mirror_zfs/module/os/freebsd/zfs/zfs_vnops_os.c
Ka Ho Ng 1f31889046 FreeBSD: Implement hole-punching support
This adds supports for hole-punching facilities in the FreeBSD kernel
starting from __FreeBSD_version 1400032.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Ka Ho Ng <khng@FreeBSD.org>
Sponsored-by: The FreeBSD Foundation
Closes #12458
2022-05-17 11:15:29 -07:00

6247 lines
147 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2017 Nexenta Systems, Inc.
*/
/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/vfs.h>
#include <sys/endian.h>
#include <sys/vm.h>
#include <sys/vnode.h>
#if __FreeBSD_version >= 1300102
#include <sys/smr.h>
#endif
#include <sys/dirent.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/taskq.h>
#include <sys/uio.h>
#include <sys/atomic.h>
#include <sys/namei.h>
#include <sys/mman.h>
#include <sys/cmn_err.h>
#include <sys/kdb.h>
#include <sys/sysproto.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_ioctl.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/dbuf.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/policy.h>
#include <sys/sunddi.h>
#include <sys/filio.h>
#include <sys/sid.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_quota.h>
#include <sys/zfs_sa.h>
#include <sys/zfs_rlock.h>
#include <sys/extdirent.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/sched.h>
#include <sys/acl.h>
#include <sys/vmmeter.h>
#include <vm/vm_param.h>
#include <sys/zil.h>
#include <sys/zfs_vnops.h>
#include <vm/vm_object.h>
#include <sys/extattr.h>
#include <sys/priv.h>
#ifndef VN_OPEN_INVFS
#define VN_OPEN_INVFS 0x0
#endif
VFS_SMR_DECLARE;
#if __FreeBSD_version < 1300103
#define NDFREE_PNBUF(ndp) NDFREE((ndp), NDF_ONLY_PNBUF)
#endif
#if __FreeBSD_version >= 1300047
#define vm_page_wire_lock(pp)
#define vm_page_wire_unlock(pp)
#else
#define vm_page_wire_lock(pp) vm_page_lock(pp)
#define vm_page_wire_unlock(pp) vm_page_unlock(pp)
#endif
#ifdef DEBUG_VFS_LOCKS
#define VNCHECKREF(vp) \
VNASSERT((vp)->v_holdcnt > 0 && (vp)->v_usecount > 0, vp, \
("%s: wrong ref counts", __func__));
#else
#define VNCHECKREF(vp)
#endif
#if __FreeBSD_version >= 1400045
typedef uint64_t cookie_t;
#else
typedef ulong_t cookie_t;
#endif
/*
* Programming rules.
*
* Each vnode op performs some logical unit of work. To do this, the ZPL must
* properly lock its in-core state, create a DMU transaction, do the work,
* record this work in the intent log (ZIL), commit the DMU transaction,
* and wait for the intent log to commit if it is a synchronous operation.
* Moreover, the vnode ops must work in both normal and log replay context.
* The ordering of events is important to avoid deadlocks and references
* to freed memory. The example below illustrates the following Big Rules:
*
* (1) A check must be made in each zfs thread for a mounted file system.
* This is done avoiding races using ZFS_ENTER(zfsvfs).
* A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
* must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
* can return EIO from the calling function.
*
* (2) VN_RELE() should always be the last thing except for zil_commit()
* (if necessary) and ZFS_EXIT(). This is for 3 reasons:
* First, if it's the last reference, the vnode/znode
* can be freed, so the zp may point to freed memory. Second, the last
* reference will call zfs_zinactive(), which may induce a lot of work --
* pushing cached pages (which acquires range locks) and syncing out
* cached atime changes. Third, zfs_zinactive() may require a new tx,
* which could deadlock the system if you were already holding one.
* If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
*
* (3) All range locks must be grabbed before calling dmu_tx_assign(),
* as they can span dmu_tx_assign() calls.
*
* (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
* dmu_tx_assign(). This is critical because we don't want to block
* while holding locks.
*
* If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
* reduces lock contention and CPU usage when we must wait (note that if
* throughput is constrained by the storage, nearly every transaction
* must wait).
*
* Note, in particular, that if a lock is sometimes acquired before
* the tx assigns, and sometimes after (e.g. z_lock), then failing
* to use a non-blocking assign can deadlock the system. The scenario:
*
* Thread A has grabbed a lock before calling dmu_tx_assign().
* Thread B is in an already-assigned tx, and blocks for this lock.
* Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
* forever, because the previous txg can't quiesce until B's tx commits.
*
* If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
* then drop all locks, call dmu_tx_wait(), and try again. On subsequent
* calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
* to indicate that this operation has already called dmu_tx_wait().
* This will ensure that we don't retry forever, waiting a short bit
* each time.
*
* (5) If the operation succeeded, generate the intent log entry for it
* before dropping locks. This ensures that the ordering of events
* in the intent log matches the order in which they actually occurred.
* During ZIL replay the zfs_log_* functions will update the sequence
* number to indicate the zil transaction has replayed.
*
* (6) At the end of each vnode op, the DMU tx must always commit,
* regardless of whether there were any errors.
*
* (7) After dropping all locks, invoke zil_commit(zilog, foid)
* to ensure that synchronous semantics are provided when necessary.
*
* In general, this is how things should be ordered in each vnode op:
*
* ZFS_ENTER(zfsvfs); // exit if unmounted
* top:
* zfs_dirent_lookup(&dl, ...) // lock directory entry (may VN_HOLD())
* rw_enter(...); // grab any other locks you need
* tx = dmu_tx_create(...); // get DMU tx
* dmu_tx_hold_*(); // hold each object you might modify
* error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
* if (error) {
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* VN_RELE(...); // release held vnodes
* if (error == ERESTART) {
* waited = B_TRUE;
* dmu_tx_wait(tx);
* dmu_tx_abort(tx);
* goto top;
* }
* dmu_tx_abort(tx); // abort DMU tx
* ZFS_EXIT(zfsvfs); // finished in zfs
* return (error); // really out of space
* }
* error = do_real_work(); // do whatever this VOP does
* if (error == 0)
* zfs_log_*(...); // on success, make ZIL entry
* dmu_tx_commit(tx); // commit DMU tx -- error or not
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* VN_RELE(...); // release held vnodes
* zil_commit(zilog, foid); // synchronous when necessary
* ZFS_EXIT(zfsvfs); // finished in zfs
* return (error); // done, report error
*/
/* ARGSUSED */
static int
zfs_open(vnode_t **vpp, int flag, cred_t *cr)
{
znode_t *zp = VTOZ(*vpp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
((flag & FAPPEND) == 0)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
ZTOV(zp)->v_type == VREG &&
!(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
if (fs_vscan(*vpp, cr, 0) != 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EACCES));
}
}
/* Keep a count of the synchronous opens in the znode */
if (flag & (FSYNC | FDSYNC))
atomic_inc_32(&zp->z_sync_cnt);
ZFS_EXIT(zfsvfs);
return (0);
}
/* ARGSUSED */
static int
zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/* Decrement the synchronous opens in the znode */
if ((flag & (FSYNC | FDSYNC)) && (count == 1))
atomic_dec_32(&zp->z_sync_cnt);
if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
ZTOV(zp)->v_type == VREG &&
!(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
VERIFY0(fs_vscan(vp, cr, 1));
ZFS_EXIT(zfsvfs);
return (0);
}
/* ARGSUSED */
static int
zfs_ioctl(vnode_t *vp, ulong_t com, intptr_t data, int flag, cred_t *cred,
int *rvalp)
{
loff_t off;
int error;
switch (com) {
case _FIOFFS:
{
return (0);
/*
* The following two ioctls are used by bfu. Faking out,
* necessary to avoid bfu errors.
*/
}
case _FIOGDIO:
case _FIOSDIO:
{
return (0);
}
case F_SEEK_DATA:
case F_SEEK_HOLE:
{
off = *(offset_t *)data;
/* offset parameter is in/out */
error = zfs_holey(VTOZ(vp), com, &off);
if (error)
return (error);
*(offset_t *)data = off;
return (0);
}
}
return (SET_ERROR(ENOTTY));
}
static vm_page_t
page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
{
vm_object_t obj;
vm_page_t pp;
int64_t end;
/*
* At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
* aligned boundaries, if the range is not aligned. As a result a
* DEV_BSIZE subrange with partially dirty data may get marked as clean.
* It may happen that all DEV_BSIZE subranges are marked clean and thus
* the whole page would be considered clean despite have some
* dirty data.
