mirror_zfs/module/zfs/zap.c
Allan Jude 5044c4e3ff
Fast Dedup: ZAP Shrinking
This allows ZAPs to shrink. When there are two empty sibling leafs,
one of them is collapsed and its storage space is reused.
This improved performance on directories that at one time contained
a large number of files, but many or all of those files have since
been deleted.

This also applies to all other types of ZAPs as well.

Sponsored-by: iXsystems, Inc.
Sponsored-by: Klara, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Alexander Stetsenko <alex.stetsenko@klarasystems.com>
Closes #15888
2024-04-24 14:51:21 -07:00

1693 lines
44 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
* Copyright 2023 Alexander Stetsenko <alex.stetsenko@gmail.com>
* Copyright (c) 2023, Klara Inc.
*/
/*
* This file contains the top half of the zfs directory structure
* implementation. The bottom half is in zap_leaf.c.
*
* The zdir is an extendable hash data structure. There is a table of
* pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
* each a constant size and hold a variable number of directory entries.
* The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
*
* The pointer table holds a power of 2 number of pointers.
* (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to
* by the pointer at index i in the table holds entries whose hash value
* has a zd_prefix_len - bit prefix
*/
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#include <sys/fs/zfs.h>
#include <sys/zap.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
/*
* If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
* (all leaf blocks) when we start iterating over it.
*
* For zap_cursor_init(), the callers all intend to iterate through all the
* entries. There are a few cases where an error (typically i/o error) could
* cause it to bail out early.
*
* For zap_cursor_init_serialized(), there are callers that do the iteration
* outside of ZFS. Typically they would iterate over everything, but we
* don't have control of that. E.g. zfs_ioc_snapshot_list_next(),
* zcp_snapshots_iter(), and other iterators over things in the MOS - these
* are called by /sbin/zfs and channel programs. The other example is
* zfs_readdir() which iterates over directory entries for the getdents()
* syscall. /sbin/ls iterates to the end (unless it receives a signal), but
* userland doesn't have to.
*
* Given that the ZAP entries aren't returned in a specific order, the only
* legitimate use cases for partial iteration would be:
*
* 1. Pagination: e.g. you only want to display 100 entries at a time, so you
* get the first 100 and then wait for the user to hit "next page", which
* they may never do).
*
* 2. You want to know if there are more than X entries, without relying on
* the zfs-specific implementation of the directory's st_size (which is
* the number of entries).
*/
static int zap_iterate_prefetch = B_TRUE;
/*
* Enable ZAP shrinking. When enabled, empty sibling leaf blocks will be
* collapsed into a single block.
*/
int zap_shrink_enabled = B_TRUE;
int fzap_default_block_shift = 14; /* 16k blocksize */
static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
static int zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx);
void
fzap_byteswap(void *vbuf, size_t size)
{
uint64_t block_type = *(uint64_t *)vbuf;
if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
zap_leaf_byteswap(vbuf, size);
else {
/* it's a ptrtbl block */
byteswap_uint64_array(vbuf, size);
}
}
void
fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
{
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
zap->zap_ismicro = FALSE;
zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
zap->zap_dbu.dbu_evict_func_async = NULL;
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
zap_phys_t *zp = zap_f_phys(zap);
/*
* explicitly zero it since it might be coming from an
* initialized microzap
*/
memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size);
zp->zap_block_type = ZBT_HEADER;
zp->zap_magic = ZAP_MAGIC;
zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
zp->zap_freeblk = 2; /* block 1 will be the first leaf */
zp->zap_num_leafs = 1;
zp->zap_num_entries = 0;
zp->zap_salt = zap->zap_salt;
zp->zap_normflags = zap->zap_normflags;
zp->zap_flags = flags;
/* block 1 will be the first leaf */
for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
/*
* set up block 1 - the first leaf
*/
dmu_buf_t *db;
VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db, tx);
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
l->l_dbuf = db;
zap_leaf_init(l, zp->zap_normflags != 0);
kmem_free(l, sizeof (zap_leaf_t));
dmu_buf_rele(db, FTAG);
}
static int
zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
{
if (RW_WRITE_HELD(&zap->zap_rwlock))
return (1);
if (rw_tryupgrade(&zap->zap_rwlock)) {
dmu_buf_will_dirty(zap->zap_dbuf, tx);
return (1);
}
return (0);
}
/*
* Generic routines for dealing with the pointer & cookie tables.
