mirror_zfs/modules/spl/spl-kmem.c
behlendo 4efd41189a Rework condition variable implementation to be consistent with
other primitive implementations.  Additionally ensure that GFP_ATOMIC
is use for allocations when in interrupt context.



git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@108 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
2008-05-15 17:10:30 +00:00

539 lines
16 KiB
C

#include <sys/kmem.h>
#ifdef DEBUG_SUBSYSTEM
#undef DEBUG_SUBSYSTEM
#endif
#define DEBUG_SUBSYSTEM S_KMEM
/*
* Memory allocation interfaces
*/
#ifdef DEBUG_KMEM
/* Shim layer memory accounting */
atomic64_t kmem_alloc_used;
unsigned long kmem_alloc_max = 0;
atomic64_t vmem_alloc_used;
unsigned long vmem_alloc_max = 0;
int kmem_warning_flag = 1;
atomic64_t kmem_cache_alloc_failed;
spinlock_t kmem_lock;
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
struct list_head kmem_list;
spinlock_t vmem_lock;
struct hlist_head vmem_table[VMEM_TABLE_SIZE];
struct list_head vmem_list;
EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
EXPORT_SYMBOL(vmem_alloc_used);
EXPORT_SYMBOL(vmem_alloc_max);
EXPORT_SYMBOL(kmem_warning_flag);
EXPORT_SYMBOL(kmem_lock);
EXPORT_SYMBOL(kmem_table);
EXPORT_SYMBOL(kmem_list);
EXPORT_SYMBOL(vmem_lock);
EXPORT_SYMBOL(vmem_table);
EXPORT_SYMBOL(vmem_list);
int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
#else
int kmem_set_warning(int flag) { return 0; }
#endif
EXPORT_SYMBOL(kmem_set_warning);
/*
* Slab allocation interfaces
*
* While the linux slab implementation was inspired by solaris they
* have made some changes to the API which complicates this shim
* layer. For one thing the same symbol names are used with different
* arguments for the prototypes. To deal with this we must use the
* preprocessor to re-order arguments. Happily for us standard C says,
* "Macro's appearing in their own expansion are not reexpanded" so
* this does not result in an infinite recursion. Additionally the
* function pointers registered by solarias differ from those used
* by linux so a lookup and mapping from linux style callback to a
* solaris style callback is needed. There is some overhead in this
* operation which isn't horibile but it needs to be kept in mind.
*/
#define KCC_MAGIC 0x7a7a7a7a
#define KCC_POISON 0x77
typedef struct kmem_cache_cb {
int kcc_magic;
struct list_head kcc_list;
kmem_cache_t * kcc_cache;
kmem_constructor_t kcc_constructor;
kmem_destructor_t kcc_destructor;
kmem_reclaim_t kcc_reclaim;
void * kcc_private;
void * kcc_vmp;
atomic_t kcc_ref;
} kmem_cache_cb_t;
static struct rw_semaphore kmem_cache_cb_sem;
static struct list_head kmem_cache_cb_list;
static struct shrinker *kmem_cache_shrinker;
/* Function must be called while holding the kmem_cache_cb_sem
* Because kmem_cache_t is an opaque datatype we're forced to
* match pointers to identify specific cache entires.
