mirror_zfs/module/zfs/zfs_ctldir.c
Nikolay Borisov 2c6abf15ff Remove znode's z_uid/z_gid member
Remove duplicate z_uid/z_gid member which are also held in the
generic vfs inode struct. This is done by first removing the members
from struct znode and then using the KUID_TO_SUID/KGID_TO_SGID
macros to access the respective member from struct inode. In cases
where the uid/gids are being marshalled from/to disk, use the newly
introduced zfs_(uid|gid)_(read|write) functions to properly
save the uids rather than the internal kernel representation.

Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4685
Issue #227
2016-07-25 13:21:49 -07:00

1297 lines
33 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (C) 2011 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* LLNL-CODE-403049.
* Rewritten for Linux by:
* Rohan Puri <rohan.puri15@gmail.com>
* Brian Behlendorf <behlendorf1@llnl.gov>
* Copyright (c) 2013 by Delphix. All rights reserved.
* Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
*/
/*
* ZFS control directory (a.k.a. ".zfs")
*
* This directory provides a common location for all ZFS meta-objects.
* Currently, this is only the 'snapshot' and 'shares' directory, but this may
* expand in the future. The elements are built dynamically, as the hierarchy
* does not actually exist on disk.
*
* For 'snapshot', we don't want to have all snapshots always mounted, because
* this would take up a huge amount of space in /etc/mnttab. We have three
* types of objects:
*
* ctldir ------> snapshotdir -------> snapshot
* |
* |
* V
* mounted fs
*
* The 'snapshot' node contains just enough information to lookup '..' and act
* as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
* perform an automount of the underlying filesystem and return the
* corresponding inode.
*
* All mounts are handled automatically by an user mode helper which invokes
* the mount mount procedure. Unmounts are handled by allowing the mount
* point to expire so the kernel may automatically unmount it.
*
* The '.zfs', '.zfs/snapshot', and all directories created under
* '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
* share the same zfs_sb_t as the head filesystem (what '.zfs' lives under).
*
* File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
* (ie: snapshots) are complete ZFS filesystems and have their own unique
* zfs_sb_t. However, the fsid reported by these mounts will be the same
* as that used by the parent zfs_sb_t to make NFS happy.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/pathname.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/stat.h>
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_destroy.h>
#include <sys/dsl_deleg.h>
#include <sys/mount.h>
#include <sys/zpl.h>
#include "zfs_namecheck.h"
/*
* Two AVL trees are maintained which contain all currently automounted
* snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
* entry which MUST:
*
* - be attached to both trees, and
* - be unique, no duplicate entries are allowed.
*
* The zfs_snapshots_by_name tree is indexed by the full dataset name
* while the zfs_snapshots_by_objsetid tree is indexed by the unique
* objsetid. This allows for fast lookups either by name or objsetid.
*/
static avl_tree_t zfs_snapshots_by_name;
static avl_tree_t zfs_snapshots_by_objsetid;
static krwlock_t zfs_snapshot_lock;
/*
* Control Directory Tunables (.zfs)
*/
int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
int zfs_admin_snapshot = 1;
/*
* Dedicated task queue for unmounting snapshots.
*/
static taskq_t *zfs_expire_taskq;
typedef struct {
char *se_name; /* full snapshot name */
char *se_path; /* full mount path */
spa_t *se_spa; /* pool spa */
uint64_t se_objsetid; /* snapshot objset id */
struct dentry *se_root_dentry; /* snapshot root dentry */
taskqid_t se_taskqid; /* scheduled unmount taskqid */
avl_node_t se_node_name; /* zfs_snapshots_by_name link */
avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
refcount_t se_refcount; /* reference count */
} zfs_snapentry_t;
static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
/*
* Allocate a new zfs_snapentry_t being careful to make a copy of the
* the snapshot name and provided mount point. No reference is taken.
*/
static zfs_snapentry_t *
zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
uint64_t objsetid, struct dentry *root_dentry)
{
zfs_snapentry_t *se;
se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
se->se_name = strdup(full_name);
se->se_path = strdup(full_path);
se->se_spa = spa;
se->se_objsetid = objsetid;
se->se_root_dentry = root_dentry;
se->se_taskqid = -1;
refcount_create(&se->se_refcount);
return (se);
}
/*
* Free a zfs_snapentry_t the called must ensure there are no active
* references.