* For this reason we should shrink the range to DEV_BSIZE aligned
* boundaries before calling vm_page_clear_dirty.
*/
end = rounddown2(off + nbytes, DEV_BSIZE);
off = roundup2(off, DEV_BSIZE);
nbytes = end - off;
obj = vp->v_object;
zfs_vmobject_assert_wlocked_12(obj);
#if __FreeBSD_version < 1300050
for (;;) {
if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
pp->valid) {
if (vm_page_xbusied(pp)) {
/*
* Reference the page before unlocking and
* sleeping so that the page daemon is less
* likely to reclaim it.
*/
vm_page_reference(pp);
vm_page_lock(pp);
zfs_vmobject_wunlock(obj);
vm_page_busy_sleep(pp, "zfsmwb", true);
zfs_vmobject_wlock(obj);
continue;
}
vm_page_sbusy(pp);
} else if (pp != NULL) {
ASSERT(!pp->valid);
pp = NULL;
}
if (pp != NULL) {
ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
vm_object_pip_add(obj, 1);
pmap_remove_write(pp);
if (nbytes != 0)
vm_page_clear_dirty(pp, off, nbytes);
}
break;
}
#else
vm_page_grab_valid_unlocked(&pp, obj, OFF_TO_IDX(start),
VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_NORMAL |
VM_ALLOC_IGN_SBUSY);
if (pp != NULL) {
ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
vm_object_pip_add(obj, 1);
pmap_remove_write(pp);
if (nbytes != 0)
vm_page_clear_dirty(pp, off, nbytes);
}
#endif
return (pp);
}
static void
page_unbusy(vm_page_t pp)
{
vm_page_sunbusy(pp);
#if __FreeBSD_version >= 1300041
vm_object_pip_wakeup(pp->object);
#else
vm_object_pip_subtract(pp->object, 1);
#endif
}
#if __FreeBSD_version > 1300051
static vm_page_t
page_hold(vnode_t *vp, int64_t start)
{
vm_object_t obj;
vm_page_t m;
obj = vp->v_object;
vm_page_grab_valid_unlocked(&m, obj, OFF_TO_IDX(start),
VM_ALLOC_NOCREAT | VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY |
VM_ALLOC_NOBUSY);
return (m);
}
#else
static vm_page_t
page_hold(vnode_t *vp, int64_t start)
{
vm_object_t obj;
vm_page_t pp;
obj = vp->v_object;
zfs_vmobject_assert_wlocked(obj);
for (;;) {
if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
pp->valid) {
if (vm_page_xbusied(pp)) {
/*
* Reference the page before unlocking and
* sleeping so that the page daemon is less
* likely to reclaim it.
*/
vm_page_reference(pp);
vm_page_lock(pp);
zfs_vmobject_wunlock(obj);
vm_page_busy_sleep(pp, "zfsmwb", true);
zfs_vmobject_wlock(obj);
continue;
}
ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
vm_page_wire_lock(pp);
vm_page_hold(pp);
vm_page_wire_unlock(pp);
} else
pp = NULL;
break;
}
return (pp);
}
#endif
static void
page_unhold(vm_page_t pp)
{
vm_page_wire_lock(pp);
#if __FreeBSD_version >= 1300035
vm_page_unwire(pp, PQ_ACTIVE);
#else
vm_page_unhold(pp);
#endif
vm_page_wire_unlock(pp);
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Write: If we find a memory mapped page, we write to *both*
* the page and the dmu buffer.
*/
void
update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
{
vm_object_t obj;
struct sf_buf *sf;
vnode_t *vp = ZTOV(zp);
caddr_t va;
int off;
ASSERT3P(vp->v_mount, !=, NULL);
obj = vp->v_object;
ASSERT3P(obj, !=, NULL);
off = start & PAGEOFFSET;
zfs_vmobject_wlock_12(obj);
#if __FreeBSD_version >= 1300041
vm_object_pip_add(obj, 1);
#endif
for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
vm_page_t pp;
int nbytes = imin(PAGESIZE - off, len);
if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
zfs_vmobject_wunlock_12(obj);
va = zfs_map_page(pp, &sf);
(void) dmu_read(os, zp->z_id, start + off, nbytes,
va + off, DMU_READ_PREFETCH);
zfs_unmap_page(sf);
zfs_vmobject_wlock_12(obj);
page_unbusy(pp);
}
len -= nbytes;
off = 0;
}
#if __FreeBSD_version >= 1300041
vm_object_pip_wakeup(obj);
#else
vm_object_pip_wakeupn(obj, 0);
#endif
zfs_vmobject_wunlock_12(obj);
}
/*
* Read with UIO_NOCOPY flag means that sendfile(2) requests
* ZFS to populate a range of page cache pages with data.
*
* NOTE: this function could be optimized to pre-allocate
* all pages in advance, drain exclusive busy on all of them,
* map them into contiguous KVA region and populate them
* in one single dmu_read() call.
*/
int
mappedread_sf(znode_t *zp, int nbytes, zfs_uio_t *uio)
{
vnode_t *vp = ZTOV(zp);
objset_t *os = zp->z_zfsvfs->z_os;
struct sf_buf *sf;
vm_object_t obj;
vm_page_t pp;
int64_t start;
caddr_t va;
int len = nbytes;
int error = 0;
ASSERT3U(zfs_uio_segflg(uio), ==, UIO_NOCOPY);
ASSERT3P(vp->v_mount, !=, NULL);
obj = vp->v_object;
ASSERT3P(obj, !=, NULL);
ASSERT0(zfs_uio_offset(uio) & PAGEOFFSET);
zfs_vmobject_wlock_12(obj);
for (start = zfs_uio_offset(uio); len > 0; start += PAGESIZE) {
int bytes = MIN(PAGESIZE, len);
pp = vm_page_grab_unlocked(obj, OFF_TO_IDX(start),
VM_ALLOC_SBUSY | VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
if (vm_page_none_valid(pp)) {
zfs_vmobject_wunlock_12(obj);
va = zfs_map_page(pp, &sf);
error = dmu_read(os, zp->z_id, start, bytes, va,
DMU_READ_PREFETCH);
if (bytes != PAGESIZE && error == 0)
bzero(va + bytes, PAGESIZE - bytes);
zfs_unmap_page(sf);
zfs_vmobject_wlock_12(obj);
#if __FreeBSD_version >= 1300081
if (error == 0) {
vm_page_valid(pp);
vm_page_activate(pp);
vm_page_do_sunbusy(pp);
} else {
zfs_vmobject_wlock(obj);
if (!vm_page_wired(pp) && pp->valid == 0 &&
vm_page_busy_tryupgrade(pp))
vm_page_free(pp);
else
vm_page_sunbusy(pp);
zfs_vmobject_wunlock(obj);
}
#else
vm_page_do_sunbusy(pp);
vm_page_lock(pp);
if (error) {
if (pp->wire_count == 0 && pp->valid == 0 &&
!vm_page_busied(pp))
vm_page_free(pp);
} else {
pp->valid = VM_PAGE_BITS_ALL;
vm_page_activate(pp);
}
vm_page_unlock(pp);
#endif
} else {
ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
vm_page_do_sunbusy(pp);
}
if (error)
break;
zfs_uio_advance(uio, bytes);
len -= bytes;
}
zfs_vmobject_wunlock_12(obj);
return (error);
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Read: We "read" preferentially from memory mapped pages,
* else we default from the dmu buffer.
*
* NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
* the file is memory mapped.
