
goto out;
/* Lookup a specific xattr name in the directory */
error = -zfs_lookup(dxip, (char *)name, &xip, 0, cr, NULL, NULL);
if (error)
goto out;
if (!size) {
error = i_size_read(xip);
goto out;
}
if (size < i_size_read(xip)) {
error = -ERANGE;
goto out;
}
error = zpl_read_common(xip, value, size, &pos, UIO_SYSSPACE, 0, cr);
out:
if (xip)
iput(xip);
if (dxip)
iput(dxip);
return (error);
}
static int
zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size)
{
znode_t *zp = ITOZ(ip);
uchar_t *nv_value;
uint_t nv_size;
int error = 0;
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
mutex_enter(&zp->z_lock);
if (zp->z_xattr_cached == NULL)
error = -zfs_sa_get_xattr(zp);
mutex_exit(&zp->z_lock);
if (error)
return (error);
ASSERT(zp->z_xattr_cached);
error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name,
&nv_value, &nv_size);
if (error)
return (error);
if (size == 0 || value == NULL)
return (nv_size);
if (size < nv_size)
return (-ERANGE);
memcpy(value, nv_value, nv_size);
return (nv_size);
}
static int
__zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size,
cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
int error;
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
if (zfsvfs->z_use_sa && zp->z_is_sa) {
error = zpl_xattr_get_sa(ip, name, value, size);
if (error != -ENOENT)
goto out;
}
error = zpl_xattr_get_dir(ip, name, value, size, cr);
out:
if (error == -ENOENT)
error = -ENODATA;
return (error);
}
#define XATTR_NOENT 0x0
#define XATTR_IN_SA 0x1
#define XATTR_IN_DIR 0x2
/* check where the xattr resides */
static int
__zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
int error;
ASSERT(where);
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
*where = XATTR_NOENT;
if (zfsvfs->z_use_sa && zp->z_is_sa) {
error = zpl_xattr_get_sa(ip, name, NULL, 0);
if (error >= 0)
*where |= XATTR_IN_SA;
else if (error != -ENOENT)
return (error);
}
error = zpl_xattr_get_dir(ip, name, NULL, 0, cr);
if (error >= 0)
*where |= XATTR_IN_DIR;
else if (error != -ENOENT)
return (error);
if (*where == (XATTR_IN_SA|XATTR_IN_DIR))
cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\""
" in both SA and dir", ip, name);
if (*where == XATTR_NOENT)
error = -ENODATA;
else
error = 0;
return (error);
}
static int
zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
cred_t *cr = CRED();
fstrans_cookie_t cookie;
int error;
crhold(cr);
cookie = spl_fstrans_mark();
ZPL_ENTER(zfsvfs);
ZPL_VERIFY_ZP(zp);
rw_enter(&zp->z_xattr_lock, RW_READER);
error = __zpl_xattr_get(ip, name, value, size, cr);
rw_exit(&zp->z_xattr_lock);
ZPL_EXIT(zfsvfs);
spl_fstrans_unmark(cookie);
crfree(cr);
return (error);
}
static int
zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value,
size_t size, int flags, cred_t *cr)
{
struct inode *dxip = NULL;
struct inode *xip = NULL;
vattr_t *vap = NULL;
ssize_t wrote;
int lookup_flags, error;
const int xattr_mode = S_IFREG | 0644;
loff_t pos = 0;
/*
* Lookup the xattr directory. When we're adding an entry pass
* CREATE_XATTR_DIR to ensure the xattr directory is created.
* When removing an entry this flag is not passed to avoid
* unnecessarily creating a new xattr directory.