*/
static int
zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
dmu_tx_t *tx)
{
uint64_t newblk;
int bs = FZAP_BLOCK_SHIFT(zap);
int hepb = 1<<(bs-4);
/* hepb = half the number of entries in a block */
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT(tbl->zt_blk != 0);
ASSERT(tbl->zt_numblks > 0);
if (tbl->zt_nextblk != 0) {
newblk = tbl->zt_nextblk;
} else {
newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
tbl->zt_nextblk = newblk;
ASSERT0(tbl->zt_blks_copied);
dmu_prefetch_by_dnode(zap->zap_dnode, 0,
tbl->zt_blk << bs, tbl->zt_numblks << bs,
ZIO_PRIORITY_SYNC_READ);
}
/*
* Copy the ptrtbl from the old to new location.
*/
uint64_t b = tbl->zt_blks_copied;
dmu_buf_t *db_old;
int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
(tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
if (err != 0)
return (err);
/* first half of entries in old[b] go to new[2*b+0] */
dmu_buf_t *db_new;
VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
(newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db_new, tx);
transfer_func(db_old->db_data, db_new->db_data, hepb);
dmu_buf_rele(db_new, FTAG);
/* second half of entries in old[b] go to new[2*b+1] */
VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
(newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db_new, tx);
transfer_func((uint64_t *)db_old->db_data + hepb,
db_new->db_data, hepb);
dmu_buf_rele(db_new, FTAG);
dmu_buf_rele(db_old, FTAG);
tbl->zt_blks_copied++;
dprintf("copied block %llu of %llu\n",
(u_longlong_t)tbl->zt_blks_copied,
(u_longlong_t)tbl->zt_numblks);
if (tbl->zt_blks_copied == tbl->zt_numblks) {
(void) dmu_free_range(zap->zap_objset, zap->zap_object,
tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
tbl->zt_blk = newblk;
tbl->zt_numblks *= 2;
tbl->zt_shift++;
tbl->zt_nextblk = 0;
tbl->zt_blks_copied = 0;
dprintf("finished; numblocks now %llu (%uk entries)\n",
(u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10));
}
return (0);
}
static int
zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
dmu_tx_t *tx)
{
int bs = FZAP_BLOCK_SHIFT(zap);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT(tbl->zt_blk != 0);
dprintf("storing %llx at index %llx\n", (u_longlong_t)val,
(u_longlong_t)idx);
uint64_t blk = idx >> (bs-3);
uint64_t off = idx & ((1<<(bs-3))-1);
dmu_buf_t *db;
int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
if (err != 0)
return (err);
dmu_buf_will_dirty(db, tx);
if (tbl->zt_nextblk != 0) {
uint64_t idx2 = idx * 2;
uint64_t blk2 = idx2 >> (bs-3);
uint64_t off2 = idx2 & ((1<<(bs-3))-1);
dmu_buf_t *db2;
err = dmu_buf_hold_by_dnode(zap->zap_dnode,
(tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
DMU_READ_NO_PREFETCH);
if (err != 0) {
dmu_buf_rele(db, FTAG);
return (err);
}
dmu_buf_will_dirty(db2, tx);
((uint64_t *)db2->db_data)[off2] = val;
((uint64_t *)db2->db_data)[off2+1] = val;
dmu_buf_rele(db2, FTAG);
}
((uint64_t *)db->db_data)[off] = val;
dmu_buf_rele(db, FTAG);
return (0);
}
static int
zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
{
int bs = FZAP_BLOCK_SHIFT(zap);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
uint64_t blk = idx >> (bs-3);
uint64_t off = idx & ((1<<(bs-3))-1);
dmu_buf_t *db;
int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
if (err != 0)
return (err);
*valp = ((uint64_t *)db->db_data)[off];
dmu_buf_rele(db, FTAG);
if (tbl->zt_nextblk != 0) {
/*
* read the nextblk for the sake of i/o error checking,
* so that zap_table_load() will catch errors for
* zap_table_store.
*/
blk = (idx*2) >> (bs-3);
err = dmu_buf_hold_by_dnode(zap->zap_dnode,
(tbl->zt_nextblk + blk) << bs, FTAG, &db,
DMU_READ_NO_PREFETCH);
if (err == 0)
dmu_buf_rele(db, FTAG);
}
return (err);
}
/*
* Routines for growing the ptrtbl.
*/
static void
zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
{
for (int i = 0; i < n; i++) {
uint64_t lb = src[i];
dst[2 * i + 0] = lb;
dst[2 * i + 1] = lb;
}
}
static int
zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
{
/*
* The pointer table should never use more hash bits than we
* have (otherwise we'd be using useless zero bits to index it).
* If we are within 2 bits of running out, stop growing, since
* this is already an aberrant condition.
*/
if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
return (SET_ERROR(ENOSPC));
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
/*
* We are outgrowing the "embedded" ptrtbl (the one
* stored in the header block). Give it its own entire
* block, which will double the size of the ptrtbl.