*/
int
mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
{
vnode_t *vp = ZTOV(zp);
vm_object_t obj;
int64_t start;
int len = nbytes;
int off;
int error = 0;
ASSERT3P(vp->v_mount, !=, NULL);
obj = vp->v_object;
ASSERT3P(obj, !=, NULL);
start = zfs_uio_offset(uio);
off = start & PAGEOFFSET;
zfs_vmobject_wlock_12(obj);
for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
vm_page_t pp;
uint64_t bytes = MIN(PAGESIZE - off, len);
if ((pp = page_hold(vp, start))) {
struct sf_buf *sf;
caddr_t va;
zfs_vmobject_wunlock_12(obj);
va = zfs_map_page(pp, &sf);
error = vn_io_fault_uiomove(va + off, bytes,
GET_UIO_STRUCT(uio));
zfs_unmap_page(sf);
zfs_vmobject_wlock_12(obj);
page_unhold(pp);
} else {
zfs_vmobject_wunlock_12(obj);
error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, bytes);
zfs_vmobject_wlock_12(obj);
}
len -= bytes;
off = 0;
if (error)
break;
}
zfs_vmobject_wunlock_12(obj);
return (error);
}
int
zfs_write_simple(znode_t *zp, const void *data, size_t len,
loff_t pos, size_t *presid)
{
int error = 0;
ssize_t resid;
error = vn_rdwr(UIO_WRITE, ZTOV(zp), __DECONST(void *, data), len, pos,
UIO_SYSSPACE, IO_SYNC, kcred, NOCRED, &resid, curthread);
if (error) {
return (SET_ERROR(error));
} else if (presid == NULL) {
if (resid != 0) {
error = SET_ERROR(EIO);
}
} else {
*presid = resid;
}
return (error);
}
void
zfs_zrele_async(znode_t *zp)
{
vnode_t *vp = ZTOV(zp);
objset_t *os = ITOZSB(vp)->z_os;
VN_RELE_ASYNC(vp, dsl_pool_zrele_taskq(dmu_objset_pool(os)));
}
static int
zfs_dd_callback(struct mount *mp, void *arg, int lkflags, struct vnode **vpp)
{
int error;
*vpp = arg;
error = vn_lock(*vpp, lkflags);
if (error != 0)
vrele(*vpp);
return (error);
}
static int
zfs_lookup_lock(vnode_t *dvp, vnode_t *vp, const char *name, int lkflags)
{
znode_t *zdp = VTOZ(dvp);
zfsvfs_t *zfsvfs __unused = zdp->z_zfsvfs;
int error;
int ltype;
if (zfsvfs->z_replay == B_FALSE)
ASSERT_VOP_LOCKED(dvp, __func__);
if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
ASSERT3P(dvp, ==, vp);
vref(dvp);
ltype = lkflags & LK_TYPE_MASK;
if (ltype != VOP_ISLOCKED(dvp)) {
if (ltype == LK_EXCLUSIVE)
vn_lock(dvp, LK_UPGRADE | LK_RETRY);
else /* if (ltype == LK_SHARED) */
vn_lock(dvp, LK_DOWNGRADE | LK_RETRY);
/*
* Relock for the "." case could leave us with
* reclaimed vnode.
*/
if (VN_IS_DOOMED(dvp)) {
vrele(dvp);
return (SET_ERROR(ENOENT));
}
}
return (0);
} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
/*
* Note that in this case, dvp is the child vnode, and we
* are looking up the parent vnode - exactly reverse from
* normal operation. Unlocking dvp requires some rather
* tricky unlock/relock dance to prevent mp from being freed;
* use vn_vget_ino_gen() which takes care of all that.
*
* XXX Note that there is a time window when both vnodes are
* unlocked. It is possible, although highly unlikely, that
* during that window the parent-child relationship between
* the vnodes may change, for example, get reversed.
* In that case we would have a wrong lock order for the vnodes.
* All other filesystems seem to ignore this problem, so we
* do the same here.
* A potential solution could be implemented as follows:
* - using LK_NOWAIT when locking the second vnode and retrying
* if necessary
* - checking that the parent-child relationship still holds
* after locking both vnodes and retrying if it doesn't
*/
error = vn_vget_ino_gen(dvp, zfs_dd_callback, vp, lkflags, &vp);
return (error);
} else {
error = vn_lock(vp, lkflags);
if (error != 0)
vrele(vp);
return (error);
}
}
/*
* Lookup an entry in a directory, or an extended attribute directory.
* If it exists, return a held vnode reference for it.
*
* IN: dvp - vnode of directory to search.
* nm - name of entry to lookup.
* pnp - full pathname to lookup [UNUSED].
* flags - LOOKUP_XATTR set if looking for an attribute.
* rdir - root directory vnode [UNUSED].
* cr - credentials of caller.
* ct - caller context
*
* OUT: vpp - vnode of located entry, NULL if not found.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* NA
*/
/* ARGSUSED */
static int
zfs_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp,
struct componentname *cnp, int nameiop, cred_t *cr, int flags,
boolean_t cached)
{
znode_t *zdp = VTOZ(dvp);
znode_t *zp;
zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
#if __FreeBSD_version > 1300124
seqc_t dvp_seqc;
#endif
int error = 0;
/*
* Fast path lookup, however we must skip DNLC lookup
* for case folding or normalizing lookups because the
* DNLC code only stores the passed in name. This means
* creating 'a' and removing 'A' on a case insensitive
* file system would work, but DNLC still thinks 'a'
* exists and won't let you create it again on the next
* pass through fast path.
*/
if (!(flags & LOOKUP_XATTR)) {
if (dvp->v_type != VDIR) {
return (SET_ERROR(ENOTDIR));
} else if (zdp->z_sa_hdl == NULL) {
return (SET_ERROR(EIO));
}
}
DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp,
const char *, nm);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zdp);
#if __FreeBSD_version > 1300124
dvp_seqc = vn_seqc_read_notmodify(dvp);
#endif
*vpp = NULL;
if (flags & LOOKUP_XATTR) {
/*
* If the xattr property is off, refuse the lookup request.
*/
if (!(zfsvfs->z_flags & ZSB_XATTR)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EOPNOTSUPP));
}
/*
* We don't allow recursive attributes..
* Maybe someday we will.
*/
if (zdp->z_pflags & ZFS_XATTR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
if ((error = zfs_get_xattrdir(VTOZ(dvp), &zp, cr, flags))) {
ZFS_EXIT(zfsvfs);
return (error);
}
*vpp = ZTOV(zp);
/*
* Do we have permission to get into attribute directory?
*/
error = zfs_zaccess(zp, ACE_EXECUTE, 0, B_FALSE, cr);
if (error) {
vrele(ZTOV(zp));
}
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Check accessibility of directory if we're not coming in via
* VOP_CACHEDLOOKUP.
*/
if (!cached) {
#ifdef NOEXECCHECK
if ((cnp->cn_flags & NOEXECCHECK) != 0) {
cnp->cn_flags &= ~NOEXECCHECK;
} else
#endif
if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
}
/*
* First handle the special cases.
*/
if ((cnp->cn_flags & ISDOTDOT) != 0) {
/*
* If we are a snapshot mounted under .zfs, return
* the vp for the snapshot directory.
*/
if (zdp->z_id == zfsvfs->z_root && zfsvfs->z_parent != zfsvfs) {
struct componentname cn;
vnode_t *zfsctl_vp;
int ltype;
ZFS_EXIT(zfsvfs);
ltype = VOP_ISLOCKED(dvp);
VOP_UNLOCK1(dvp);
error = zfsctl_root(zfsvfs->z_parent, LK_SHARED,
&zfsctl_vp);
if (error == 0) {
cn.cn_nameptr = "snapshot";
cn.cn_namelen = strlen(cn.cn_nameptr);
cn.cn_nameiop = cnp->cn_nameiop;
cn.cn_flags = cnp->cn_flags & ~ISDOTDOT;
cn.cn_lkflags = cnp->cn_lkflags;
error = VOP_LOOKUP(zfsctl_vp, vpp, &cn);
vput(zfsctl_vp);
}
vn_lock(dvp, ltype | LK_RETRY);
return (error);
}
}
if (zfs_has_ctldir(zdp) && strcmp(nm, ZFS_CTLDIR_NAME) == 0) {
ZFS_EXIT(zfsvfs);
if ((cnp->cn_flags & ISLASTCN) != 0 && nameiop != LOOKUP)
return (SET_ERROR(ENOTSUP));
error = zfsctl_root(zfsvfs, cnp->cn_lkflags, vpp);
return (error);
}
/*
* The loop is retry the lookup if the parent-child relationship
* changes during the dot-dot locking complexities.
*/
for (;;) {
uint64_t parent;
error = zfs_dirlook(zdp, nm, &zp);
if (error == 0)
*vpp = ZTOV(zp);
ZFS_EXIT(zfsvfs);
if (error != 0)
break;
error = zfs_lookup_lock(dvp, *vpp, nm, cnp->cn_lkflags);
if (error != 0) {
/*
* If we've got a locking error, then the vnode
* got reclaimed because of a force unmount.
* We never enter doomed vnodes into the name cache.