*/
static void
zfsctl_snapshot_free(zfs_snapentry_t *se)
{
refcount_destroy(&se->se_refcount);
strfree(se->se_name);
strfree(se->se_path);
kmem_free(se, sizeof (zfs_snapentry_t));
}
/*
* Hold a reference on the zfs_snapentry_t.
*/
static void
zfsctl_snapshot_hold(zfs_snapentry_t *se)
{
refcount_add(&se->se_refcount, NULL);
}
/*
* Release a reference on the zfs_snapentry_t. When the number of
* references drops to zero the structure will be freed.
*/
static void
zfsctl_snapshot_rele(zfs_snapentry_t *se)
{
if (refcount_remove(&se->se_refcount, NULL) == 0)
zfsctl_snapshot_free(se);
}
/*
* Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
* zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
* of the trees a reference is held.
*/
static void
zfsctl_snapshot_add(zfs_snapentry_t *se)
{
ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
refcount_add(&se->se_refcount, NULL);
avl_add(&zfs_snapshots_by_name, se);
avl_add(&zfs_snapshots_by_objsetid, se);
}
/*
* Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
* zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
* this can result in the structure being freed if that was the last
* remaining reference.
*/
static void
zfsctl_snapshot_remove(zfs_snapentry_t *se)
{
ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
avl_remove(&zfs_snapshots_by_name, se);
avl_remove(&zfs_snapshots_by_objsetid, se);
zfsctl_snapshot_rele(se);
}
/*
* Snapshot name comparison function for the zfs_snapshots_by_name.
*/
static int
snapentry_compare_by_name(const void *a, const void *b)
{
const zfs_snapentry_t *se_a = a;
const zfs_snapentry_t *se_b = b;
int ret;
ret = strcmp(se_a->se_name, se_b->se_name);
if (ret < 0)
return (-1);
else if (ret > 0)
return (1);
else
return (0);
}
/*
* Snapshot name comparison function for the zfs_snapshots_by_objsetid.
*/
static int
snapentry_compare_by_objsetid(const void *a, const void *b)
{
const zfs_snapentry_t *se_a = a;
const zfs_snapentry_t *se_b = b;
if (se_a->se_spa != se_b->se_spa)
return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
if (se_a->se_objsetid < se_b->se_objsetid)
return (-1);
else if (se_a->se_objsetid > se_b->se_objsetid)
return (1);
else
return (0);
}
/*
* Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
* is found a pointer to the zfs_snapentry_t is returned and a reference
* taken on the structure. The caller is responsible for dropping the
* reference with zfsctl_snapshot_rele(). If the snapname is not found
* NULL will be returned.
*/
static zfs_snapentry_t *
zfsctl_snapshot_find_by_name(char *snapname)
{
zfs_snapentry_t *se, search;
ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
search.se_name = snapname;
se = avl_find(&zfs_snapshots_by_name, &search, NULL);
if (se)
refcount_add(&se->se_refcount, NULL);
return (se);
}
/*
* Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
* rather than the snapname. In all other respects it behaves the same
* as zfsctl_snapshot_find_by_name().
*/
static zfs_snapentry_t *
zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
{
zfs_snapentry_t *se, search;
ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
search.se_spa = spa;
search.se_objsetid = objsetid;
se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
if (se)
refcount_add(&se->se_refcount, NULL);
return (se);
}
/*
* Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
* removed, renamed, and added back to the new correct location in the tree.
*/
static int
zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
{
zfs_snapentry_t *se;
ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
se = zfsctl_snapshot_find_by_name(old_snapname);
if (se == NULL)
return (ENOENT);
zfsctl_snapshot_remove(se);
strfree(se->se_name);
se->se_name = strdup(new_snapname);
zfsctl_snapshot_add(se);
zfsctl_snapshot_rele(se);
return (0);
}
/*
* Delayed task responsible for unmounting an expired automounted snapshot.