*/
ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
uint64_t newblk = zap_allocate_blocks(zap, 1);
dmu_buf_t *db_new;
int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
DMU_READ_NO_PREFETCH);
if (err != 0)
return (err);
dmu_buf_will_dirty(db_new, tx);
zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
dmu_buf_rele(db_new, FTAG);
zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
(FZAP_BLOCK_SHIFT(zap)-3));
return (0);
} else {
return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
zap_ptrtbl_transfer, tx));
}
}
static void
zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
{
dmu_buf_will_dirty(zap->zap_dbuf, tx);
mutex_enter(&zap->zap_f.zap_num_entries_mtx);
ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
zap_f_phys(zap)->zap_num_entries += delta;
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
}
static uint64_t
zap_allocate_blocks(zap_t *zap, int nblocks)
{
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
zap_f_phys(zap)->zap_freeblk += nblocks;
return (newblk);
}
static void
zap_leaf_evict_sync(void *dbu)
{
zap_leaf_t *l = dbu;
rw_destroy(&l->l_rwlock);
kmem_free(l, sizeof (zap_leaf_t));
}
static zap_leaf_t *
zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
{
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
rw_enter(&l->l_rwlock, RW_WRITER);
l->l_blkid = zap_allocate_blocks(zap, 1);
l->l_dbuf = NULL;
VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf,
DMU_READ_NO_PREFETCH));
dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu));
dmu_buf_will_dirty(l->l_dbuf, tx);
zap_leaf_init(l, zap->zap_normflags != 0);
zap_f_phys(zap)->zap_num_leafs++;
return (l);
}
int
fzap_count(zap_t *zap, uint64_t *count)
{
ASSERT(!zap->zap_ismicro);
mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
*count = zap_f_phys(zap)->zap_num_entries;
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
return (0);
}
/*
* Routines for obtaining zap_leaf_t's
*/
void
zap_put_leaf(zap_leaf_t *l)
{
rw_exit(&l->l_rwlock);
dmu_buf_rele(l->l_dbuf, NULL);
}
static zap_leaf_t *
zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
{
ASSERT(blkid != 0);
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
rw_enter(&l->l_rwlock, RW_WRITER);
l->l_blkid = blkid;
l->l_bs = highbit64(db->db_size) - 1;
l->l_dbuf = db;
dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
rw_exit(&l->l_rwlock);
if (winner != NULL) {
/* someone else set it first */
zap_leaf_evict_sync(&l->l_dbu);
l = winner;
}
/*
* lhr_pad was previously used for the next leaf in the leaf
* chain. There should be no chained leafs (as we have removed
* support for them).
*/
ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
/*
* There should be more hash entries than there can be
* chunks to put in the hash table
*/
ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
/* The chunks should begin at the end of the hash table */
ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
&zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
/* The chunks should end at the end of the block */
ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
(uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
return (l);
}
static int
zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
zap_leaf_t **lp)
{
dmu_buf_t *db;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
/*
* If system crashed just after dmu_free_long_range in zfs_rmnode, we
* would be left with an empty xattr dir in delete queue. blkid=0
* would be passed in when doing zfs_purgedir. If that's the case we
* should just return immediately. The underlying objects should
* already be freed, so this should be perfectly fine.
*/
if (blkid == 0)
return (SET_ERROR(ENOENT));
int bs = FZAP_BLOCK_SHIFT(zap);
int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
if (err != 0)
return (err);
ASSERT3U(db->db_object, ==, zap->zap_object);
ASSERT3U(db->db_offset, ==, blkid << bs);
ASSERT3U(db->db_size, ==, 1 << bs);
ASSERT(blkid != 0);
zap_leaf_t *l = dmu_buf_get_user(db);
if (l == NULL)
l = zap_open_leaf(blkid, db);
rw_enter(&l->l_rwlock, lt);
/*
* Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
* causing ASSERT below to fail.
*/
if (lt == RW_WRITER)
dmu_buf_will_dirty(db, tx);
ASSERT3U(l->l_blkid, ==, blkid);
ASSERT3P(l->l_dbuf, ==, db);
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
*lp = l;
return (0);
}
static int
zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
{
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
ASSERT3U(idx, <,
(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
return (0);
} else {
return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
idx, valp));
}
}
static int
zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
{
ASSERT(tx != NULL);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
return (0);
} else {
return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
idx, blk, tx));
}
}
static int
zap_set_idx_range_to_blk(zap_t *zap, uint64_t idx, uint64_t nptrs, uint64_t blk,
dmu_tx_t *tx)
{
int bs = FZAP_BLOCK_SHIFT(zap);
int epb = bs >> 3; /* entries per block */
int err = 0;
ASSERT(tx != NULL);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
/*
* Check for i/o errors
*/
for (int i = 0; i < nptrs; i += epb) {
uint64_t blk;
err = zap_idx_to_blk(zap, idx + i, &blk);
if (err != 0) {
return (err);
}
}
for (int i = 0; i < nptrs; i++) {
err = zap_set_idx_to_blk(zap, idx + i, blk, tx);
ASSERT0(err); /* we checked for i/o errors above */
if (err != 0)
break;
}
return (err);
}
#define ZAP_PREFIX_HASH(pref, pref_len) ((pref) << (64 - (pref_len)))
/*
* Each leaf has single range of entries (block pointers) in the ZAP ptrtbl.