*/
*vpp = NULL;
return (error);
}
if ((cnp->cn_flags & ISDOTDOT) == 0)
break;
ZFS_ENTER(zfsvfs);
if (zdp->z_sa_hdl == NULL) {
error = SET_ERROR(EIO);
} else {
error = sa_lookup(zdp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
&parent, sizeof (parent));
}
if (error != 0) {
ZFS_EXIT(zfsvfs);
vput(ZTOV(zp));
break;
}
if (zp->z_id == parent) {
ZFS_EXIT(zfsvfs);
break;
}
vput(ZTOV(zp));
}
if (error != 0)
*vpp = NULL;
/* Translate errors and add SAVENAME when needed. */
if (cnp->cn_flags & ISLASTCN) {
switch (nameiop) {
case CREATE:
case RENAME:
if (error == ENOENT) {
error = EJUSTRETURN;
cnp->cn_flags |= SAVENAME;
break;
}
fallthrough;
case DELETE:
if (error == 0)
cnp->cn_flags |= SAVENAME;
break;
}
}
#if __FreeBSD_version > 1300124
if ((cnp->cn_flags & ISDOTDOT) != 0) {
/*
* FIXME: zfs_lookup_lock relocks vnodes and does nothing to
* handle races. In particular different callers may end up
* with different vnodes and will try to add conflicting
* entries to the namecache.
*
* While finding different result may be acceptable in face
* of concurrent modification, adding conflicting entries
* trips over an assert in the namecache.
*
* Ultimately let an entry through once everything settles.
*/
if (!vn_seqc_consistent(dvp, dvp_seqc)) {
cnp->cn_flags &= ~MAKEENTRY;
}
}
#endif
/* Insert name into cache (as non-existent) if appropriate. */
if (zfsvfs->z_use_namecache && !zfsvfs->z_replay &&
error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0)
cache_enter(dvp, NULL, cnp);
/* Insert name into cache if appropriate. */
if (zfsvfs->z_use_namecache && !zfsvfs->z_replay &&
error == 0 && (cnp->cn_flags & MAKEENTRY)) {
if (!(cnp->cn_flags & ISLASTCN) ||
(nameiop != DELETE && nameiop != RENAME)) {
cache_enter(dvp, *vpp, cnp);
}
}
return (error);
}
/*
* Attempt to create a new entry in a directory. If the entry
* already exists, truncate the file if permissible, else return
* an error. Return the vp of the created or trunc'd file.
*
* IN: dvp - vnode of directory to put new file entry in.
* name - name of new file entry.
* vap - attributes of new file.
* excl - flag indicating exclusive or non-exclusive mode.
* mode - mode to open file with.
* cr - credentials of caller.
* flag - large file flag [UNUSED].
* ct - caller context
* vsecp - ACL to be set
*
* OUT: vpp - vnode of created or trunc'd entry.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime updated if new entry created
* vp - ctime|mtime always, atime if new
*/
/* ARGSUSED */
int
zfs_create(znode_t *dzp, const char *name, vattr_t *vap, int excl, int mode,
znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp)
{
znode_t *zp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
objset_t *os;
dmu_tx_t *tx;
int error;
uid_t uid = crgetuid(cr);
gid_t gid = crgetgid(cr);
uint64_t projid = ZFS_DEFAULT_PROJID;
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
uint64_t txtype;
#ifdef DEBUG_VFS_LOCKS
vnode_t *dvp = ZTOV(dzp);
#endif
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || (vap->va_mask & AT_XVATTR) ||
IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
os = zfsvfs->z_os;
zilog = zfsvfs->z_log;
if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
}
if (vap->va_mask & AT_XVATTR) {
if ((error = secpolicy_xvattr(ZTOV(dzp), (xvattr_t *)vap,
crgetuid(cr), cr, vap->va_type)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
*zpp = NULL;
if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
vap->va_mode &= ~S_ISVTX;
error = zfs_dirent_lookup(dzp, name, &zp, ZNEW);
if (error) {
ZFS_EXIT(zfsvfs);
return (error);
}
ASSERT3P(zp, ==, NULL);
/*
* Create a new file object and update the directory
* to reference it.
*/
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
goto out;
}
/*
* We only support the creation of regular files in
* extended attribute directories.
*/
if ((dzp->z_pflags & ZFS_XATTR) &&
(vap->va_type != VREG)) {
error = SET_ERROR(EINVAL);
goto out;
}
if ((error = zfs_acl_ids_create(dzp, 0, vap,
cr, vsecp, &acl_ids)) != 0)
goto out;
if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
projid = zfs_inherit_projid(dzp);
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EDQUOT);
goto out;
}
getnewvnode_reserve_();
tx = dmu_tx_create(os);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zfsvfs->z_use_sa &&
acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, acl_ids.z_aclp->z_acl_bytes);
}
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
getnewvnode_drop_reserve();
ZFS_EXIT(zfsvfs);
return (error);
}
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
(void) zfs_link_create(dzp, name, zp, tx, ZNEW);
txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
zfs_log_create(zilog, tx, txtype, dzp, zp, name,
vsecp, acl_ids.z_fuidp, vap);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
getnewvnode_drop_reserve();
out:
VNCHECKREF(dvp);
if (error == 0) {
*zpp = zp;
}
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Remove an entry from a directory.
*
* IN: dvp - vnode of directory to remove entry from.
* name - name of entry to remove.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime
* vp - ctime (if nlink > 0)
*/
/*ARGSUSED*/
static int
zfs_remove_(vnode_t *dvp, vnode_t *vp, const char *name, cred_t *cr)
{
znode_t *dzp = VTOZ(dvp);
znode_t *zp;
znode_t *xzp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
uint64_t xattr_obj;
uint64_t obj = 0;
dmu_tx_t *tx;
boolean_t unlinked;
uint64_t txtype;
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
zp = VTOZ(vp);
ZFS_VERIFY_ZP(zp);
zilog = zfsvfs->z_log;
xattr_obj = 0;
xzp = NULL;
if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
goto out;
}
/*
* Need to use rmdir for removing directories.
*/
if (vp->v_type == VDIR) {
error = SET_ERROR(EPERM);
goto out;
}
vnevent_remove(vp, dvp, name, ct);
obj = zp->z_id;
/* are there any extended attributes? */
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj, sizeof (xattr_obj));
if (error == 0 && xattr_obj) {
error = zfs_zget(zfsvfs, xattr_obj, &xzp);
ASSERT0(error);
}
/*
* We may delete the znode now, or we may put it in the unlinked set;
* it depends on whether we're the last link, and on whether there are
* other holds on the vnode. So we dmu_tx_hold() the right things to
* allow for either case.
*/
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
if (xzp) {
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
}
/* charge as an update -- would be nice not to charge at all */
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
/*
* Mark this transaction as typically resulting in a net free of space
*/
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Remove the directory entry.
*/
error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, &unlinked);
if (error) {
dmu_tx_commit(tx);
goto out;
}
if (unlinked) {
zfs_unlinked_add(zp, tx);
vp->v_vflag |= VV_NOSYNC;
}
/* XXX check changes to linux vnops */
txtype = TX_REMOVE;
zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
dmu_tx_commit(tx);
out:
if (xzp)
vrele(ZTOV(xzp));
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
static int
zfs_lookup_internal(znode_t *dzp, const char *name, vnode_t **vpp,
struct componentname *cnp, int nameiop)
{
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
int error;
cnp->cn_nameptr = __DECONST(char *, name);
cnp->cn_namelen = strlen(name);
cnp->cn_nameiop = nameiop;
cnp->cn_flags = ISLASTCN | SAVENAME;
cnp->cn_lkflags = LK_EXCLUSIVE | LK_RETRY;
cnp->cn_cred = kcred;
#if __FreeBSD_version < 1400037
cnp->cn_thread = curthread;
#endif
if (zfsvfs->z_use_namecache && !zfsvfs->z_replay) {
struct vop_lookup_args a;
a.a_gen.a_desc = &vop_lookup_desc;
a.a_dvp = ZTOV(dzp);
a.a_vpp = vpp;
a.a_cnp = cnp;
error = vfs_cache_lookup(&a);
} else {
error = zfs_lookup(ZTOV(dzp), name, vpp, cnp, nameiop, kcred, 0,
B_FALSE);
}
#ifdef ZFS_DEBUG
if (error) {
printf("got error %d on name %s on op %d\n", error, name,
nameiop);
kdb_backtrace();
}
#endif
return (error);
}
int
zfs_remove(znode_t *dzp, const char *name, cred_t *cr, int flags)
{
vnode_t *vp;
int error;
struct componentname cn;
if ((error = zfs_lookup_internal(dzp, name, &vp, &cn, DELETE)))
return (error);
error = zfs_remove_(ZTOV(dzp), vp, name, cr);
vput(vp);
return (error);
}
/*
* Create a new directory and insert it into dvp using the name
* provided. Return a pointer to the inserted directory.
*
* IN: dvp - vnode of directory to add subdir to.