*/
static void
snapentry_expire(void *data)
{
zfs_snapentry_t *se = (zfs_snapentry_t *)data;
spa_t *spa = se->se_spa;
uint64_t objsetid = se->se_objsetid;
if (zfs_expire_snapshot <= 0) {
zfsctl_snapshot_rele(se);
return;
}
se->se_taskqid = -1;
(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
zfsctl_snapshot_rele(se);
/*
* Reschedule the unmount if the zfs_snapentry_t wasn't removed.
* This can occur when the snapshot is busy.
*/
rw_enter(&zfs_snapshot_lock, RW_READER);
if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
zfsctl_snapshot_rele(se);
}
rw_exit(&zfs_snapshot_lock);
}
/*
* Cancel an automatic unmount of a snapname. This callback is responsible
* for dropping the reference on the zfs_snapentry_t which was taken when
* during dispatch.
*/
static void
zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
{
ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
if (taskq_cancel_id(zfs_expire_taskq, se->se_taskqid) == 0) {
se->se_taskqid = -1;
zfsctl_snapshot_rele(se);
}
}
/*
* Dispatch the unmount task for delayed handling with a hold protecting it.
*/
static void
zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
{
ASSERT3S(se->se_taskqid, ==, -1);
if (delay <= 0)
return;
zfsctl_snapshot_hold(se);
se->se_taskqid = taskq_dispatch_delay(zfs_expire_taskq,
snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
}
/*
* Schedule an automatic unmount of objset id to occur in delay seconds from
* now. Any previous delayed unmount will be cancelled in favor of the
* updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
* and held until the outstanding task is handled or cancelled.
*/
int
zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
{
zfs_snapentry_t *se;
int error = ENOENT;
rw_enter(&zfs_snapshot_lock, RW_READER);
if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
zfsctl_snapshot_unmount_cancel(se);
zfsctl_snapshot_unmount_delay_impl(se, delay);
zfsctl_snapshot_rele(se);
error = 0;
}
rw_exit(&zfs_snapshot_lock);
return (error);
}
/*
* Check if snapname is currently mounted. Returned non-zero when mounted
* and zero when unmounted.
*/
static boolean_t
zfsctl_snapshot_ismounted(char *snapname)
{
zfs_snapentry_t *se;
boolean_t ismounted = B_FALSE;
rw_enter(&zfs_snapshot_lock, RW_READER);
if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
zfsctl_snapshot_rele(se);
ismounted = B_TRUE;
}
rw_exit(&zfs_snapshot_lock);
return (ismounted);
}
/*
* Check if the given inode is a part of the virtual .zfs directory.
*/
boolean_t
zfsctl_is_node(struct inode *ip)
{
return (ITOZ(ip)->z_is_ctldir);
}
/*
* Check if the given inode is a .zfs/snapshots/snapname directory.
*/
boolean_t
zfsctl_is_snapdir(struct inode *ip)
{
return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
}
/*
* Allocate a new inode with the passed id and ops.
*/
static struct inode *
zfsctl_inode_alloc(zfs_sb_t *zsb, uint64_t id,
const struct file_operations *fops, const struct inode_operations *ops)
{
struct timespec now = current_fs_time(zsb->z_sb);
struct inode *ip;
znode_t *zp;
ip = new_inode(zsb->z_sb);
if (ip == NULL)
return (NULL);
zp = ITOZ(ip);
ASSERT3P(zp->z_dirlocks, ==, NULL);
ASSERT3P(zp->z_acl_cached, ==, NULL);
ASSERT3P(zp->z_xattr_cached, ==, NULL);
zp->z_id = id;
zp->z_unlinked = 0;
zp->z_atime_dirty = 0;
zp->z_zn_prefetch = 0;
zp->z_moved = 0;
zp->z_sa_hdl = NULL;
zp->z_blksz = 0;
zp->z_seq = 0;
zp->z_mapcnt = 0;
zp->z_size = 0;
zp->z_pflags = 0;
zp->z_mode = 0;
zp->z_sync_cnt = 0;
zp->z_is_mapped = B_FALSE;
zp->z_is_ctldir = B_TRUE;
zp->z_is_sa = B_FALSE;
zp->z_is_stale = B_FALSE;
ip->i_generation = 0;
ip->i_ino = id;
ip->i_mode = (S_IFDIR | S_IRWXUGO);
ip->i_uid = SUID_TO_KUID(0);
ip->i_gid = SGID_TO_KGID(0);
ip->i_blkbits = SPA_MINBLOCKSHIFT;
ip->i_atime = now;
ip->i_mtime = now;
ip->i_ctime = now;
ip->i_fop = fops;
ip->i_op = ops;
if (insert_inode_locked(ip)) {
unlock_new_inode(ip);
iput(ip);
return (NULL);
}
mutex_enter(&zsb->z_znodes_lock);
list_insert_tail(&zsb->z_all_znodes, zp);
zsb->z_nr_znodes++;
membar_producer();
mutex_exit(&zsb->z_znodes_lock);
unlock_new_inode(ip);
return (ip);
}
/*
* Lookup the inode with given id, it will be allocated if needed.