* If two leaves are siblings, their ranges are adjecent and contain the same
* number of entries. In order to find out if a leaf has a sibling, we need to
* check the range corresponding to the sibling leaf. There is no need to check
* all entries in the range, we only need to check the frist and the last one.
*/
static uint64_t
check_sibling_ptrtbl_range(zap_t *zap, uint64_t prefix, uint64_t prefix_len)
{
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
uint64_t h = ZAP_PREFIX_HASH(prefix, prefix_len);
uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
uint64_t pref_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - prefix_len;
uint64_t nptrs = (1 << pref_diff);
uint64_t first;
uint64_t last;
ASSERT3U(idx+nptrs, <=, (1UL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
if (zap_idx_to_blk(zap, idx, &first) != 0)
return (0);
if (zap_idx_to_blk(zap, idx + nptrs - 1, &last) != 0)
return (0);
if (first != last)
return (0);
return (first);
}
static int
zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
{
uint64_t blk;
ASSERT(zap->zap_dbuf == NULL ||
zap_f_phys(zap) == zap->zap_dbuf->db_data);
/* Reality check for corrupt zap objects (leaf or header). */
if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
return (SET_ERROR(EIO));
}
uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
int err = zap_idx_to_blk(zap, idx, &blk);
if (err != 0)
return (err);
err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
ASSERT(err ||
ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
zap_leaf_phys(*lp)->l_hdr.lh_prefix);
return (err);
}
static int
zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
const void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
{
zap_t *zap = zn->zn_zap;
uint64_t hash = zn->zn_hash;
int err;
int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
zap_leaf_phys(l)->l_hdr.lh_prefix);
if (zap_tryupgradedir(zap, tx) == 0 ||
old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
/* We failed to upgrade, or need to grow the pointer table */
objset_t *os = zap->zap_objset;
uint64_t object = zap->zap_object;
zap_put_leaf(l);
zap_unlockdir(zap, tag);
err = zap_lockdir(os, object, tx, RW_WRITER,
FALSE, FALSE, tag, &zn->zn_zap);
zap = zn->zn_zap;
if (err != 0)
return (err);
ASSERT(!zap->zap_ismicro);
while (old_prefix_len ==
zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
err = zap_grow_ptrtbl(zap, tx);
if (err != 0)
return (err);
}
err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
/* it split while our locks were down */
*lp = l;
return (0);
}
}
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
zap_leaf_phys(l)->l_hdr.lh_prefix);
int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
(old_prefix_len + 1);
uint64_t sibling =
(ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
/* check for i/o errors before doing zap_leaf_split */
for (int i = 0; i < (1ULL << prefix_diff); i++) {
uint64_t blk;
err = zap_idx_to_blk(zap, sibling + i, &blk);
if (err != 0)
return (err);
ASSERT3U(blk, ==, l->l_blkid);
}
zap_leaf_t *nl = zap_create_leaf(zap, tx);
zap_leaf_split(l, nl, zap->zap_normflags != 0);
/* set sibling pointers */
for (int i = 0; i < (1ULL << prefix_diff); i++) {
err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
ASSERT0(err); /* we checked for i/o errors above */
}
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
/* we want the sibling */
zap_put_leaf(l);
*lp = nl;
} else {
zap_put_leaf(nl);
*lp = l;
}
return (0);
}
static void
zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
const void *tag, dmu_tx_t *tx)
{
zap_t *zap = zn->zn_zap;
int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
zap_put_leaf(l);
if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
/*
* We are in the middle of growing the pointer table, or
* this leaf will soon make us grow it.