*/
lookup_flags = LOOKUP_XATTR;
if (value != NULL)
lookup_flags |= CREATE_XATTR_DIR;
error = -zfs_lookup(ip, NULL, &dxip, lookup_flags, cr, NULL, NULL);
if (error)
goto out;
/* Lookup a specific xattr name in the directory */
error = -zfs_lookup(dxip, (char *)name, &xip, 0, cr, NULL, NULL);
if (error && (error != -ENOENT))
goto out;
error = 0;
/* Remove a specific name xattr when value is set to NULL. */
if (value == NULL) {
if (xip)
error = -zfs_remove(dxip, (char *)name, cr, 0);
goto out;
}
/* Lookup failed create a new xattr. */
if (xip == NULL) {
vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP);
vap->va_mode = xattr_mode;
vap->va_mask = ATTR_MODE;
vap->va_uid = crgetfsuid(cr);
vap->va_gid = crgetfsgid(cr);
error = -zfs_create(dxip, (char *)name, vap, 0, 0644, &xip,
cr, 0, NULL);
if (error)
goto out;
}
ASSERT(xip != NULL);
error = -zfs_freesp(ITOZ(xip), 0, 0, xattr_mode, TRUE);
if (error)
goto out;
wrote = zpl_write_common(xip, value, size, &pos, UIO_SYSSPACE, 0, cr);
if (wrote < 0)
error = wrote;
out:
if (error == 0) {
ip->i_ctime = current_time(ip);
zfs_mark_inode_dirty(ip);
}
if (vap)
kmem_free(vap, sizeof (vattr_t));
if (xip)
iput(xip);
if (dxip)
iput(dxip);
if (error == -ENOENT)
error = -ENODATA;
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value,
size_t size, int flags, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
nvlist_t *nvl;
size_t sa_size;
int error = 0;
mutex_enter(&zp->z_lock);
if (zp->z_xattr_cached == NULL)
error = -zfs_sa_get_xattr(zp);
mutex_exit(&zp->z_lock);
if (error)
return (error);
ASSERT(zp->z_xattr_cached);
nvl = zp->z_xattr_cached;
if (value == NULL) {
error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY);
if (error == -ENOENT)
error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr);
} else {
/* Limited to 32k to keep nvpair memory allocations small */
if (size > DXATTR_MAX_ENTRY_SIZE)
return (-EFBIG);
/* Prevent the DXATTR SA from consuming the entire SA region */
error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR);
if (error)
return (error);
if (sa_size > DXATTR_MAX_SA_SIZE)
return (-EFBIG);
error = -nvlist_add_byte_array(nvl, name,
(uchar_t *)value, size);
}
/*
* Update the SA for additions, modifications, and removals. On
* error drop the inconsistent cached version of the nvlist, it
* will be reconstructed from the ARC when next accessed.
*/
if (error == 0)
error = -zfs_sa_set_xattr(zp);
if (error) {
nvlist_free(nvl);
zp->z_xattr_cached = NULL;
}
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_xattr_set(struct inode *ip, const char *name, const void *value,
size_t size, int flags)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
cred_t *cr = CRED();
fstrans_cookie_t cookie;
int where;
int error;
crhold(cr);
cookie = spl_fstrans_mark();
ZPL_ENTER(zfsvfs);
ZPL_VERIFY_ZP(zp);
rw_enter(&ITOZ(ip)->z_xattr_lock, RW_WRITER);
/*
* Before setting the xattr check to see if it already exists.
* This is done to ensure the following optional flags are honored.
*
* XATTR_CREATE: fail if xattr already exists
* XATTR_REPLACE: fail if xattr does not exist
*
* We also want to know if it resides in sa or dir, so we can make
* sure we don't end up with duplicate in both places.
*/
error = __zpl_xattr_where(ip, name, &where, cr);
if (error < 0) {
if (error != -ENODATA)
goto out;
if (flags & XATTR_REPLACE)
goto out;
/* The xattr to be removed already doesn't exist */
error = 0;
if (value == NULL)
goto out;
} else {
error = -EEXIST;
if (flags & XATTR_CREATE)
goto out;
}
/* Preferentially store the xattr as a SA for better performance */
if (zfsvfs->z_use_sa && zp->z_is_sa &&
(zfsvfs->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) {
error = zpl_xattr_set_sa(ip, name, value, size, flags, cr);
if (error == 0) {
/*
* Successfully put into SA, we need to clear the one
* in dir.
*/
if (where & XATTR_IN_DIR)
zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr);
goto out;
}
}
error = zpl_xattr_set_dir(ip, name, value, size, flags, cr);
/*
* Successfully put into dir, we need to clear the one in SA.