* dirname - name of new directory.
* vap - attributes of new directory.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
* vsecp - ACL to be set
*
* OUT: vpp - vnode of created directory.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime updated
* vp - ctime|mtime|atime updated
*/
/*ARGSUSED*/
int
zfs_mkdir(znode_t *dzp, const char *dirname, vattr_t *vap, znode_t **zpp,
cred_t *cr, int flags, vsecattr_t *vsecp)
{
znode_t *zp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
uint64_t txtype;
dmu_tx_t *tx;
int error;
uid_t uid = crgetuid(cr);
gid_t gid = crgetgid(cr);
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
ASSERT3U(vap->va_type, ==, VDIR);
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
if (zfsvfs->z_use_fuids == B_FALSE &&
((vap->va_mask & AT_XVATTR) ||
IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
if (dzp->z_pflags & ZFS_XATTR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
if (zfsvfs->z_utf8 && u8_validate(dirname,
strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
}
if (vap->va_mask & AT_XVATTR) {
if ((error = secpolicy_xvattr(ZTOV(dzp), (xvattr_t *)vap,
crgetuid(cr), cr, vap->va_type)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
NULL, &acl_ids)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* First make sure the new directory doesn't exist.
*
* Existence is checked first to make sure we don't return
* EACCES instead of EEXIST which can cause some applications
* to fail.
*/
*zpp = NULL;
if ((error = zfs_dirent_lookup(dzp, dirname, &zp, ZNEW))) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
return (error);
}
ASSERT3P(zp, ==, NULL);
if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
return (error);
}
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EDQUOT));
}
/*
* Add a new entry to the directory.
*/
getnewvnode_reserve_();
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
getnewvnode_drop_reserve();
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Create new node.
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
/*
* Now put new name in parent dir.
*/
(void) zfs_link_create(dzp, dirname, zp, tx, ZNEW);
*zpp = zp;
txtype = zfs_log_create_txtype(Z_DIR, NULL, vap);
zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, NULL,
acl_ids.z_fuidp, vap);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
getnewvnode_drop_reserve();
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (0);
}
#if __FreeBSD_version < 1300124
static void
cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
{
cache_purge(dvp);
cache_purge(vp);
}
#endif
/*
* Remove a directory subdir entry. If the current working
* directory is the same as the subdir to be removed, the
* remove will fail.
*
* IN: dvp - vnode of directory to remove from.
* name - name of directory to be removed.
* cwd - vnode of current working directory.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime updated
*/
/*ARGSUSED*/
static int
zfs_rmdir_(vnode_t *dvp, vnode_t *vp, const char *name, cred_t *cr)
{
znode_t *dzp = VTOZ(dvp);
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
dmu_tx_t *tx;
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
ZFS_VERIFY_ZP(zp);
zilog = zfsvfs->z_log;
if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
goto out;
}
if (vp->v_type != VDIR) {
error = SET_ERROR(ENOTDIR);
goto out;
}
vnevent_rmdir(vp, dvp, name, ct);
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
return (error);
}
error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, NULL);
if (error == 0) {
uint64_t txtype = TX_RMDIR;
zfs_log_remove(zilog, tx, txtype, dzp, name,
ZFS_NO_OBJECT, B_FALSE);
}
dmu_tx_commit(tx);
cache_vop_rmdir(dvp, vp);
out:
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
int
zfs_rmdir(znode_t *dzp, const char *name, znode_t *cwd, cred_t *cr, int flags)
{
struct componentname cn;
vnode_t *vp;
int error;
if ((error = zfs_lookup_internal(dzp, name, &vp, &cn, DELETE)))
return (error);
error = zfs_rmdir_(ZTOV(dzp), vp, name, cr);
vput(vp);
return (error);
}
/*
* Read as many directory entries as will fit into the provided
* buffer from the given directory cursor position (specified in
* the uio structure).
*
* IN: vp - vnode of directory to read.
* uio - structure supplying read location, range info,
* and return buffer.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
*
* OUT: uio - updated offset and range, buffer filled.
* eofp - set to true if end-of-file detected.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* vp - atime updated
*
* Note that the low 4 bits of the cookie returned by zap is always zero.
* This allows us to use the low range for "special" directory entries:
* We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
* we use the offset 2 for the '.zfs' directory.
*/
/* ARGSUSED */
static int
zfs_readdir(vnode_t *vp, zfs_uio_t *uio, cred_t *cr, int *eofp,
int *ncookies, cookie_t **cookies)
{
znode_t *zp = VTOZ(vp);
iovec_t *iovp;
edirent_t *eodp;
dirent64_t *odp;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
objset_t *os;
caddr_t outbuf;
size_t bufsize;
zap_cursor_t zc;
zap_attribute_t zap;
uint_t bytes_wanted;
uint64_t offset; /* must be unsigned; checks for < 1 */
uint64_t parent;
int local_eof;
int outcount;
int error;
uint8_t prefetch;
boolean_t check_sysattrs;
uint8_t type;
int ncooks;
cookie_t *cooks = NULL;
int flags = 0;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
&parent, sizeof (parent))) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* If we are not given an eof variable,
* use a local one.
*/
if (eofp == NULL)
eofp = &local_eof;
/*
* Check for valid iov_len.
*/
if (GET_UIO_STRUCT(uio)->uio_iov->iov_len <= 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* Quit if directory has been removed (posix)
*/
if ((*eofp = zp->z_unlinked) != 0) {
ZFS_EXIT(zfsvfs);
return (0);
}
error = 0;
os = zfsvfs->z_os;
offset = zfs_uio_offset(uio);
prefetch = zp->z_zn_prefetch;
/*
* Initialize the iterator cursor.
*/
if (offset <= 3) {
/*
* Start iteration from the beginning of the directory.
*/
zap_cursor_init(&zc, os, zp->z_id);
} else {
/*
* The offset is a serialized cursor.
*/
zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
}
/*
* Get space to change directory entries into fs independent format.
*/
iovp = GET_UIO_STRUCT(uio)->uio_iov;
bytes_wanted = iovp->iov_len;
if (zfs_uio_segflg(uio) != UIO_SYSSPACE || zfs_uio_iovcnt(uio) != 1) {
bufsize = bytes_wanted;
outbuf = kmem_alloc(bufsize, KM_SLEEP);
odp = (struct dirent64 *)outbuf;
} else {
bufsize = bytes_wanted;
outbuf = NULL;
odp = (struct dirent64 *)iovp->iov_base;
}
eodp = (struct edirent *)odp;
if (ncookies != NULL) {
/*
* Minimum entry size is dirent size and 1 byte for a file name.
*/
ncooks = zfs_uio_resid(uio) / (sizeof (struct dirent) -
sizeof (((struct dirent *)NULL)->d_name) + 1);
cooks = malloc(ncooks * sizeof (*cooks), M_TEMP, M_WAITOK);
*cookies = cooks;
*ncookies = ncooks;
}
/*
* If this VFS supports the system attribute view interface; and
* we're looking at an extended attribute directory; and we care
* about normalization conflicts on this vfs; then we must check
* for normalization conflicts with the sysattr name space.
*/
#ifdef TODO
check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
(vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
(flags & V_RDDIR_ENTFLAGS);
#else
check_sysattrs = 0;
#endif
/*
* Transform to file-system independent format
*/
outcount = 0;
while (outcount < bytes_wanted) {
ino64_t objnum;
ushort_t reclen;
off64_t *next = NULL;
/*
* Special case `.', `..', and `.zfs'.
*/
if (offset == 0) {
(void) strcpy(zap.za_name, ".");
zap.za_normalization_conflict = 0;
objnum = zp->z_id;
type = DT_DIR;
} else if (offset == 1) {
(void) strcpy(zap.za_name, "..");
zap.za_normalization_conflict = 0;
objnum = parent;
type = DT_DIR;
} else if (offset == 2 && zfs_show_ctldir(zp)) {
(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
zap.za_normalization_conflict = 0;
objnum = ZFSCTL_INO_ROOT;
type = DT_DIR;
} else {
/*
* Grab next entry.