*/
if (zap_tryupgradedir(zap, tx) == 0) {
objset_t *os = zap->zap_objset;
uint64_t zapobj = zap->zap_object;
zap_unlockdir(zap, tag);
int err = zap_lockdir(os, zapobj, tx,
RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
zap = zn->zn_zap;
if (err != 0)
return;
}
/* could have finished growing while our locks were down */
if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
(void) zap_grow_ptrtbl(zap, tx);
}
}
static int
fzap_checkname(zap_name_t *zn)
{
if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
return (SET_ERROR(ENAMETOOLONG));
return (0);
}
static int
fzap_checksize(uint64_t integer_size, uint64_t num_integers)
{
/* Only integer sizes supported by C */
switch (integer_size) {
case 1:
case 2:
case 4:
case 8:
break;
default:
return (SET_ERROR(EINVAL));
}
if (integer_size * num_integers > ZAP_MAXVALUELEN)
return (SET_ERROR(E2BIG));
return (0);
}
static int
fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
{
int err = fzap_checkname(zn);
if (err != 0)
return (err);
return (fzap_checksize(integer_size, num_integers));
}
/*
* Routines for manipulating attributes.
*/
int
fzap_lookup(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers, void *buf,
char *realname, int rn_len, boolean_t *ncp)
{
zap_leaf_t *l;
zap_entry_handle_t zeh;
int err = fzap_checkname(zn);
if (err != 0)
return (err);
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
zap_put_leaf(l);
return (err);
}
err = zap_entry_read(&zeh, integer_size, num_integers, buf);
(void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
if (ncp) {
*ncp = zap_entry_normalization_conflict(&zeh,
zn, NULL, zn->zn_zap);
}
}
zap_put_leaf(l);
return (err);
}
int
fzap_add_cd(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers,
const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
zap_t *zap = zn->zn_zap;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT(!zap->zap_ismicro);
ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
retry:
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
err = SET_ERROR(EEXIST);
goto out;
}
if (err != ENOENT)
goto out;
err = zap_entry_create(l, zn, cd,
integer_size, num_integers, val, &zeh);
if (err == 0) {
zap_increment_num_entries(zap, 1, tx);
} else if (err == EAGAIN) {
err = zap_expand_leaf(zn, l, tag, tx, &l);
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
if (err == 0) {
goto retry;
} else if (err == ENOSPC) {
/*
* If we failed to expand the leaf, then bailout
* as there is no point trying
* zap_put_leaf_maybe_grow_ptrtbl().
*/
return (err);
}
}
out:
if (zap != NULL)
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
return (err);
}
int
fzap_add(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers,
const void *val, const void *tag, dmu_tx_t *tx)
{
int err = fzap_check(zn, integer_size, num_integers);
if (err != 0)
return (err);
return (fzap_add_cd(zn, integer_size, num_integers,
val, ZAP_NEED_CD, tag, tx));
}
int
fzap_update(zap_name_t *zn,
int integer_size, uint64_t num_integers, const void *val,
const void *tag, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err;
boolean_t create;
zap_entry_handle_t zeh;
zap_t *zap = zn->zn_zap;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
err = fzap_check(zn, integer_size, num_integers);
if (err != 0)
return (err);
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
retry:
err = zap_leaf_lookup(l, zn, &zeh);
create = (err == ENOENT);
ASSERT(err == 0 || err == ENOENT);
if (create) {
err = zap_entry_create(l, zn, ZAP_NEED_CD,
integer_size, num_integers, val, &zeh);
if (err == 0)
zap_increment_num_entries(zap, 1, tx);
} else {
err = zap_entry_update(&zeh, integer_size, num_integers, val);
}
if (err == EAGAIN) {
err = zap_expand_leaf(zn, l, tag, tx, &l);
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
if (err == 0)
goto retry;
}
if (zap != NULL)
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
return (err);
}
int
fzap_length(zap_name_t *zn,
uint64_t *integer_size, uint64_t *num_integers)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err != 0)
goto out;
if (integer_size != NULL)
*integer_size = zeh.zeh_integer_size;
if (num_integers != NULL)
*num_integers = zeh.zeh_num_integers;
out:
zap_put_leaf(l);
return (err);
}
int
fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
zap_entry_remove(&zeh);
zap_increment_num_entries(zn->zn_zap, -1, tx);
if (zap_leaf_phys(l)->l_hdr.lh_nentries == 0 &&
zap_shrink_enabled)
return (zap_shrink(zn, l, tx));
}
zap_put_leaf(l);
return (err);
}
void
fzap_prefetch(zap_name_t *zn)
{
uint64_t blk;
zap_t *zap = zn->zn_zap;
uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
zap_f_phys(zap)->zap_ptrtbl.zt_shift);
if (zap_idx_to_blk(zap, idx, &blk) != 0)
return;
int bs = FZAP_BLOCK_SHIFT(zap);
dmu_prefetch_by_dnode(zap->zap_dnode, 0, blk << bs, 1 << bs,
ZIO_PRIORITY_SYNC_READ);
}
/*
* Helper functions for consumers.