*/
static kmem_cache_cb_t *
kmem_cache_find_cache_cb(kmem_cache_t *cache)
{
kmem_cache_cb_t *kcc;
#ifdef CONFIG_RWSEM_GENERIC_SPINLOCK
ASSERT(rwsem_is_locked(&kmem_cache_cb_sem));
#endif
list_for_each_entry(kcc, &kmem_cache_cb_list, kcc_list)
if (cache == kcc->kcc_cache)
return kcc;
return NULL;
}
static kmem_cache_cb_t *
kmem_cache_add_cache_cb(kmem_cache_t *cache,
kmem_constructor_t constructor,
kmem_destructor_t destructor,
kmem_reclaim_t reclaim,
void *priv, void *vmp)
{
kmem_cache_cb_t *kcc;
kcc = (kmem_cache_cb_t *)kmalloc(sizeof(*kcc), GFP_KERNEL);
if (kcc) {
kcc->kcc_magic = KCC_MAGIC;
kcc->kcc_cache = cache;
kcc->kcc_constructor = constructor;
kcc->kcc_destructor = destructor;
kcc->kcc_reclaim = reclaim;
kcc->kcc_private = priv;
kcc->kcc_vmp = vmp;
atomic_set(&kcc->kcc_ref, 0);
down_write(&kmem_cache_cb_sem);
list_add(&kcc->kcc_list, &kmem_cache_cb_list);
up_write(&kmem_cache_cb_sem);
}
return kcc;
}
static void
kmem_cache_remove_cache_cb(kmem_cache_cb_t *kcc)
{
down_write(&kmem_cache_cb_sem);
ASSERT(atomic_read(&kcc->kcc_ref) == 0);
list_del(&kcc->kcc_list);
up_write(&kmem_cache_cb_sem);
if (kcc){
memset(kcc, KCC_POISON, sizeof(*kcc));
kfree(kcc);
}
}
static void
kmem_cache_generic_constructor(void *ptr, kmem_cache_t *cache, unsigned long flags)
{
kmem_cache_cb_t *kcc;
kmem_constructor_t constructor;
void *private;
ASSERT(flags & SLAB_CTOR_CONSTRUCTOR);
/* Ensure constructor verifies are not passed to the registered
* constructors. This may not be safe due to the Solaris constructor
* not being aware of how to handle the SLAB_CTOR_VERIFY flag
*/
if (flags & SLAB_CTOR_VERIFY)
return;
if (flags & SLAB_CTOR_ATOMIC)
flags = KM_NOSLEEP;
else
flags = KM_SLEEP;
/* We can be called with interrupts disabled so it is critical that
* this function and the registered constructor never sleep.
*/
while (!down_read_trylock(&kmem_cache_cb_sem));
/* Callback list must be in sync with linux slab caches */
kcc = kmem_cache_find_cache_cb(cache);
ASSERT(kcc);
ASSERT(kcc->kcc_magic == KCC_MAGIC);
atomic_inc(&kcc->kcc_ref);
constructor = kcc->kcc_constructor;
private = kcc->kcc_private;
up_read(&kmem_cache_cb_sem);
if (constructor)
constructor(ptr, private, (int)flags);
atomic_dec(&kcc->kcc_ref);
/* Linux constructor has no return code, silently eat it */
}
static void
kmem_cache_generic_destructor(void *ptr, kmem_cache_t *cache, unsigned long flags)
{
kmem_cache_cb_t *kcc;
kmem_destructor_t destructor;
void *private;
/* No valid destructor flags */
ASSERT(flags == 0);
/* We can be called with interrupts disabled so it is critical that
* this function and the registered constructor never sleep.
*/
while (!down_read_trylock(&kmem_cache_cb_sem));
/* Callback list must be in sync with linux slab caches */
kcc = kmem_cache_find_cache_cb(cache);
ASSERT(kcc);
ASSERT(kcc->kcc_magic == KCC_MAGIC);
atomic_inc(&kcc->kcc_ref);
destructor = kcc->kcc_destructor;
private = kcc->kcc_private;
up_read(&kmem_cache_cb_sem);
/* Solaris destructor takes no flags, silently eat them */
if (destructor)
destructor(ptr, private);
atomic_dec(&kcc->kcc_ref);
}
/* XXX - Arguments are ignored */
static int
kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
{
kmem_cache_cb_t *kcc;
int total = 0;
/* Under linux a shrinker is not tightly coupled with a slab
* cache. In fact linux always systematically trys calling all
* registered shrinker callbacks until its target reclamation level
* is reached. Because of this we only register one shrinker
* function in the shim layer for all slab caches. And we always
* attempt to shrink all caches when this generic shrinker is called.
*/
down_read(&kmem_cache_cb_sem);
list_for_each_entry(kcc, &kmem_cache_cb_list, kcc_list) {
ASSERT(kcc);
ASSERT(kcc->kcc_magic == KCC_MAGIC);
/* Take a reference on the cache in question. If that
* cache is contended simply skip it, it may already be
* in the process of a reclaim or the ctor/dtor may be
* running in either case it's best to skip it.
*/
atomic_inc(&kcc->kcc_ref);
if (atomic_read(&kcc->kcc_ref) > 1) {
atomic_dec(&kcc->kcc_ref);
continue;
}
/* Under linux the desired number and gfp type of objects
* is passed to the reclaiming function as a sugested reclaim
* target. I do not pass these args on because reclaim
* policy is entirely up to the owner under solaris. We only
* pass on the pre-registered private data.