*/
if ((error = zap_cursor_retrieve(&zc, &zap))) {
if ((*eofp = (error == ENOENT)) != 0)
break;
else
goto update;
}
if (zap.za_integer_length != 8 ||
zap.za_num_integers != 1) {
cmn_err(CE_WARN, "zap_readdir: bad directory "
"entry, obj = %lld, offset = %lld\n",
(u_longlong_t)zp->z_id,
(u_longlong_t)offset);
error = SET_ERROR(ENXIO);
goto update;
}
objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
/*
* MacOS X can extract the object type here such as:
* uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
*/
type = ZFS_DIRENT_TYPE(zap.za_first_integer);
if (check_sysattrs && !zap.za_normalization_conflict) {
#ifdef TODO
zap.za_normalization_conflict =
xattr_sysattr_casechk(zap.za_name);
#else
panic("%s:%u: TODO", __func__, __LINE__);
#endif
}
}
if (flags & V_RDDIR_ACCFILTER) {
/*
* If we have no access at all, don't include
* this entry in the returned information
*/
znode_t *ezp;
if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
goto skip_entry;
if (!zfs_has_access(ezp, cr)) {
vrele(ZTOV(ezp));
goto skip_entry;
}
vrele(ZTOV(ezp));
}
if (flags & V_RDDIR_ENTFLAGS)
reclen = EDIRENT_RECLEN(strlen(zap.za_name));
else
reclen = DIRENT64_RECLEN(strlen(zap.za_name));
/*
* Will this entry fit in the buffer?
*/
if (outcount + reclen > bufsize) {
/*
* Did we manage to fit anything in the buffer?
*/
if (!outcount) {
error = SET_ERROR(EINVAL);
goto update;
}
break;
}
if (flags & V_RDDIR_ENTFLAGS) {
/*
* Add extended flag entry:
*/
eodp->ed_ino = objnum;
eodp->ed_reclen = reclen;
/* NOTE: ed_off is the offset for the *next* entry */
next = &(eodp->ed_off);
eodp->ed_eflags = zap.za_normalization_conflict ?
ED_CASE_CONFLICT : 0;
(void) strncpy(eodp->ed_name, zap.za_name,
EDIRENT_NAMELEN(reclen));
eodp = (edirent_t *)((intptr_t)eodp + reclen);
} else {
/*
* Add normal entry:
*/
odp->d_ino = objnum;
odp->d_reclen = reclen;
odp->d_namlen = strlen(zap.za_name);
/* NOTE: d_off is the offset for the *next* entry. */
next = &odp->d_off;
strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
odp->d_type = type;
dirent_terminate(odp);
odp = (dirent64_t *)((intptr_t)odp + reclen);
}
outcount += reclen;
ASSERT3S(outcount, <=, bufsize);
/* Prefetch znode */
if (prefetch)
dmu_prefetch(os, objnum, 0, 0, 0,
ZIO_PRIORITY_SYNC_READ);
skip_entry:
/*
* Move to the next entry, fill in the previous offset.
*/
if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
zap_cursor_advance(&zc);
offset = zap_cursor_serialize(&zc);
} else {
offset += 1;
}
/* Fill the offset right after advancing the cursor. */
if (next != NULL)
*next = offset;
if (cooks != NULL) {
*cooks++ = offset;
ncooks--;
KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
}
}
zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
/* Subtract unused cookies */
if (ncookies != NULL)
*ncookies -= ncooks;
if (zfs_uio_segflg(uio) == UIO_SYSSPACE && zfs_uio_iovcnt(uio) == 1) {
iovp->iov_base += outcount;
iovp->iov_len -= outcount;
zfs_uio_resid(uio) -= outcount;
} else if ((error =
zfs_uiomove(outbuf, (long)outcount, UIO_READ, uio))) {
/*
* Reset the pointer.
*/
offset = zfs_uio_offset(uio);
}
update:
zap_cursor_fini(&zc);
if (zfs_uio_segflg(uio) != UIO_SYSSPACE || zfs_uio_iovcnt(uio) != 1)
kmem_free(outbuf, bufsize);
if (error == ENOENT)
error = 0;
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
zfs_uio_setoffset(uio, offset);
ZFS_EXIT(zfsvfs);
if (error != 0 && cookies != NULL) {
free(*cookies, M_TEMP);
*cookies = NULL;
*ncookies = 0;
}
return (error);
}
/*
* Get the requested file attributes and place them in the provided
* vattr structure.
*
* IN: vp - vnode of file.
* vap - va_mask identifies requested attributes.
* If AT_XVATTR set, then optional attrs are requested
* flags - ATTR_NOACLCHECK (CIFS server context)
* cr - credentials of caller.
*
* OUT: vap - attribute values.
*
* RETURN: 0 (always succeeds).
*/
/* ARGSUSED */
static int
zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error = 0;
uint32_t blksize;
u_longlong_t nblocks;
uint64_t mtime[2], ctime[2], crtime[2], rdev;
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
xoptattr_t *xoap = NULL;
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
sa_bulk_attr_t bulk[4];
int count = 0;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
if (vp->v_type == VBLK || vp->v_type == VCHR)
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
&rdev, 8);
if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
* Also, if we are the owner don't bother, since owner should
* always be allowed to read basic attributes of file.
*/
if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
(vap->va_uid != crgetuid(cr))) {
if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
skipaclchk, cr))) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
/*
* Return all attributes. It's cheaper to provide the answer
* than to determine whether we were asked the question.
*/
vap->va_type = IFTOVT(zp->z_mode);
vap->va_mode = zp->z_mode & ~S_IFMT;
vn_fsid(vp, vap);
vap->va_nodeid = zp->z_id;
vap->va_nlink = zp->z_links;
if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp) &&
zp->z_links < ZFS_LINK_MAX)
vap->va_nlink++;
vap->va_size = zp->z_size;
if (vp->v_type == VBLK || vp->v_type == VCHR)
vap->va_rdev = zfs_cmpldev(rdev);
vap->va_gen = zp->z_gen;
vap->va_flags = 0; /* FreeBSD: Reset chflags(2) flags. */
vap->va_filerev = zp->z_seq;
/*
* Add in any requested optional attributes and the create time.
* Also set the corresponding bits in the returned attribute bitmap.
*/
if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
xoap->xoa_archive =
((zp->z_pflags & ZFS_ARCHIVE) != 0);
XVA_SET_RTN(xvap, XAT_ARCHIVE);
}
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
xoap->xoa_readonly =
((zp->z_pflags & ZFS_READONLY) != 0);
XVA_SET_RTN(xvap, XAT_READONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
xoap->xoa_system =
((zp->z_pflags & ZFS_SYSTEM) != 0);
XVA_SET_RTN(xvap, XAT_SYSTEM);
}
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
xoap->xoa_hidden =
((zp->z_pflags & ZFS_HIDDEN) != 0);
XVA_SET_RTN(xvap, XAT_HIDDEN);
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
xoap->xoa_nounlink =
((zp->z_pflags & ZFS_NOUNLINK) != 0);
XVA_SET_RTN(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
xoap->xoa_immutable =
((zp->z_pflags & ZFS_IMMUTABLE) != 0);
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
}
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
xoap->xoa_appendonly =
((zp->z_pflags & ZFS_APPENDONLY) != 0);
XVA_SET_RTN(xvap, XAT_APPENDONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
xoap->xoa_nodump =
((zp->z_pflags & ZFS_NODUMP) != 0);
XVA_SET_RTN(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
xoap->xoa_opaque =
((zp->z_pflags & ZFS_OPAQUE) != 0);
XVA_SET_RTN(xvap, XAT_OPAQUE);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
xoap->xoa_av_quarantined =
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
xoap->xoa_av_modified =
((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
vp->v_type == VREG) {
zfs_sa_get_scanstamp(zp, xvap);
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
XVA_SET_RTN(xvap, XAT_REPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
xoap->xoa_generation = zp->z_gen;
XVA_SET_RTN(xvap, XAT_GEN);
}
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
xoap->xoa_offline =
((zp->z_pflags & ZFS_OFFLINE) != 0);
XVA_SET_RTN(xvap, XAT_OFFLINE);
}
if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
xoap->xoa_sparse =
((zp->z_pflags & ZFS_SPARSE) != 0);
XVA_SET_RTN(xvap, XAT_SPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
xoap->xoa_projinherit =
((zp->z_pflags & ZFS_PROJINHERIT) != 0);
XVA_SET_RTN(xvap, XAT_PROJINHERIT);
}
if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
xoap->xoa_projid = zp->z_projid;
XVA_SET_RTN(xvap, XAT_PROJID);
}
}
ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
ZFS_TIME_DECODE(&vap->va_mtime, mtime);
ZFS_TIME_DECODE(&vap->va_ctime, ctime);
ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
vap->va_blksize = blksize;
vap->va_bytes = nblocks << 9; /* nblocks * 512 */
if (zp->z_blksz == 0) {
/*
* Block size hasn't been set; suggest maximal I/O transfers.