*/
uint64_t
zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
const char *name, dmu_tx_t *tx)
{
return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
}
uint64_t
zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
const char *name, int dnodesize, dmu_tx_t *tx)
{
uint64_t new_obj;
new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
VERIFY(new_obj != 0);
VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
tx));
return (new_obj);
}
int
zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
char *name)
{
zap_cursor_t zc;
int err;
if (mask == 0)
mask = -1ULL;
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
for (zap_cursor_init(&zc, os, zapobj);
(err = zap_cursor_retrieve(&zc, za)) == 0;
zap_cursor_advance(&zc)) {
if ((za->za_first_integer & mask) == (value & mask)) {
(void) strlcpy(name, za->za_name, MAXNAMELEN);
break;
}
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (*za));
return (err);
}
int
zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
{
zap_cursor_t zc;
int err = 0;
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, za) == 0;
(void) zap_cursor_advance(&zc)) {
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_add(os, intoobj, za->za_name,
8, 1, &za->za_first_integer, tx);
if (err != 0)
break;
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (*za));
return (err);
}
int
zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
uint64_t value, dmu_tx_t *tx)
{
zap_cursor_t zc;
int err = 0;
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, za) == 0;
(void) zap_cursor_advance(&zc)) {
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_add(os, intoobj, za->za_name,
8, 1, &value, tx);
if (err != 0)
break;
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (*za));
return (err);
}
int
zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
dmu_tx_t *tx)
{
zap_cursor_t zc;
int err = 0;
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, za) == 0;
(void) zap_cursor_advance(&zc)) {
uint64_t delta = 0;
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
if (err != 0 && err != ENOENT)
break;
delta += za->za_first_integer;
err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
if (err != 0)
break;
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (*za));
return (err);
}
int
zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_add(os, obj, name, 8, 1, &value, tx));
}
int
zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_remove(os, obj, name, tx));
}
int
zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_lookup(os, obj, name, 8, 1, &value));
}
int
zap_add_int_key(objset_t *os, uint64_t obj,
uint64_t key, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_add(os, obj, name, 8, 1, &value, tx));
}
int
zap_update_int_key(objset_t *os, uint64_t obj,
uint64_t key, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_update(os, obj, name, 8, 1, &value, tx));
}
int
zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_lookup(os, obj, name, 8, 1, valuep));
}
int
zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
dmu_tx_t *tx)
{
uint64_t value = 0;
if (delta == 0)
return (0);
int err = zap_lookup(os, obj, name, 8, 1, &value);
if (err != 0 && err != ENOENT)
return (err);
value += delta;
if (value == 0)
err = zap_remove(os, obj, name, tx);
else
err = zap_update(os, obj, name, 8, 1, &value, tx);
return (err);
}
int
zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_increment(os, obj, name, delta, tx));
}
/*
* Routines for iterating over the attributes.
*/
int
fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
{
int err = ENOENT;
zap_entry_handle_t zeh;
zap_leaf_t *l;
/* retrieve the next entry at or after zc_hash/zc_cd */
/* if no entry, return ENOENT */
/*
* If we are reading from the beginning, we're almost certain to
* iterate over the entire ZAP object. If there are multiple leaf
* blocks (freeblk > 2), prefetch the whole object (up to
* dmu_prefetch_max bytes), so that we read the leaf blocks
* concurrently. (Unless noprefetch was requested via
* zap_cursor_init_noprefetch()).
*/
if (zc->zc_hash == 0 && zap_iterate_prefetch &&
zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
dmu_prefetch_by_dnode(zap->zap_dnode, 0, 0,
zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
ZIO_PRIORITY_ASYNC_READ);
}
if (zc->zc_leaf) {
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
/*
* The leaf was either shrunk or split.
*/
if ((zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_block_type == 0) ||
(ZAP_HASH_IDX(zc->zc_hash,
zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
}
}
again:
if (zc->zc_leaf == NULL) {
err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
&zc->zc_leaf);
if (err != 0)
return (err);
}
l = zc->zc_leaf;
err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
if (err == ENOENT) {
if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
zc->zc_hash = -1ULL;
zc->zc_cd = 0;
} else {
uint64_t nocare = (1ULL <<
(64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
zc->zc_cd = 0;
if (zc->zc_hash == 0) {
zc->zc_hash = -1ULL;
} else {
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
goto again;
}
}
}
if (err == 0) {
zc->zc_hash = zeh.zeh_hash;
zc->zc_cd = zeh.zeh_cd;
za->za_integer_length = zeh.zeh_integer_size;
za->za_num_integers = zeh.zeh_num_integers;
if (zeh.zeh_num_integers == 0) {
za->za_first_integer = 0;
} else {
err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
ASSERT(err == 0 || err == EOVERFLOW);
}
err = zap_entry_read_name(zap, &zeh,
sizeof (za->za_name), za->za_name);
ASSERT(err == 0);
za->za_normalization_conflict =
zap_entry_normalization_conflict(&zeh,
NULL, za->za_name, zap);
}
rw_exit(&zc->zc_leaf->l_rwlock);
return (err);
}
static void
zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
{
uint64_t lastblk = 0;
/*
* NB: if a leaf has more pointers than an entire ptrtbl block
* can hold, then it'll be accounted for more than once, since
* we won't have lastblk.