*/
if (kcc->kcc_reclaim)
kcc->kcc_reclaim(kcc->kcc_private);
atomic_dec(&kcc->kcc_ref);
total += 1;
}
/* Under linux we should return the remaining number of entires in
* the cache. Unfortunately, I don't see an easy way to safely
* emulate this behavior so I'm returning one entry per cache which
* was registered with the generic shrinker. This should fake out
* the linux VM when it attempts to shrink caches.
*/
up_read(&kmem_cache_cb_sem);
return total;
}
/* Ensure the __kmem_cache_create/__kmem_cache_destroy macros are
* removed here to prevent a recursive substitution, we want to call
* the native linux version.
*/
#undef kmem_cache_create
#undef kmem_cache_destroy
#undef kmem_cache_alloc
kmem_cache_t *
__kmem_cache_create(char *name, size_t size, size_t align,
kmem_constructor_t constructor,
kmem_destructor_t destructor,
kmem_reclaim_t reclaim,
void *priv, void *vmp, int flags)
{
kmem_cache_t *cache;
kmem_cache_cb_t *kcc;
int shrinker_flag = 0;
char *cache_name;
ENTRY;
/* XXX: - Option currently unsupported by shim layer */
ASSERT(!vmp);
ASSERT(flags == 0);
cache_name = kzalloc(strlen(name) + 1, GFP_KERNEL);
if (cache_name == NULL)
RETURN(NULL);
strcpy(cache_name, name);
cache = kmem_cache_create(cache_name, size, align, flags,
kmem_cache_generic_constructor,
kmem_cache_generic_destructor);
if (cache == NULL)
RETURN(NULL);
/* Register shared shrinker function on initial cache create */
down_read(&kmem_cache_cb_sem);
if (list_empty(&kmem_cache_cb_list)) {
kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
kmem_cache_generic_shrinker);
if (kmem_cache_shrinker == NULL) {
kmem_cache_destroy(cache);
up_read(&kmem_cache_cb_sem);
RETURN(NULL);
}
}
up_read(&kmem_cache_cb_sem);
kcc = kmem_cache_add_cache_cb(cache, constructor, destructor,
reclaim, priv, vmp);
if (kcc == NULL) {
if (shrinker_flag) /* New shrinker registered must be removed */
remove_shrinker(kmem_cache_shrinker);
kmem_cache_destroy(cache);
RETURN(NULL);
}
RETURN(cache);
}
EXPORT_SYMBOL(__kmem_cache_create);
/* Return code provided despite Solaris's void return. There should be no
* harm here since the Solaris versions will ignore it anyway. */
int
__kmem_cache_destroy(kmem_cache_t *cache)
{
kmem_cache_cb_t *kcc;
char *name;
int rc;
ENTRY;
down_read(&kmem_cache_cb_sem);
kcc = kmem_cache_find_cache_cb(cache);
if (kcc == NULL) {
up_read(&kmem_cache_cb_sem);
RETURN(-EINVAL);
}
atomic_inc(&kcc->kcc_ref);
up_read(&kmem_cache_cb_sem);
name = (char *)kmem_cache_name(cache);
rc = kmem_cache_destroy(cache);
atomic_dec(&kcc->kcc_ref);
kmem_cache_remove_cache_cb(kcc);
kfree(name);
/* Unregister generic shrinker on removal of all caches */
down_read(&kmem_cache_cb_sem);
if (list_empty(&kmem_cache_cb_list))
remove_shrinker(kmem_cache_shrinker);
up_read(&kmem_cache_cb_sem);
RETURN(rc);
}
EXPORT_SYMBOL(__kmem_cache_destroy);
/* Under Solaris if the KM_SLEEP flag is passed we absolutely must
* sleep until we are allocated the memory. Under Linux you can still
* get a memory allocation failure, so I'm forced to keep requesting
* the memory even if the system is under substantial memory pressure
* of fragmentation prevents the allocation from succeeded. This is
* not the correct fix, or even a good one. But it will do for now.
