mirror_zfs/include/sys/zil_impl.h
Prakash Surya 900d09b285 OpenZFS 9962 - zil_commit should omit cache thrash
As a result of the changes made in 8585, it's possible for an excessive
amount of vdev flush commands to be issued under some workloads.

Specifically, when the workload consists of mostly async write activity,
interspersed with some sync write and/or fsync activity, we can end up
issuing more flush commands to the underlying storage than is actually
necessary. As a result of these flush commands, the write latency and
overall throughput of the pool can be poorly impacted (latency
increases, throughput decreases).

Currently, any time an lwb completes, the vdev(s) written to as a result
of that lwb will be issued a flush command. The intenion is so the data
written to that vdev is on stable storage, prior to communicating to any
waiting threads that their data is safe on disk.

The problem with this scheme, is that sometimes an lwb will not have any
threads waiting for it to complete. This can occur when there's async
activity that gets "converted" to sync requests, as a result of calling
the zil_async_to_sync() function via zil_commit_impl(). When this
occurs, the current code may issue many lwbs that don't have waiters
associated with them, resulting in many flush commands, potentially to
the same vdev(s).

For example, given a pool with a single vdev, and a single fsync() call
that results in 10 lwbs being written out (e.g. due to other async
writes), that will result in 10 flush commands to that single vdev (a
flush issued after each lwb write completes). Ideally, we'd only issue a
single flush command to that vdev, after all 10 lwb writes completed.

Further, and most important as it pertains to this change, since the
flush commands are often very impactful to the performance of the pool's
underlying storage, unnecessarily issuing these flush commands can
poorly impact the performance of the lwb writes themselves. Thus, we
need to avoid issuing flush commands when possible, in order to acheive
the best possible performance out of the pool's underlying storage.

This change attempts to address this problem by changing the ZIL's logic
to only issue a vdev flush command when it detects an lwb that has a
thread waiting for it to complete. When an lwb does not have threads
waiting for it, the responsibility of issuing the flush command to the
vdevs involved with that lwb's write is passed on to the "next" lwb.
It's only once a write for an lwb with waiters completes, do we issue
the vdev flush command(s). As a result, now when we issue the flush(s),
we will issue them to the vdevs involved with that specific lwb's write,
but potentially also to vdevs involved with "previous" lwb writes (i.e.
if the previous lwbs did not have waiters associated with them).

Thus, in our prior example with 10 lwbs, it's only once the last lwb
completes (which will be the lwb containing the waiter for the thread
that called fsync) will we issue the vdev flush command; all of the
other lwbs will find they have no waiters, so they'll pass the
responsibility of the flush to the "next" lwb (until reaching the last
lwb that has the waiter).

Porting Notes:
* Reconciled conflicts with the fastwrite feature.

Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Approved by: Joshua M. Clulow <josh@sysmgr.org>
Ported-by: Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/9962
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/545190c6
Closes #8188
2018-12-07 11:09:42 -08:00