*/
if (error == 0 && (where & XATTR_IN_SA))
zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr);
out:
rw_exit(&ITOZ(ip)->z_xattr_lock);
ZPL_EXIT(zfsvfs);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
/*
* Extended user attributes
*
* "Extended user attributes may be assigned to files and directories for
* storing arbitrary additional information such as the mime type,
* character set or encoding of a file. The access permissions for user
* attributes are defined by the file permission bits: read permission
* is required to retrieve the attribute value, and writer permission is
* required to change it.
*
* The file permission bits of regular files and directories are
* interpreted differently from the file permission bits of special
* files and symbolic links. For regular files and directories the file
* permission bits define access to the file's contents, while for
* device special files they define access to the device described by
* the special file. The file permissions of symbolic links are not
* used in access checks. These differences would allow users to
* consume filesystem resources in a way not controllable by disk quotas
* for group or world writable special files and directories.
*
* For this reason, extended user attributes are allowed only for
* regular files and directories, and access to extended user attributes
* is restricted to the owner and to users with appropriate capabilities
* for directories with the sticky bit set (see the chmod(1) manual page
* for an explanation of the sticky bit)." - xattr(7)
*
* ZFS allows extended user attributes to be disabled administratively
* by setting the 'xattr=off' property on the dataset.
*/
static int
__zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size,
const char *name, size_t name_len)
{
return (ITOZSB(ip)->z_flags & ZSB_XATTR);
}
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list);
static int
__zpl_xattr_user_get(struct inode *ip, const char *name,
void *value, size_t size)
{
char *xattr_name;
int error;
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") == 0)
return (-EINVAL);
#endif
if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
return (-EOPNOTSUPP);
xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
error = zpl_xattr_get(ip, xattr_name, value, size);
kmem_strfree(xattr_name);
return (error);
}
ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get);
static int
__zpl_xattr_user_set(struct inode *ip, const char *name,
const void *value, size_t size, int flags)
{
char *xattr_name;
int error;
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") == 0)
return (-EINVAL);
#endif
if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
return (-EOPNOTSUPP);
xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
error = zpl_xattr_set(ip, xattr_name, value, size, flags);
kmem_strfree(xattr_name);
return (error);
}
ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set);
xattr_handler_t zpl_xattr_user_handler =
{
.prefix = XATTR_USER_PREFIX,
.list = zpl_xattr_user_list,
.get = zpl_xattr_user_get,
.set = zpl_xattr_user_set,
};
/*
* Trusted extended attributes
*
* "Trusted extended attributes are visible and accessible only to
* processes that have the CAP_SYS_ADMIN capability. Attributes in this
* class are used to implement mechanisms in user space (i.e., outside
* the kernel) which keep information in extended attributes to which
* ordinary processes should not have access." - xattr(7)
*/
static int
__zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size,
const char *name, size_t name_len)
{
return (capable(CAP_SYS_ADMIN));
}
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list);
static int
__zpl_xattr_trusted_get(struct inode *ip, const char *name,
void *value, size_t size)
{
char *xattr_name;
int error;
if (!capable(CAP_SYS_ADMIN))
return (-EACCES);
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") == 0)
return (-EINVAL);
#endif
xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
error = zpl_xattr_get(ip, xattr_name, value, size);
kmem_strfree(xattr_name);
return (error);
}
ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get);
static int
__zpl_xattr_trusted_set(struct inode *ip, const char *name,
const void *value, size_t size, int flags)
{
char *xattr_name;
int error;
if (!capable(CAP_SYS_ADMIN))
return (-EACCES);
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") == 0)
return (-EINVAL);
#endif
xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