*/
static struct inode *
zfsctl_inode_lookup(zfs_sb_t *zsb, uint64_t id,
const struct file_operations *fops, const struct inode_operations *ops)
{
struct inode *ip = NULL;
while (ip == NULL) {
ip = ilookup(zsb->z_sb, (unsigned long)id);
if (ip)
break;
/* May fail due to concurrent zfsctl_inode_alloc() */
ip = zfsctl_inode_alloc(zsb, id, fops, ops);
}
return (ip);
}
/*
* Create the '.zfs' directory. This directory is cached as part of the VFS
* structure. This results in a hold on the zfs_sb_t. The code in zfs_umount()
* therefore checks against a vfs_count of 2 instead of 1. This reference
* is removed when the ctldir is destroyed in the unmount. All other entities
* under the '.zfs' directory are created dynamically as needed.
*
* Because the dynamically created '.zfs' directory entries assume the use
* of 64-bit inode numbers this support must be disabled on 32-bit systems.
*/
int
zfsctl_create(zfs_sb_t *zsb)
{
#if defined(CONFIG_64BIT)
ASSERT(zsb->z_ctldir == NULL);
zsb->z_ctldir = zfsctl_inode_alloc(zsb, ZFSCTL_INO_ROOT,
&zpl_fops_root, &zpl_ops_root);
if (zsb->z_ctldir == NULL)
return (SET_ERROR(ENOENT));
return (0);
#else
return (SET_ERROR(EOPNOTSUPP));
#endif /* CONFIG_64BIT */
}
/*
* Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
* Only called when the filesystem is unmounted.
*/
void
zfsctl_destroy(zfs_sb_t *zsb)
{
if (zsb->z_issnap) {
zfs_snapentry_t *se;
spa_t *spa = zsb->z_os->os_spa;
uint64_t objsetid = dmu_objset_id(zsb->z_os);
rw_enter(&zfs_snapshot_lock, RW_WRITER);
if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid))
!= NULL) {
zfsctl_snapshot_unmount_cancel(se);
zfsctl_snapshot_remove(se);
zfsctl_snapshot_rele(se);
}
rw_exit(&zfs_snapshot_lock);
} else if (zsb->z_ctldir) {
iput(zsb->z_ctldir);
zsb->z_ctldir = NULL;
}
}
/*
* Given a root znode, retrieve the associated .zfs directory.
* Add a hold to the vnode and return it.
*/
struct inode *
zfsctl_root(znode_t *zp)
{
ASSERT(zfs_has_ctldir(zp));
igrab(ZTOZSB(zp)->z_ctldir);
return (ZTOZSB(zp)->z_ctldir);
}
/*
* Generate a long fid which includes the root object and objset of a
* snapshot but not the generation number. For the root object the
* generation number is ignored when zero to avoid needing to open
* the dataset when generating fids for the snapshot names.