*/
for (int i = 0; i < len; i++) {
zap_leaf_t *l;
if (tbl[i] == lastblk)
continue;
lastblk = tbl[i];
int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
if (err == 0) {
zap_leaf_stats(zap, l, zs);
zap_put_leaf(l);
}
}
}
void
fzap_get_stats(zap_t *zap, zap_stats_t *zs)
{
int bs = FZAP_BLOCK_SHIFT(zap);
zs->zs_blocksize = 1ULL << bs;
/*
* Set zap_phys_t fields
*/
zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
zs->zs_magic = zap_f_phys(zap)->zap_magic;
zs->zs_salt = zap_f_phys(zap)->zap_salt;
/*
* Set zap_ptrtbl fields
*/
zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
zs->zs_ptrtbl_blks_copied =
zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
/* the ptrtbl is entirely in the header block. */
zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
} else {
dmu_prefetch_by_dnode(zap->zap_dnode, 0,
zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
ZIO_PRIORITY_SYNC_READ);
for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
b++) {
dmu_buf_t *db;
int err;
err = dmu_buf_hold_by_dnode(zap->zap_dnode,
(zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
FTAG, &db, DMU_READ_NO_PREFETCH);
if (err == 0) {
zap_stats_ptrtbl(zap, db->db_data,
1<<(bs-3), zs);
dmu_buf_rele(db, FTAG);
}
}
}
}
/*
* Find last allocated block and update freeblk.
*/
static void
zap_trunc(zap_t *zap)
{
uint64_t nentries;
uint64_t lastblk;
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
if (zap_f_phys(zap)->zap_ptrtbl.zt_blk > 0) {
/* External ptrtbl */
nentries = (1 << zap_f_phys(zap)->zap_ptrtbl.zt_shift);
lastblk = zap_f_phys(zap)->zap_ptrtbl.zt_blk +
zap_f_phys(zap)->zap_ptrtbl.zt_numblks - 1;
} else {
/* Embedded ptrtbl */
nentries = (1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
lastblk = 0;
}
for (uint64_t idx = 0; idx < nentries; idx++) {
uint64_t blk;
if (zap_idx_to_blk(zap, idx, &blk) != 0)
return;
if (blk > lastblk)
lastblk = blk;
}
ASSERT3U(lastblk, <, zap_f_phys(zap)->zap_freeblk);
zap_f_phys(zap)->zap_freeblk = lastblk + 1;
}
/*
* ZAP shrinking algorithm.
*
* We shrink ZAP recuresively removing empty leaves. We can remove an empty leaf
* only if it has a sibling. Sibling leaves have the same prefix length and
* their prefixes differ only by the least significant (sibling) bit. We require
* both siblings to be empty. This eliminates a need to rehash the non-empty
* remaining leaf. When we have removed one of two empty sibling, we set ptrtbl
* entries of the removed leaf to point out to the remaining leaf. Prefix length
* of the remaining leaf is decremented. As a result, it has a new prefix and it
* might have a new sibling. So, we repeat the process.
*
* Steps:
* 1. Check if a sibling leaf (sl) exists and it is empty.
* 2. Release the leaf (l) if it has the sibling bit (slbit) equal to 1.
* 3. Release the sibling (sl) to derefer it again with WRITER lock.
* 4. Upgrade zapdir lock to WRITER (once).
* 5. Derefer released leaves again.
* 6. If it is needed, recheck whether both leaves are still siblings and empty.
* 7. Set ptrtbl pointers of the removed leaf (slbit 1) to point out to blkid of
* the remaining leaf (slbit 0).
* 8. Free disk block of the removed leaf (dmu_free_range).
* 9. Decrement prefix_len of the remaining leaf.
* 10. Repeat the steps.
*/
static int
zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx)
{
zap_t *zap = zn->zn_zap;
int64_t zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
uint64_t hash = zn->zn_hash;
uint64_t prefix = zap_leaf_phys(l)->l_hdr.lh_prefix;
uint64_t prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
boolean_t trunc = B_FALSE;
int err = 0;
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0);
ASSERT3U(prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT3U(ZAP_HASH_IDX(hash, prefix_len), ==, prefix);
boolean_t writer = B_FALSE;
/*
* To avoid deadlock always deref leaves in the same order -
* sibling 0 first, then sibling 1.