error = zpl_xattr_set(ip, xattr_name, value, size, flags);
kmem_strfree(xattr_name);
return (error);
}
ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set);
xattr_handler_t zpl_xattr_trusted_handler =
{
.prefix = XATTR_TRUSTED_PREFIX,
.list = zpl_xattr_trusted_list,
.get = zpl_xattr_trusted_get,
.set = zpl_xattr_trusted_set,
};
/*
* Extended security attributes
*
* "The security attribute namespace is used by kernel security modules,
* such as Security Enhanced Linux, and also to implement file
* capabilities (see capabilities(7)). Read and write access
* permissions to security attributes depend on the policy implemented
* for each security attribute by the security module. When no security
* module is loaded, all processes have read access to extended security
* attributes, and write access is limited to processes that have the
* CAP_SYS_ADMIN capability." - xattr(7)
*/
static int
__zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size,
const char *name, size_t name_len)
{
return (1);
}
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list);
static int
__zpl_xattr_security_get(struct inode *ip, const char *name,
void *value, size_t size)
{
char *xattr_name;
int error;
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") == 0)
return (-EINVAL);
#endif
xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
error = zpl_xattr_get(ip, xattr_name, value, size);
kmem_strfree(xattr_name);
return (error);
}
ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get);
static int
__zpl_xattr_security_set(struct inode *ip, const char *name,
const void *value, size_t size, int flags)
{
char *xattr_name;
int error;
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") == 0)
return (-EINVAL);
#endif
xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
error = zpl_xattr_set(ip, xattr_name, value, size, flags);
kmem_strfree(xattr_name);
return (error);
}
ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set);
static int
zpl_xattr_security_init_impl(struct inode *ip, const struct xattr *xattrs,
void *fs_info)
{
const struct xattr *xattr;
int error = 0;
for (xattr = xattrs; xattr->name != NULL; xattr++) {
error = __zpl_xattr_security_set(ip,
xattr->name, xattr->value, xattr->value_len, 0);
if (error < 0)
break;
}
return (error);
}
int
zpl_xattr_security_init(struct inode *ip, struct inode *dip,
const struct qstr *qstr)
{
return security_inode_init_security(ip, dip, qstr,
&zpl_xattr_security_init_impl, NULL);
}
/*
* Security xattr namespace handlers.
*/
xattr_handler_t zpl_xattr_security_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.list = zpl_xattr_security_list,
.get = zpl_xattr_security_get,
.set = zpl_xattr_security_set,
};
/*
* Extended system attributes
*
* "Extended system attributes are used by the kernel to store system
* objects such as Access Control Lists. Read and write access permissions
* to system attributes depend on the policy implemented for each system
* attribute implemented by filesystems in the kernel." - xattr(7)
*/
#ifdef CONFIG_FS_POSIX_ACL
int
zpl_set_acl(struct inode *ip, struct posix_acl *acl, int type)
{
char *name, *value = NULL;
int error = 0;
size_t size = 0;
if (S_ISLNK(ip->i_mode))
return (-EOPNOTSUPP);
switch (type) {
case ACL_TYPE_ACCESS:
name = XATTR_NAME_POSIX_ACL_ACCESS;
if (acl) {
umode_t mode = ip->i_mode;
error = posix_acl_equiv_mode(acl, &mode);
if (error < 0) {
return (error);
} else {
/*
* The mode bits will have been set by
* ->zfs_setattr()->zfs_acl_chmod_setattr()
* using the ZFS ACL conversion. If they
* differ from the Posix ACL conversion dirty
* the inode to write the Posix mode bits.
*/
if (ip->i_mode != mode) {
ip->i_mode = mode;
ip->i_ctime = current_time(ip);
zfs_mark_inode_dirty(ip);
}
if (error == 0)
acl = NULL;
}
}
break;
case ACL_TYPE_DEFAULT:
name = XATTR_NAME_POSIX_ACL_DEFAULT;
if (!S_ISDIR(ip->i_mode))
return (acl ? -EACCES : 0);
break;
default:
return (-EINVAL);
}
if (acl) {
size = posix_acl_xattr_size(acl->a_count);
value = kmem_alloc(size, KM_SLEEP);
error = zpl_acl_to_xattr(acl, value, size);
if (error < 0) {
kmem_free(value, size);
return (error);
}
}
error = zpl_xattr_set(ip, name, value, size, 0);
if (value)
kmem_free(value, size);
if (!error) {
if (acl)
zpl_set_cached_acl(ip, type, acl);
else
zpl_forget_cached_acl(ip, type);
}
return (error);
}
struct posix_acl *
zpl_get_acl(struct inode *ip, int type)
{
struct posix_acl *acl;
void *value = NULL;
char *name;
int size;
/*
* As of Linux 3.14, the kernel get_acl will check this for us.
* Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong
* as the kernel get_acl will set it to temporary sentinel value.
*/
#ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
acl = get_cached_acl(ip, type);
if (acl != ACL_NOT_CACHED)
return (acl);
#endif
switch (type) {
case ACL_TYPE_ACCESS:
name = XATTR_NAME_POSIX_ACL_ACCESS;
break;
case ACL_TYPE_DEFAULT:
name = XATTR_NAME_POSIX_ACL_DEFAULT;
break;
default:
return (ERR_PTR(-EINVAL));
}
size = zpl_xattr_get(ip, name, NULL, 0);
if (size > 0) {
value = kmem_alloc(size, KM_SLEEP);
size = zpl_xattr_get(ip, name, value, size);
}
if (size > 0) {
acl = zpl_acl_from_xattr(value, size);
} else if (size == -ENODATA || size == -ENOSYS) {
acl = NULL;
} else {
acl = ERR_PTR(-EIO);
}
if (size > 0)
kmem_free(value, size);
/* As of Linux 4.7, the kernel get_acl will set this for us */
#ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
if (!IS_ERR(acl))
zpl_set_cached_acl(ip, type, acl);
#endif
return (acl);
}
int
zpl_init_acl(struct inode *ip, struct inode *dir)
{
struct posix_acl *acl = NULL;
int error = 0;
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
return (0);
if (!S_ISLNK(ip->i_mode)) {
acl = zpl_get_acl(dir, ACL_TYPE_DEFAULT);
if (IS_ERR(acl))
return (PTR_ERR(acl));
if (!acl) {
ip->i_mode &= ~current_umask();
ip->i_ctime = current_time(ip);
zfs_mark_inode_dirty(ip);
return (0);
}
}
if (acl) {
umode_t mode;
if (S_ISDIR(ip->i_mode)) {
error = zpl_set_acl(ip, acl, ACL_TYPE_DEFAULT);
if (error)
goto out;
}
mode = ip->i_mode;
error = __posix_acl_create(&acl, GFP_KERNEL, &mode);
if (error >= 0) {
ip->i_mode = mode;
zfs_mark_inode_dirty(ip);
if (error > 0)
error = zpl_set_acl(ip, acl, ACL_TYPE_ACCESS);
}
}
out:
zpl_posix_acl_release(acl);
return (error);
}
int
zpl_chmod_acl(struct inode *ip)
{
struct posix_acl *acl;
int error;
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
return (0);
if (S_ISLNK(ip->i_mode))
return (-EOPNOTSUPP);
acl = zpl_get_acl(ip, ACL_TYPE_ACCESS);
if (IS_ERR(acl) || !acl)
return (PTR_ERR(acl));
error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode);
if (!error)
error = zpl_set_acl(ip, acl, ACL_TYPE_ACCESS);
zpl_posix_acl_release(acl);
return (error);
}
static int
__zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size,
const char *name, size_t name_len)
{
char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS;
size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS);
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
return (0);
if (list && xattr_size <= list_size)
memcpy(list, xattr_name, xattr_size);
return (xattr_size);
}
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access);
static int
__zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size,
const char *name, size_t name_len)
{
char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT;
size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT);
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
return (0);
if (list && xattr_size <= list_size)
memcpy(list, xattr_name, xattr_size);
return (xattr_size);
}
ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default);
static int
__zpl_xattr_acl_get_access(struct inode *ip, const char *name,
void *buffer, size_t size)
{
struct posix_acl *acl;
int type = ACL_TYPE_ACCESS;
int error;
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") != 0)
return (-EINVAL);