244 lines
9.5 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017 by Delphix. All rights reserved.
*/
/* Portions Copyright 2010 Robert Milkowski */
#ifndef _SYS_ZIL_IMPL_H
#define _SYS_ZIL_IMPL_H
#include <sys/zil.h>
#include <sys/dmu_objset.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Possible states for a given lwb structure.
*
* An lwb will start out in the "closed" state, and then transition to
* the "opened" state via a call to zil_lwb_write_open(). When
* transitioning from "closed" to "opened" the zilog's "zl_issuer_lock"
* must be held.
*
* After the lwb is "opened", it can transition into the "issued" state
* via zil_lwb_write_issue(). Again, the zilog's "zl_issuer_lock" must
* be held when making this transition.
*
* After the lwb's write zio completes, it transitions into the "write
* done" state via zil_lwb_write_done(); and then into the "flush done"
* state via zil_lwb_flush_vdevs_done(). When transitioning from
* "issued" to "write done", and then from "write done" to "flush done",
* the zilog's "zl_lock" must be held, *not* the "zl_issuer_lock".
*
* The zilog's "zl_issuer_lock" can become heavily contended in certain
* workloads, so we specifically avoid acquiring that lock when
* transitioning an lwb from "issued" to "done". This allows us to avoid
* having to acquire the "zl_issuer_lock" for each lwb ZIO completion,
* which would have added more lock contention on an already heavily
* contended lock.
*
* Additionally, correctness when reading an lwb's state is often
* achieved by exploiting the fact that these state transitions occur in
* this specific order; i.e. "closed" to "opened" to "issued" to "done".
*
* Thus, if an lwb is in the "closed" or "opened" state, holding the
* "zl_issuer_lock" will prevent a concurrent thread from transitioning
* that lwb to the "issued" state. Likewise, if an lwb is already in the
* "issued" state, holding the "zl_lock" will prevent a concurrent
* thread from transitioning that lwb to the "write done" state.
*/
typedef enum {
LWB_STATE_CLOSED,
LWB_STATE_OPENED,
LWB_STATE_ISSUED,
LWB_STATE_WRITE_DONE,
LWB_STATE_FLUSH_DONE,
LWB_NUM_STATES
} lwb_state_t;
/*
* Log write block (lwb)
*
* Prior to an lwb being issued to disk via zil_lwb_write_issue(), it
* will be protected by the zilog's "zl_issuer_lock". Basically, prior
* to it being issued, it will only be accessed by the thread that's
* holding the "zl_issuer_lock". After the lwb is issued, the zilog's
* "zl_lock" is used to protect the lwb against concurrent access.
*/
typedef struct lwb {
zilog_t *lwb_zilog; /* back pointer to log struct */
blkptr_t lwb_blk; /* on disk address of this log blk */
boolean_t lwb_fastwrite; /* is blk marked for fastwrite? */
boolean_t lwb_slog; /* lwb_blk is on SLOG device */
int lwb_nused; /* # used bytes in buffer */
int lwb_sz; /* size of block and buffer */
lwb_state_t lwb_state; /* the state of this lwb */
char *lwb_buf; /* log write buffer */
zio_t *lwb_write_zio; /* zio for the lwb buffer */
zio_t *lwb_root_zio; /* root zio for lwb write and flushes */
dmu_tx_t *lwb_tx; /* tx for log block allocation */
uint64_t lwb_max_txg; /* highest txg in this lwb */
list_node_t lwb_node; /* zilog->zl_lwb_list linkage */
list_t lwb_itxs; /* list of itx's */
list_t lwb_waiters; /* list of zil_commit_waiter's */
avl_tree_t lwb_vdev_tree; /* vdevs to flush after lwb write */
kmutex_t lwb_vdev_lock; /* protects lwb_vdev_tree */
hrtime_t lwb_issued_timestamp; /* when was the lwb issued? */
} lwb_t;
/*
* ZIL commit waiter.
*
* This structure is allocated each time zil_commit() is called, and is
* used by zil_commit() to communicate with other parts of the ZIL, such
* that zil_commit() can know when it safe for it return. For more
* details, see the comment above zil_commit().
*
* The "zcw_lock" field is used to protect the commit waiter against
* concurrent access. This lock is often acquired while already holding
* the zilog's "zl_issuer_lock" or "zl_lock"; see the functions
* zil_process_commit_list() and zil_lwb_flush_vdevs_done() as examples
* of this. Thus, one must be careful not to acquire the
* "zl_issuer_lock" or "zl_lock" when already holding the "zcw_lock";
* e.g. see the zil_commit_waiter_timeout() function.
*/
typedef struct zil_commit_waiter {
kcondvar_t zcw_cv; /* signalled when "done" */