*/
vap->va_blksize = zfsvfs->z_max_blksz;
}
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Set the file attributes to the values contained in the
* vattr structure.
*
* IN: zp - znode of file to be modified.
* vap - new attribute values.
* If AT_XVATTR set, then optional attrs are being set
* flags - ATTR_UTIME set if non-default time values provided.
* - ATTR_NOACLCHECK (CIFS context only).
* cr - credentials of caller.
* ct - caller context
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* vp - ctime updated, mtime updated if size changed.
*/
/* ARGSUSED */
int
zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr)
{
vnode_t *vp = ZTOV(zp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
objset_t *os;
zilog_t *zilog;
dmu_tx_t *tx;
vattr_t oldva;
xvattr_t tmpxvattr;
uint_t mask = vap->va_mask;
uint_t saved_mask = 0;
uint64_t saved_mode;
int trim_mask = 0;
uint64_t new_mode;
uint64_t new_uid, new_gid;
uint64_t xattr_obj;
uint64_t mtime[2], ctime[2];
uint64_t projid = ZFS_INVALID_PROJID;
znode_t *attrzp;
int need_policy = FALSE;
int err, err2;
zfs_fuid_info_t *fuidp = NULL;
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
xoptattr_t *xoap;
zfs_acl_t *aclp;
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
boolean_t fuid_dirtied = B_FALSE;
sa_bulk_attr_t bulk[7], xattr_bulk[7];
int count = 0, xattr_count = 0;
if (mask == 0)
return (0);
if (mask & AT_NOSET)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
os = zfsvfs->z_os;
zilog = zfsvfs->z_log;
/*
* Make sure that if we have ephemeral uid/gid or xvattr specified
* that file system is at proper version level
*/
if (zfsvfs->z_use_fuids == B_FALSE &&
(((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
(mask & AT_XVATTR))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
if (mask & AT_SIZE && vp->v_type == VDIR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EISDIR));
}
if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* If this is an xvattr_t, then get a pointer to the structure of
* optional attributes. If this is NULL, then we have a vattr_t.
*/
xoap = xva_getxoptattr(xvap);
xva_init(&tmpxvattr);
/*
* Immutable files can only alter immutable bit and atime
*/
if ((zp->z_pflags & ZFS_IMMUTABLE) &&
((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
/*
* Note: ZFS_READONLY is handled in zfs_zaccess_common.
*/
/*
* Verify timestamps doesn't overflow 32 bits.
* ZFS can handle large timestamps, but 32bit syscalls can't
* handle times greater than 2039. This check should be removed
* once large timestamps are fully supported.
*/
if (mask & (AT_ATIME | AT_MTIME)) {
if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EOVERFLOW));
}
}
if (xoap != NULL && (mask & AT_XVATTR)) {
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME) &&
TIMESPEC_OVERFLOW(&vap->va_birthtime)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EOVERFLOW));
}
if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
if (!dmu_objset_projectquota_enabled(os) ||
(!S_ISREG(zp->z_mode) && !S_ISDIR(zp->z_mode))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EOPNOTSUPP));
}
projid = xoap->xoa_projid;
if (unlikely(projid == ZFS_INVALID_PROJID)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
projid = ZFS_INVALID_PROJID;
else
need_policy = TRUE;
}
if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
(xoap->xoa_projinherit !=
((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
(!dmu_objset_projectquota_enabled(os) ||
(!S_ISREG(zp->z_mode) && !S_ISDIR(zp->z_mode)))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EOPNOTSUPP));
}
}
attrzp = NULL;
aclp = NULL;
if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EROFS));
}
/*
* First validate permissions
*/
if (mask & AT_SIZE) {
/*
* XXX - Note, we are not providing any open
* mode flags here (like FNDELAY), so we may
* block if there are locks present... this
* should be addressed in openat().
*/
/* XXX - would it be OK to generate a log record here? */
err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
if (err) {
ZFS_EXIT(zfsvfs);
return (err);
}
}
if (mask & (AT_ATIME|AT_MTIME) ||
((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
XVA_ISSET_REQ(xvap, XAT_READONLY) ||
XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
skipaclchk, cr);
}
if (mask & (AT_UID|AT_GID)) {
int idmask = (mask & (AT_UID|AT_GID));
int take_owner;
int take_group;
/*
* NOTE: even if a new mode is being set,
* we may clear S_ISUID/S_ISGID bits.
*/
if (!(mask & AT_MODE))
vap->va_mode = zp->z_mode;
/*
* Take ownership or chgrp to group we are a member of
*/
take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
take_group = (mask & AT_GID) &&
zfs_groupmember(zfsvfs, vap->va_gid, cr);
/*
* If both AT_UID and AT_GID are set then take_owner and
* take_group must both be set in order to allow taking
* ownership.
*
* Otherwise, send the check through secpolicy_vnode_setattr()
*
*/
if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
((idmask == AT_UID) && take_owner) ||
((idmask == AT_GID) && take_group)) {
if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
skipaclchk, cr) == 0) {
/*
* Remove setuid/setgid for non-privileged users
*/
secpolicy_setid_clear(vap, vp, cr);
trim_mask = (mask & (AT_UID|AT_GID));
} else {
need_policy = TRUE;
}
} else {
need_policy = TRUE;
}
}
oldva.va_mode = zp->z_mode;
zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
if (mask & AT_XVATTR) {
/*
* Update xvattr mask to include only those attributes
* that are actually changing.
*
* the bits will be restored prior to actually setting
* the attributes so the caller thinks they were set.
*/
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
if (xoap->xoa_appendonly !=
((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_APPENDONLY);
XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
}
}
if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
if (xoap->xoa_projinherit !=
((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT);
}
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
if (xoap->xoa_nounlink !=
((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NOUNLINK);
XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
}
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
if (xoap->xoa_immutable !=
((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
}
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
if (xoap->xoa_nodump !=
((zp->z_pflags & ZFS_NODUMP) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NODUMP);
XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
}
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
if (xoap->xoa_av_modified !=
((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
}
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
if ((vp->v_type != VREG &&
xoap->xoa_av_quarantined) ||
xoap->xoa_av_quarantined !=
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
}
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
if (need_policy == FALSE &&
(XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
need_policy = TRUE;
}
}
if (mask & AT_MODE) {
if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
err = secpolicy_setid_setsticky_clear(vp, vap,
&oldva, cr);
if (err) {
ZFS_EXIT(zfsvfs);
return (err);
}
trim_mask |= AT_MODE;
} else {
need_policy = TRUE;
}
}
if (need_policy) {
/*
* If trim_mask is set then take ownership
* has been granted or write_acl is present and user
* has the ability to modify mode. In that case remove
* UID|GID and or MODE from mask so that
* secpolicy_vnode_setattr() doesn't revoke it.
*/
if (trim_mask) {
saved_mask = vap->va_mask;
vap->va_mask &= ~trim_mask;
if (trim_mask & AT_MODE) {
/*
* Save the mode, as secpolicy_vnode_setattr()
* will overwrite it with ova.va_mode.
*/
saved_mode = vap->va_mode;
}
}
err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
(int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
if (err) {
ZFS_EXIT(zfsvfs);
return (err);
}
if (trim_mask) {
vap->va_mask |= saved_mask;
if (trim_mask & AT_MODE) {
/*
* Recover the mode after
* secpolicy_vnode_setattr().
*/
vap->va_mode = saved_mode;
}
}
}
/*
* secpolicy_vnode_setattr, or take ownership may have
* changed va_mask
*/
mask = vap->va_mask;
if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) {
err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj, sizeof (xattr_obj));
if (err == 0 && xattr_obj) {
err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
if (err == 0) {
err = vn_lock(ZTOV(attrzp), LK_EXCLUSIVE);
if (err != 0)
vrele(ZTOV(attrzp));
}
if (err)
goto out2;
}
if (mask & AT_UID) {
new_uid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
if (new_uid != zp->z_uid &&
zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
new_uid)) {
if (attrzp)
vput(ZTOV(attrzp));
err = SET_ERROR(EDQUOT);
goto out2;
}
}
if (mask & AT_GID) {
new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
cr, ZFS_GROUP, &fuidp);
if (new_gid != zp->z_gid &&
zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
new_gid)) {
if (attrzp)
vput(ZTOV(attrzp));
err = SET_ERROR(EDQUOT);
goto out2;
}
}
if (projid != ZFS_INVALID_PROJID &&
zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
if (attrzp)
vput(ZTOV(attrzp));
err = SET_ERROR(EDQUOT);
goto out2;
}
}
tx = dmu_tx_create(os);
if (mask & AT_MODE) {
uint64_t pmode = zp->z_mode;
uint64_t acl_obj;
new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
!(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
err = SET_ERROR(EPERM);
goto out;
}
if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
goto out;
if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
/*
* Are we upgrading ACL from old V0 format
* to V1 format?