*/
static int
zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
{
zfs_sb_t *zsb = ITOZSB(ip);
zfid_short_t *zfid = (zfid_short_t *)fidp;
zfid_long_t *zlfid = (zfid_long_t *)fidp;
uint32_t gen = 0;
uint64_t object;
uint64_t objsetid;
int i;
object = zsb->z_root;
objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
zfid->zf_len = LONG_FID_LEN;
for (i = 0; i < sizeof (zfid->zf_object); i++)
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
for (i = 0; i < sizeof (zfid->zf_gen); i++)
zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
zlfid->zf_setgen[i] = 0;
return (0);
}
/*
* Generate an appropriate fid for an entry in the .zfs directory.
*/
int
zfsctl_fid(struct inode *ip, fid_t *fidp)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
uint64_t object = zp->z_id;
zfid_short_t *zfid;
int i;
ZFS_ENTER(zsb);
if (fidp->fid_len < SHORT_FID_LEN) {
fidp->fid_len = SHORT_FID_LEN;
ZFS_EXIT(zsb);
return (SET_ERROR(ENOSPC));
}
if (zfsctl_is_snapdir(ip)) {
ZFS_EXIT(zsb);
return (zfsctl_snapdir_fid(ip, fidp));
}
zfid = (zfid_short_t *)fidp;
zfid->zf_len = SHORT_FID_LEN;
for (i = 0; i < sizeof (zfid->zf_object); i++)
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
/* .zfs znodes always have a generation number of 0 */
for (i = 0; i < sizeof (zfid->zf_gen); i++)
zfid->zf_gen[i] = 0;
ZFS_EXIT(zsb);
return (0);
}
/*
* Construct a full dataset name in full_name: "pool/dataset@snap_name"
*/
static int
zfsctl_snapshot_name(zfs_sb_t *zsb, const char *snap_name, int len,
char *full_name)
{
objset_t *os = zsb->z_os;
if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
return (SET_ERROR(EILSEQ));
dmu_objset_name(os, full_name);
if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
return (SET_ERROR(ENAMETOOLONG));
(void) strcat(full_name, "@");
(void) strcat(full_name, snap_name);
return (0);
}
/*
* Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
*/
static int
zfsctl_snapshot_path(struct path *path, int len, char *full_path)
{
char *path_buffer, *path_ptr;
int path_len, error = 0;
path_buffer = kmem_alloc(len, KM_SLEEP);
path_ptr = d_path(path, path_buffer, len);
if (IS_ERR(path_ptr)) {
error = -PTR_ERR(path_ptr);
goto out;
}
path_len = path_buffer + len - 1 - path_ptr;
if (path_len > len) {
error = SET_ERROR(EFAULT);
goto out;
}
memcpy(full_path, path_ptr, path_len);
full_path[path_len] = '\0';
out:
kmem_free(path_buffer, len);
return (error);
}
/*
* Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
*/
static int
zfsctl_snapshot_path_objset(zfs_sb_t *zsb, uint64_t objsetid,
int path_len, char *full_path)
{
objset_t *os = zsb->z_os;
fstrans_cookie_t cookie;
char *snapname;
boolean_t case_conflict;
uint64_t id, pos = 0;
int error = 0;
if (zsb->z_mntopts->z_mntpoint == NULL)
return (ENOENT);
cookie = spl_fstrans_mark();
snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
while (error == 0) {
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
error = dmu_snapshot_list_next(zsb->z_os,
ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
&case_conflict);
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
if (error)
goto out;
if (id == objsetid)
break;
}
memset(full_path, 0, path_len);
snprintf(full_path, path_len - 1, "%s/.zfs/snapshot/%s",
zsb->z_mntopts->z_mntpoint, snapname);
out:
kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
spl_fstrans_unmark(cookie);
return (error);
}
/*
* Special case the handling of "..".
*/
int
zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
{
zfs_sb_t *zsb = ITOZSB(dip);
int error = 0;
ZFS_ENTER(zsb);
if (strcmp(name, "..") == 0) {
*ipp = dip->i_sb->s_root->d_inode;
} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIR,
&zpl_fops_snapdir, &zpl_ops_snapdir);
} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SHARES,
&zpl_fops_shares, &zpl_ops_shares);
} else {
*ipp = NULL;
}
if (*ipp == NULL)
error = SET_ERROR(ENOENT);
ZFS_EXIT(zsb);
return (error);
}
/*
* Lookup entry point for the 'snapshot' directory. Try to open the
* snapshot if it exist, creating the pseudo filesystem inode as necessary.