#endif
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
return (-EOPNOTSUPP);
acl = zpl_get_acl(ip, type);
if (IS_ERR(acl))
return (PTR_ERR(acl));
if (acl == NULL)
return (-ENODATA);
error = zpl_acl_to_xattr(acl, buffer, size);
zpl_posix_acl_release(acl);
return (error);
}
ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access);
static int
__zpl_xattr_acl_get_default(struct inode *ip, const char *name,
void *buffer, size_t size)
{
struct posix_acl *acl;
int type = ACL_TYPE_DEFAULT;
int error;
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") != 0)
return (-EINVAL);
#endif
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
return (-EOPNOTSUPP);
acl = zpl_get_acl(ip, type);
if (IS_ERR(acl))
return (PTR_ERR(acl));
if (acl == NULL)
return (-ENODATA);
error = zpl_acl_to_xattr(acl, buffer, size);
zpl_posix_acl_release(acl);
return (error);
}
ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default);
static int
__zpl_xattr_acl_set_access(struct inode *ip, const char *name,
const void *value, size_t size, int flags)
{
struct posix_acl *acl;
int type = ACL_TYPE_ACCESS;
int error = 0;
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") != 0)
return (-EINVAL);
#endif
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
return (-EOPNOTSUPP);
if (!inode_owner_or_capable(ip))
return (-EPERM);
if (value) {
acl = zpl_acl_from_xattr(value, size);
if (IS_ERR(acl))
return (PTR_ERR(acl));
else if (acl) {
error = zpl_posix_acl_valid(ip, acl);
if (error) {
zpl_posix_acl_release(acl);
return (error);
}
}
} else {
acl = NULL;
}
error = zpl_set_acl(ip, acl, type);
zpl_posix_acl_release(acl);
return (error);
}
ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access);
static int
__zpl_xattr_acl_set_default(struct inode *ip, const char *name,
const void *value, size_t size, int flags)
{
struct posix_acl *acl;
int type = ACL_TYPE_DEFAULT;
int error = 0;
/* xattr_resolve_name will do this for us if this is defined */
#ifndef HAVE_XATTR_HANDLER_NAME
if (strcmp(name, "") != 0)
return (-EINVAL);
#endif
if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
return (-EOPNOTSUPP);
if (!inode_owner_or_capable(ip))
return (-EPERM);
if (value) {
acl = zpl_acl_from_xattr(value, size);
if (IS_ERR(acl))
return (PTR_ERR(acl));
else if (acl) {
error = zpl_posix_acl_valid(ip, acl);
if (error) {
zpl_posix_acl_release(acl);
return (error);
}
}
} else {
acl = NULL;
}
error = zpl_set_acl(ip, acl, type);
zpl_posix_acl_release(acl);
return (error);
}
ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default);
/*
* ACL access xattr namespace handlers.
*
* Use .name instead of .prefix when available. xattr_resolve_name will match
* whole name and reject anything that has .name only as prefix.
*/
xattr_handler_t zpl_xattr_acl_access_handler =
{
#ifdef HAVE_XATTR_HANDLER_NAME
.name = XATTR_NAME_POSIX_ACL_ACCESS,
#else
.prefix = XATTR_NAME_POSIX_ACL_ACCESS,
#endif
.list = zpl_xattr_acl_list_access,
.get = zpl_xattr_acl_get_access,
.set = zpl_xattr_acl_set_access,
#if defined(HAVE_XATTR_LIST_SIMPLE) || \
defined(HAVE_XATTR_LIST_DENTRY) || \
defined(HAVE_XATTR_LIST_HANDLER)
.flags = ACL_TYPE_ACCESS,
#endif
};
/*
* ACL default xattr namespace handlers.
*
* Use .name instead of .prefix when available. xattr_resolve_name will match
* whole name and reject anything that has .name only as prefix.