kmutex_t zcw_lock; /* protects fields of this struct */
list_node_t zcw_node; /* linkage in lwb_t:lwb_waiter list */
lwb_t *zcw_lwb; /* back pointer to lwb when linked */
boolean_t zcw_done; /* B_TRUE when "done", else B_FALSE */
int zcw_zio_error; /* contains the zio io_error value */
} zil_commit_waiter_t;
/*
* Intent log transaction lists
*/
typedef struct itxs {
list_t i_sync_list; /* list of synchronous itxs */
avl_tree_t i_async_tree; /* tree of foids for async itxs */
} itxs_t;
typedef struct itxg {
kmutex_t itxg_lock; /* lock for this structure */
uint64_t itxg_txg; /* txg for this chain */
itxs_t *itxg_itxs; /* sync and async itxs */
} itxg_t;
/* for async nodes we build up an AVL tree of lists of async itxs per file */
typedef struct itx_async_node {
uint64_t ia_foid; /* file object id */
list_t ia_list; /* list of async itxs for this foid */
avl_node_t ia_node; /* AVL tree linkage */
} itx_async_node_t;
/*
* Vdev flushing: during a zil_commit(), we build up an AVL tree of the vdevs
* we've touched so we know which ones need a write cache flush at the end.
*/
typedef struct zil_vdev_node {
uint64_t zv_vdev; /* vdev to be flushed */
avl_node_t zv_node; /* AVL tree linkage */
} zil_vdev_node_t;
#define ZIL_PREV_BLKS 16
/*
* Stable storage intent log management structure. One per dataset.
*/
struct zilog {
kmutex_t zl_lock; /* protects most zilog_t fields */
struct dsl_pool *zl_dmu_pool; /* DSL pool */
spa_t *zl_spa; /* handle for read/write log */
const zil_header_t *zl_header; /* log header buffer */
objset_t *zl_os; /* object set we're logging */
zil_get_data_t *zl_get_data; /* callback to get object content */
lwb_t *zl_last_lwb_opened; /* most recent lwb opened */
hrtime_t zl_last_lwb_latency; /* zio latency of last lwb done */
uint64_t zl_lr_seq; /* on-disk log record sequence number */
uint64_t zl_commit_lr_seq; /* last committed on-disk lr seq */
uint64_t zl_destroy_txg; /* txg of last zil_destroy() */
uint64_t zl_replayed_seq[TXG_SIZE]; /* last replayed rec seq */
uint64_t zl_replaying_seq; /* current replay seq number */
uint32_t zl_suspend; /* log suspend count */
kcondvar_t zl_cv_suspend; /* log suspend completion */
uint8_t zl_suspending; /* log is currently suspending */
uint8_t zl_keep_first; /* keep first log block in destroy */
uint8_t zl_replay; /* replaying records while set */
uint8_t zl_stop_sync; /* for debugging */
kmutex_t zl_issuer_lock; /* single writer, per ZIL, at a time */
uint8_t zl_logbias; /* latency or throughput */
uint8_t zl_sync; /* synchronous or asynchronous */
int zl_parse_error; /* last zil_parse() error */
uint64_t zl_parse_blk_seq; /* highest blk seq on last parse */
uint64_t zl_parse_lr_seq; /* highest lr seq on last parse */
uint64_t zl_parse_blk_count; /* number of blocks parsed */
uint64_t zl_parse_lr_count; /* number of log records parsed */
itxg_t zl_itxg[TXG_SIZE]; /* intent log txg chains */
list_t zl_itx_commit_list; /* itx list to be committed */
uint64_t zl_cur_used; /* current commit log size used */
list_t zl_lwb_list; /* in-flight log write list */
avl_tree_t zl_bp_tree; /* track bps during log parse */
clock_t zl_replay_time; /* lbolt of when replay started */
uint64_t zl_replay_blks; /* number of log blocks replayed */
zil_header_t zl_old_header; /* debugging aid */
uint_t zl_prev_blks[ZIL_PREV_BLKS]; /* size - sector rounded */
uint_t zl_prev_rotor; /* rotor for zl_prev[] */
txg_node_t zl_dirty_link; /* protected by dp_dirty_zilogs list */
uint64_t zl_dirty_max_txg; /* highest txg used to dirty zilog */
};
typedef struct zil_bp_node {
dva_t zn_dva;
avl_node_t zn_node;
} zil_bp_node_t;
/*
* Maximum amount of write data that can be put into single log block.
*/
#define ZIL_MAX_LOG_DATA (SPA_OLD_MAXBLOCKSIZE - sizeof (zil_chain_t) - \
sizeof (lr_write_t))
/*
* Maximum amount of log space we agree to waste to reduce number of
* WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
*/
#define ZIL_MAX_WASTE_SPACE (ZIL_MAX_LOG_DATA / 8)
/*
* Maximum amount of write data for WR_COPIED. Fall back to WR_NEED_COPY
* as more space efficient if we can't fit at least two log records into
* maximum sized log block.
*/
#define ZIL_MAX_COPIED_DATA ((SPA_OLD_MAXBLOCKSIZE - \
sizeof (zil_chain_t)) / 2 - sizeof (lr_write_t))
#ifdef __cplusplus
}
#endif
#endif /* _SYS_ZIL_IMPL_H */