* Perform a mount of the associated dataset on top of the inode.
*/
int
zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
{
zfs_sb_t *zsb = ITOZSB(dip);
uint64_t id;
int error;
ZFS_ENTER(zsb);
error = dmu_snapshot_lookup(zsb->z_os, name, &id);
if (error) {
ZFS_EXIT(zsb);
return (error);
}
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIRS - id,
&simple_dir_operations, &simple_dir_inode_operations);
if (*ipp == NULL)
error = SET_ERROR(ENOENT);
ZFS_EXIT(zsb);
return (error);
}
/*
* Renaming a directory under '.zfs/snapshot' will automatically trigger
* a rename of the snapshot to the new given name. The rename is confined
* to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
*/
int
zfsctl_snapdir_rename(struct inode *sdip, char *snm,
struct inode *tdip, char *tnm, cred_t *cr, int flags)
{
zfs_sb_t *zsb = ITOZSB(sdip);
char *to, *from, *real, *fsname;
int error;
if (!zfs_admin_snapshot)
return (EACCES);
ZFS_ENTER(zsb);
to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
error = dmu_snapshot_realname(zsb->z_os, snm, real,
ZFS_MAX_DATASET_NAME_LEN, NULL);
if (error == 0) {
snm = real;
} else if (error != ENOTSUP) {
goto out;
}
}
dmu_objset_name(zsb->z_os, fsname);
error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
ZFS_MAX_DATASET_NAME_LEN, from);
if (error == 0)
error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
ZFS_MAX_DATASET_NAME_LEN, to);
if (error == 0)
error = zfs_secpolicy_rename_perms(from, to, cr);
if (error != 0)
goto out;
/*
* Cannot move snapshots out of the snapdir.
*/
if (sdip != tdip) {
error = SET_ERROR(EINVAL);
goto out;
}
/*
* No-op when names are identical.
*/
if (strcmp(snm, tnm) == 0) {
error = 0;
goto out;
}
rw_enter(&zfs_snapshot_lock, RW_WRITER);
error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
if (error == 0)
(void) zfsctl_snapshot_rename(snm, tnm);
rw_exit(&zfs_snapshot_lock);
out:
kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
ZFS_EXIT(zsb);
return (error);
}
/*
* Removing a directory under '.zfs/snapshot' will automatically trigger
* the removal of the snapshot with the given name.
*/
int
zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
{
zfs_sb_t *zsb = ITOZSB(dip);
char *snapname, *real;
int error;
if (!zfs_admin_snapshot)
return (EACCES);
ZFS_ENTER(zsb);
snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
error = dmu_snapshot_realname(zsb->z_os, name, real,
ZFS_MAX_DATASET_NAME_LEN, NULL);
if (error == 0) {
name = real;
} else if (error != ENOTSUP) {
goto out;
}
}
error = zfsctl_snapshot_name(ITOZSB(dip), name,
ZFS_MAX_DATASET_NAME_LEN, snapname);
if (error == 0)
error = zfs_secpolicy_destroy_perms(snapname, cr);
if (error != 0)
goto out;
error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
if ((error == 0) || (error == ENOENT))
error = dsl_destroy_snapshot(snapname, B_FALSE);
out:
kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
ZFS_EXIT(zsb);
return (error);
}
/*
* Creating a directory under '.zfs/snapshot' will automatically trigger
* the creation of a new snapshot with the given name.
*/
int
zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
struct inode **ipp, cred_t *cr, int flags)
{
zfs_sb_t *zsb = ITOZSB(dip);
char *dsname;
int error;
if (!zfs_admin_snapshot)
return (EACCES);
dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
error = SET_ERROR(EILSEQ);
goto out;
}
dmu_objset_name(zsb->z_os, dsname);
error = zfs_secpolicy_snapshot_perms(dsname, cr);
if (error != 0)
goto out;
if (error == 0) {
error = dmu_objset_snapshot_one(dsname, dirname);
if (error != 0)
goto out;
error = zfsctl_snapdir_lookup(dip, dirname, ipp,
0, cr, NULL, NULL);
}
out:
kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
return (error);
}
/*
* Attempt to unmount a snapshot by making a call to user space.