*/
while (prefix_len) {
zap_leaf_t *sl;
int64_t prefix_diff = zt_shift - prefix_len;
uint64_t sl_prefix = prefix ^ 1;
uint64_t sl_hash = ZAP_PREFIX_HASH(sl_prefix, prefix_len);
int slbit = prefix & 1;
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0);
/*
* Check if there is a sibling by reading ptrtbl ptrs.
*/
if (check_sibling_ptrtbl_range(zap, sl_prefix, prefix_len) == 0)
break;
/*
* sibling 1, unlock it - we haven't yet dereferenced sibling 0.
*/
if (slbit == 1) {
zap_put_leaf(l);
l = NULL;
}
/*
* Dereference sibling leaf and check if it is empty.
*/
if ((err = zap_deref_leaf(zap, sl_hash, tx, RW_READER,
&sl)) != 0)
break;
ASSERT3U(ZAP_HASH_IDX(sl_hash, prefix_len), ==, sl_prefix);
/*
* Check if we have a sibling and it is empty.
*/
if (zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len ||
zap_leaf_phys(sl)->l_hdr.lh_nentries != 0) {
zap_put_leaf(sl);
break;
}
zap_put_leaf(sl);
/*
* If there two empty sibling, we have work to do, so
* we need to lock ZAP ptrtbl as WRITER.
*/
if (!writer && (writer = zap_tryupgradedir(zap, tx)) == 0) {
/* We failed to upgrade */
if (l != NULL) {
zap_put_leaf(l);
l = NULL;
}
/*
* Usually, the right way to upgrade from a READER lock
* to a WRITER lock is to call zap_unlockdir() and
* zap_lockdir(), but we do not have a tag. Instead,
* we do it in more sophisticated way.
*/
rw_exit(&zap->zap_rwlock);
rw_enter(&zap->zap_rwlock, RW_WRITER);
dmu_buf_will_dirty(zap->zap_dbuf, tx);
zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
writer = B_TRUE;
}
/*
* Here we have WRITER lock for ptrtbl.
* Now, we need a WRITER lock for both siblings leaves.
* Also, we have to recheck if the leaves are still siblings
* and still empty.
*/
if (l == NULL) {
/* sibling 0 */
if ((err = zap_deref_leaf(zap, (slbit ? sl_hash : hash),
tx, RW_WRITER, &l)) != 0)
break;
/*
* The leaf isn't empty anymore or
* it was shrunk/split while our locks were down.
*/
if (zap_leaf_phys(l)->l_hdr.lh_nentries != 0 ||
zap_leaf_phys(l)->l_hdr.lh_prefix_len != prefix_len)
break;
}
/* sibling 1 */
if ((err = zap_deref_leaf(zap, (slbit ? hash : sl_hash), tx,
RW_WRITER, &sl)) != 0)
break;
/*
* The leaf isn't empty anymore or
* it was shrunk/split while our locks were down.
*/
if (zap_leaf_phys(sl)->l_hdr.lh_nentries != 0 ||
zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len) {
zap_put_leaf(sl);
break;
}
/* If we have gotten here, we have a leaf to collapse */
uint64_t idx = (slbit ? prefix : sl_prefix) << prefix_diff;
uint64_t nptrs = (1ULL << prefix_diff);
uint64_t sl_blkid = sl->l_blkid;
/*
* Set ptrtbl entries to point out to the slibling 0 blkid
*/
if ((err = zap_set_idx_range_to_blk(zap, idx, nptrs, l->l_blkid,
tx)) != 0) {
zap_put_leaf(sl);
break;
}
/*
* Free sibling 1 disk block.
*/
int bs = FZAP_BLOCK_SHIFT(zap);
if (sl_blkid == zap_f_phys(zap)->zap_freeblk - 1)
trunc = B_TRUE;
(void) dmu_free_range(zap->zap_objset, zap->zap_object,
sl_blkid << bs, 1 << bs, tx);
zap_put_leaf(sl);
zap_f_phys(zap)->zap_num_leafs--;
/*
* Update prefix and prefix_len.
*/
zap_leaf_phys(l)->l_hdr.lh_prefix >>= 1;
zap_leaf_phys(l)->l_hdr.lh_prefix_len--;
prefix = zap_leaf_phys(l)->l_hdr.lh_prefix;
prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
}
if (trunc)
zap_trunc(zap);
if (l != NULL)
zap_put_leaf(l);
return (err);
}
/* CSTYLED */
ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW,
"When iterating ZAP object, prefetch it");
/* CSTYLED */
ZFS_MODULE_PARAM(zfs, , zap_shrink_enabled, INT, ZMOD_RW,
"Enable ZAP shrinking");