*/
void *
__kmem_cache_alloc(kmem_cache_t *cache, gfp_t flags)
{
void *rc;
ENTRY;
restart:
rc = kmem_cache_alloc(cache, flags);
if ((rc == NULL) && (flags & KM_SLEEP)) {
#ifdef DEBUG_KMEM
atomic64_inc(&kmem_cache_alloc_failed);
#endif /* DEBUG_KMEM */
GOTO(restart, rc);
}
RETURN(rc);
}
EXPORT_SYMBOL(__kmem_cache_alloc);
void
__kmem_reap(void)
{
ENTRY;
/* Since there's no easy hook in to linux to force all the registered
* shrinkers to run we just run the ones registered for this shim */
kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
EXIT;
}
EXPORT_SYMBOL(__kmem_reap);
int
kmem_init(void)
{
ENTRY;
init_rwsem(&kmem_cache_cb_sem);
INIT_LIST_HEAD(&kmem_cache_cb_list);
#ifdef DEBUG_KMEM
{
int i;
atomic64_set(&kmem_alloc_used, 0);
atomic64_set(&vmem_alloc_used, 0);
spin_lock_init(&kmem_lock);
INIT_LIST_HEAD(&kmem_list);
for (i = 0; i < KMEM_TABLE_SIZE; i++)
INIT_HLIST_HEAD(&kmem_table[i]);
spin_lock_init(&vmem_lock);
INIT_LIST_HEAD(&vmem_list);
for (i = 0; i < VMEM_TABLE_SIZE; i++)
INIT_HLIST_HEAD(&vmem_table[i]);
atomic64_set(&kmem_cache_alloc_failed, 0);
}
#endif
RETURN(0);
}
#ifdef DEBUG_KMEM
static char *
sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
{
int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
int i, flag = 1;
ASSERT(str != NULL && len >= 17);
memset(str, 0, len);
/* Check for a fully printable string, and while we are at
* it place the printable characters in the passed buffer. */
for (i = 0; i < size; i++) {
str[i] = ((char *)(kd->kd_addr))[i];
if (isprint(str[i])) {
continue;
} else {
/* Minimum number of printable characters found
* to make it worthwhile to print this as ascii. */
if (i > min)
break;
flag = 0;
break;
}
}
if (!flag) {
sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
*((uint8_t *)kd->kd_addr),
*((uint8_t *)kd->kd_addr + 2),
*((uint8_t *)kd->kd_addr + 4),
*((uint8_t *)kd->kd_addr + 6),
*((uint8_t *)kd->kd_addr + 8),
*((uint8_t *)kd->kd_addr + 10),
*((uint8_t *)kd->kd_addr + 12),
*((uint8_t *)kd->kd_addr + 14));
}
return str;
}
#endif /* DEBUG_KMEM */
void
kmem_fini(void)
{
ENTRY;
#ifdef DEBUG_KMEM
{
unsigned long flags;
kmem_debug_t *kd;
char str[17];
/* Display all unreclaimed memory addresses, including the
* allocation size and the first few bytes of what's located
* at that address to aid in debugging. Performance is not
* a serious concern here since it is module unload time. */
if (atomic64_read(&kmem_alloc_used) != 0)
CWARN("kmem leaked %ld/%ld bytes\n",
atomic_read(&kmem_alloc_used), kmem_alloc_max);
spin_lock_irqsave(&kmem_lock, flags);
if (!list_empty(&kmem_list))
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
"address", "size", "data", "func", "line");
list_for_each_entry(kd, &kmem_list, kd_list)
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
kd->kd_addr, kd->kd_size,
sprintf_addr(kd, str, 17, 8),
kd->kd_func, kd->kd_line);
spin_unlock_irqrestore(&kmem_lock, flags);
if (atomic64_read(&vmem_alloc_used) != 0)
CWARN("vmem leaked %ld/%ld bytes\n",
atomic_read(&vmem_alloc_used), vmem_alloc_max);
spin_lock_irqsave(&vmem_lock, flags);
if (!list_empty(&vmem_list))
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
"address", "size", "data", "func", "line");
list_for_each_entry(kd, &vmem_list, kd_list)
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
kd->kd_addr, kd->kd_size,
sprintf_addr(kd, str, 17, 8),
kd->kd_func, kd->kd_line);
spin_unlock_irqrestore(&vmem_lock, flags);
}
#endif
EXIT;
}