* There is no assurance that this can or will succeed, is just a
* best effort. In the case where it does fail, perhaps because
* it's in use, the unmount will fail harmlessly.
*/
#define SET_UNMOUNT_CMD \
"exec 0</dev/null " \
" 1>/dev/null " \
" 2>/dev/null; " \
"umount -t zfs -n %s'%s'"
int
zfsctl_snapshot_unmount(char *snapname, int flags)
{
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
char *envp[] = { NULL };
zfs_snapentry_t *se;
int error;
rw_enter(&zfs_snapshot_lock, RW_READER);
if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
rw_exit(&zfs_snapshot_lock);
return (ENOENT);
}
rw_exit(&zfs_snapshot_lock);
argv[2] = kmem_asprintf(SET_UNMOUNT_CMD,
flags & MNT_FORCE ? "-f " : "", se->se_path);
zfsctl_snapshot_rele(se);
dprintf("unmount; path=%s\n", se->se_path);
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
strfree(argv[2]);
/*
* The umount system utility will return 256 on error. We must
* assume this error is because the file system is busy so it is
* converted to the more sensible EBUSY.
*/
if (error)
error = SET_ERROR(EBUSY);
return (error);
}
#define MOUNT_BUSY 0x80 /* Mount failed due to EBUSY (from mntent.h) */
#define SET_MOUNT_CMD \
"exec 0</dev/null " \
" 1>/dev/null " \
" 2>/dev/null; " \
"mount -t zfs -n '%s' '%s'"
int
zfsctl_snapshot_mount(struct path *path, int flags)
{
struct dentry *dentry = path->dentry;
struct inode *ip = dentry->d_inode;
zfs_sb_t *zsb;
zfs_sb_t *snap_zsb;
zfs_snapentry_t *se;
char *full_name, *full_path;
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
char *envp[] = { NULL };
int error;
struct path spath;
if (ip == NULL)
return (EISDIR);
zsb = ITOZSB(ip);
ZFS_ENTER(zsb);
full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
error = zfsctl_snapshot_name(zsb, dname(dentry),
ZFS_MAX_DATASET_NAME_LEN, full_name);
if (error)
goto error;
error = zfsctl_snapshot_path(path, MAXPATHLEN, full_path);
if (error)
goto error;
/*
* Multiple concurrent automounts of a snapshot are never allowed.
* The snapshot may be manually mounted as many times as desired.
*/
if (zfsctl_snapshot_ismounted(full_name)) {
error = 0;
goto error;
}
/*
* Attempt to mount the snapshot from user space. Normally this
* would be done using the vfs_kern_mount() function, however that
* function is marked GPL-only and cannot be used. On error we
* careful to log the real error to the console and return EISDIR
* to safely abort the automount. This should be very rare.
*
* If the user mode helper happens to return EBUSY, a concurrent
* mount is already in progress in which case the error is ignored.
* Take note that if the program was executed successfully the return
* value from call_usermodehelper() will be (exitcode << 8 + signal).
*/
dprintf("mount; name=%s path=%s\n", full_name, full_path);
argv[2] = kmem_asprintf(SET_MOUNT_CMD, full_name, full_path);
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
strfree(argv[2]);
if (error) {
if (!(error & MOUNT_BUSY << 8)) {
cmn_err(CE_WARN, "Unable to automount %s/%s: %d",
full_path, full_name, error);
error = SET_ERROR(EISDIR);
} else {
/*
* EBUSY, this could mean a concurrent mount, or the
* snapshot has already been mounted at completely
* different place. We return 0 so VFS will retry. For
* the latter case the VFS will retry several times
* and return ELOOP, which is probably not a very good
* behavior.
*/
error = 0;
}
goto error;
}
/*
* Follow down in to the mounted snapshot and set MNT_SHRINKABLE
* to identify this as an automounted filesystem.