*/
xattr_handler_t zpl_xattr_acl_default_handler =
{
#ifdef HAVE_XATTR_HANDLER_NAME
.name = XATTR_NAME_POSIX_ACL_DEFAULT,
#else
.prefix = XATTR_NAME_POSIX_ACL_DEFAULT,
#endif
.list = zpl_xattr_acl_list_default,
.get = zpl_xattr_acl_get_default,
.set = zpl_xattr_acl_set_default,
#if defined(HAVE_XATTR_LIST_SIMPLE) || \
defined(HAVE_XATTR_LIST_DENTRY) || \
defined(HAVE_XATTR_LIST_HANDLER)
.flags = ACL_TYPE_DEFAULT,
#endif
};
#endif /* CONFIG_FS_POSIX_ACL */
xattr_handler_t *zpl_xattr_handlers[] = {
&zpl_xattr_security_handler,
&zpl_xattr_trusted_handler,
&zpl_xattr_user_handler,
#ifdef CONFIG_FS_POSIX_ACL
&zpl_xattr_acl_access_handler,
&zpl_xattr_acl_default_handler,
#endif /* CONFIG_FS_POSIX_ACL */
NULL
};
static const struct xattr_handler *
zpl_xattr_handler(const char *name)
{
if (strncmp(name, XATTR_USER_PREFIX,
XATTR_USER_PREFIX_LEN) == 0)
return (&zpl_xattr_user_handler);
if (strncmp(name, XATTR_TRUSTED_PREFIX,
XATTR_TRUSTED_PREFIX_LEN) == 0)
return (&zpl_xattr_trusted_handler);
if (strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN) == 0)
return (&zpl_xattr_security_handler);
#ifdef CONFIG_FS_POSIX_ACL
if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS,
sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0)
return (&zpl_xattr_acl_access_handler);
if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT,
sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0)
return (&zpl_xattr_acl_default_handler);
#endif /* CONFIG_FS_POSIX_ACL */
return (NULL);
}
#if !defined(HAVE_POSIX_ACL_RELEASE) || defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY)
struct acl_rel_struct {
struct acl_rel_struct *next;
struct posix_acl *acl;
clock_t time;
};
#define ACL_REL_GRACE (60*HZ)
#define ACL_REL_WINDOW (1*HZ)
#define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW)
/*
* Lockless multi-producer single-consumer fifo list.
* Nodes are added to tail and removed from head. Tail pointer is our
* synchronization point. It always points to the next pointer of the last
* node, or head if list is empty.
*/
static struct acl_rel_struct *acl_rel_head = NULL;
static struct acl_rel_struct **acl_rel_tail = &acl_rel_head;
static void
zpl_posix_acl_free(void *arg)
{
struct acl_rel_struct *freelist = NULL;
struct acl_rel_struct *a;
clock_t new_time;
boolean_t refire = B_FALSE;
ASSERT3P(acl_rel_head, !=, NULL);
while (acl_rel_head) {
a = acl_rel_head;
if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) {
/*
* If a is the last node we need to reset tail, but we
* need to use cmpxchg to make sure it is still the
* last node.
*/
if (acl_rel_tail == &a->next) {
acl_rel_head = NULL;
if (cmpxchg(&acl_rel_tail, &a->next,
&acl_rel_head) == &a->next) {
ASSERT3P(a->next, ==, NULL);
a->next = freelist;
freelist = a;
break;
}
}
/*
* a is not last node, make sure next pointer is set
* by the adder and advance the head.
*/
while (READ_ONCE(a->next) == NULL)
cpu_relax();
acl_rel_head = a->next;
a->next = freelist;
freelist = a;
} else {
/*
* a is still in grace period. We are responsible to
* reschedule the free task, since adder will only do
* so if list is empty.
*/
new_time = a->time + ACL_REL_SCHED;
refire = B_TRUE;
break;
}
}
if (refire)
taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
NULL, TQ_SLEEP, new_time);
while (freelist) {
a = freelist;
freelist = a->next;
kfree(a->acl);
kmem_free(a, sizeof (struct acl_rel_struct));
}
}
void
zpl_posix_acl_release_impl(struct posix_acl *acl)
{
struct acl_rel_struct *a, **prev;
a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP);
a->next = NULL;
a->acl = acl;
a->time = ddi_get_lbolt();
/* atomically points tail to us and get the previous tail */
prev = xchg(&acl_rel_tail, &a->next);
ASSERT3P(*prev, ==, NULL);
*prev = a;
/* if it was empty before, schedule the free task */
if (prev == &acl_rel_head)
taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED);
}
#endif