*/
spath = *path;
path_get(&spath);
if (zpl_follow_down_one(&spath)) {
snap_zsb = ITOZSB(spath.dentry->d_inode);
snap_zsb->z_parent = zsb;
dentry = spath.dentry;
spath.mnt->mnt_flags |= MNT_SHRINKABLE;
rw_enter(&zfs_snapshot_lock, RW_WRITER);
se = zfsctl_snapshot_alloc(full_name, full_path,
snap_zsb->z_os->os_spa, dmu_objset_id(snap_zsb->z_os),
dentry);
zfsctl_snapshot_add(se);
zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
rw_exit(&zfs_snapshot_lock);
}
path_put(&spath);
error:
kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
kmem_free(full_path, MAXPATHLEN);
ZFS_EXIT(zsb);
return (error);
}
/*
* Given the objset id of the snapshot return its zfs_sb_t as zsbp.
*/
int
zfsctl_lookup_objset(struct super_block *sb, uint64_t objsetid, zfs_sb_t **zsbp)
{
zfs_snapentry_t *se;
int error;
spa_t *spa = ((zfs_sb_t *)(sb->s_fs_info))->z_os->os_spa;
/*
* Verify that the snapshot is mounted then lookup the mounted root
* rather than the covered mount point. This may fail if the
* snapshot has just been unmounted by an unrelated user space
* process. This race cannot occur to an expired mount point
* because we hold the zfs_snapshot_lock to prevent the race.
*/
rw_enter(&zfs_snapshot_lock, RW_READER);
if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
zfs_sb_t *zsb;
zsb = ITOZSB(se->se_root_dentry->d_inode);
ASSERT3U(dmu_objset_id(zsb->z_os), ==, objsetid);
if (time_after(jiffies, zsb->z_snap_defer_time +
MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
zsb->z_snap_defer_time = jiffies;
zfsctl_snapshot_unmount_cancel(se);
zfsctl_snapshot_unmount_delay_impl(se,
zfs_expire_snapshot);
}
*zsbp = zsb;
zfsctl_snapshot_rele(se);
error = SET_ERROR(0);
} else {
error = SET_ERROR(ENOENT);
}
rw_exit(&zfs_snapshot_lock);
/*
* Automount the snapshot given the objset id by constructing the
* full mount point and performing a traversal.
*/
if (error == ENOENT) {
struct path path;
char *mnt;
mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
MAXPATHLEN, mnt);
if (error) {
kmem_free(mnt, MAXPATHLEN);
return (SET_ERROR(error));
}
error = kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
if (error == 0) {
*zsbp = ITOZSB(path.dentry->d_inode);
path_put(&path);
}
kmem_free(mnt, MAXPATHLEN);
}
return (error);
}
int
zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
{
zfs_sb_t *zsb = ITOZSB(dip);
struct inode *ip;
znode_t *dzp;
int error;
ZFS_ENTER(zsb);
if (zsb->z_shares_dir == 0) {
ZFS_EXIT(zsb);
return (SET_ERROR(ENOTSUP));
}
if ((error = zfs_zget(zsb, zsb->z_shares_dir, &dzp)) == 0) {
error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
iput(ZTOI(dzp));
}
ZFS_EXIT(zsb);
return (error);
}
/*
* Initialize the various pieces we'll need to create and manipulate .zfs
* directories. Currently this is unused but available.
*/
void
zfsctl_init(void)
{
avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
se_node_name));
avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
se_node_objsetid));
rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
zfs_expire_taskq = taskq_create("z_unmount", 1, defclsyspri,
1, 8, TASKQ_PREPOPULATE);
}
/*
* Cleanup the various pieces we needed for .zfs directories. In particular
* ensure the expiry timer is canceled safely.
*/
void
zfsctl_fini(void)
{
taskq_destroy(zfs_expire_taskq);
avl_destroy(&zfs_snapshots_by_name);
avl_destroy(&zfs_snapshots_by_objsetid);
rw_destroy(&zfs_snapshot_lock);
}
module_param(zfs_admin_snapshot, int, 0644);
MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
module_param(zfs_expire_snapshot, int, 0644);
MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");