*/
if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
zfs_znode_acl_version(zp) ==
ZFS_ACL_VERSION_INITIAL) {
dmu_tx_hold_free(tx, acl_obj, 0,
DMU_OBJECT_END);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
} else {
dmu_tx_hold_write(tx, acl_obj, 0,
aclp->z_acl_bytes);
}
} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
}
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
} else {
if (((mask & AT_XVATTR) &&
XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
(projid != ZFS_INVALID_PROJID &&
!(zp->z_pflags & ZFS_PROJID)))
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
else
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
}
if (attrzp) {
dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
}
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
zfs_sa_upgrade_txholds(tx, zp);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err)
goto out;
count = 0;
/*
* Set each attribute requested.
* We group settings according to the locks they need to acquire.
*
* Note: you cannot set ctime directly, although it will be
* updated as a side-effect of calling this function.
*/
if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
/*
* For the existed object that is upgraded from old system,
* its on-disk layout has no slot for the project ID attribute.
* But quota accounting logic needs to access related slots by
* offset directly. So we need to adjust old objects' layout
* to make the project ID to some unified and fixed offset.
*/
if (attrzp)
err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
if (err == 0)
err = sa_add_projid(zp->z_sa_hdl, tx, projid);
if (unlikely(err == EEXIST))
err = 0;
else if (err != 0)
goto out;
else
projid = ZFS_INVALID_PROJID;
}
if (mask & (AT_UID|AT_GID|AT_MODE))
mutex_enter(&zp->z_acl_lock);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
if (attrzp) {
if (mask & (AT_UID|AT_GID|AT_MODE))
mutex_enter(&attrzp->z_acl_lock);
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
sizeof (attrzp->z_pflags));
if (projid != ZFS_INVALID_PROJID) {
attrzp->z_projid = projid;
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
sizeof (attrzp->z_projid));
}
}
if (mask & (AT_UID|AT_GID)) {
if (mask & AT_UID) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
&new_uid, sizeof (new_uid));
zp->z_uid = new_uid;
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_UID(zfsvfs), NULL, &new_uid,
sizeof (new_uid));
attrzp->z_uid = new_uid;
}
}
if (mask & AT_GID) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
NULL, &new_gid, sizeof (new_gid));
zp->z_gid = new_gid;
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_GID(zfsvfs), NULL, &new_gid,
sizeof (new_gid));
attrzp->z_gid = new_gid;
}
}
if (!(mask & AT_MODE)) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
NULL, &new_mode, sizeof (new_mode));
new_mode = zp->z_mode;
}
err = zfs_acl_chown_setattr(zp);
ASSERT0(err);
if (attrzp) {
vn_seqc_write_begin(ZTOV(attrzp));
err = zfs_acl_chown_setattr(attrzp);
vn_seqc_write_end(ZTOV(attrzp));
ASSERT0(err);
}
}
if (mask & AT_MODE) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
&new_mode, sizeof (new_mode));
zp->z_mode = new_mode;
ASSERT3P(aclp, !=, NULL);
err = zfs_aclset_common(zp, aclp, cr, tx);
ASSERT0(err);
if (zp->z_acl_cached)
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = aclp;
aclp = NULL;
}
if (mask & AT_ATIME) {
ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
&zp->z_atime, sizeof (zp->z_atime));
}
if (mask & AT_MTIME) {
ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
mtime, sizeof (mtime));
}
if (projid != ZFS_INVALID_PROJID) {
zp->z_projid = projid;
SA_ADD_BULK_ATTR(bulk, count,
SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
sizeof (zp->z_projid));
}
/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
if (mask & AT_SIZE && !(mask & AT_MTIME)) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
NULL, mtime, sizeof (mtime));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, sizeof (ctime));
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
} else if (mask != 0) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, sizeof (ctime));
zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime);
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, sizeof (ctime));
zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
mtime, ctime);
}
}
/*
* Do this after setting timestamps to prevent timestamp
* update from toggling bit
*/
if (xoap && (mask & AT_XVATTR)) {
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME))
xoap->xoa_createtime = vap->va_birthtime;
/*
* restore trimmed off masks
* so that return masks can be set for caller.
*/
if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
XVA_SET_REQ(xvap, XAT_APPENDONLY);
}
if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
XVA_SET_REQ(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
XVA_SET_REQ(xvap, XAT_IMMUTABLE);
}
if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
XVA_SET_REQ(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) {
XVA_SET_REQ(xvap, XAT_PROJINHERIT);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
ASSERT3S(vp->v_type, ==, VREG);
zfs_xvattr_set(zp, xvap, tx);
}
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
if (mask != 0)
zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
if (mask & (AT_UID|AT_GID|AT_MODE))
mutex_exit(&zp->z_acl_lock);
if (attrzp) {
if (mask & (AT_UID|AT_GID|AT_MODE))
mutex_exit(&attrzp->z_acl_lock);
}
out:
if (err == 0 && attrzp) {
err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
xattr_count, tx);
ASSERT0(err2);
}
if (attrzp)
vput(ZTOV(attrzp));
if (aclp)
zfs_acl_free(aclp);
if (fuidp) {
zfs_fuid_info_free(fuidp);
fuidp = NULL;
}
if (err) {
dmu_tx_abort(tx);
} else {
err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
dmu_tx_commit(tx);
}
out2:
if (os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (err);
}
/*
* Look up the directory entries corresponding to the source and target
* directory/name pairs.
*/
static int
zfs_rename_relock_lookup(znode_t *sdzp, const struct componentname *scnp,
znode_t **szpp, znode_t *tdzp, const struct componentname *tcnp,
znode_t **tzpp)
{
zfsvfs_t *zfsvfs;
znode_t *szp, *tzp;
int error;
/*
* Before using sdzp and tdzp we must ensure that they are live.
* As a porting legacy from illumos we have two things to worry
* about. One is typical for FreeBSD and it is that the vnode is
* not reclaimed (doomed). The other is that the znode is live.
* The current code can invalidate the znode without acquiring the
* corresponding vnode lock if the object represented by the znode
* and vnode is no longer valid after a rollback or receive operation.
* z_teardown_lock hidden behind ZFS_ENTER and ZFS_EXIT is the lock
* that protects the znodes from the invalidation.
*/
zfsvfs = sdzp->z_zfsvfs;
ASSERT3P(zfsvfs, ==, tdzp->z_zfsvfs);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(sdzp);
ZFS_VERIFY_ZP(tdzp);
/*
* Re-resolve svp to be certain it still exists and fetch the
* correct vnode.
*/
error = zfs_dirent_lookup(sdzp, scnp->cn_nameptr, &szp, ZEXISTS);
if (error != 0) {
/* Source entry invalid or not there. */
if ((scnp->cn_flags & ISDOTDOT) != 0 ||
(scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.'))
error = SET_ERROR(EINVAL);
goto out;
}
*szpp = szp;
/*
* Re-resolve tvp, if it disappeared we just carry on.
*/
error = zfs_dirent_lookup(tdzp, tcnp->cn_nameptr, &tzp, 0);
if (error != 0) {
vrele(ZTOV(szp));
if ((tcnp->cn_flags & ISDOTDOT) != 0)
error = SET_ERROR(EINVAL);
goto out;
}
*tzpp = tzp;
out:
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* We acquire all but fdvp locks using non-blocking acquisitions. If we
* fail to acquire any lock in the path we will drop all held locks,
* acquire the new lock in a blocking fashion, and then release it and
* restart the rename. This acquire/release step ensures that we do not
* spin on a lock waiting for release. On error release all vnode locks
* and decrement references the way tmpfs_rename() would do.
*/
static int
zfs_rename_relock(struct vnode *sdvp, struct vnode **svpp,
struct vnode *tdvp, struct vnode **tvpp,
const struct componentname *scnp, const struct componentname *tcnp)
{
struct vnode *nvp, *svp, *tvp;
znode_t *sdzp, *tdzp, *szp, *tzp;
int error;
VOP_UNLOCK1(tdvp);
if (*tvpp != NULL && *tvpp != tdvp)
VOP_UNLOCK1(*tvpp);
relock:
error = vn_lock(sdvp, LK_EXCLUSIVE);
if (error)
goto out;
error = vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT);
if (error != 0) {
VOP_UNLOCK1(sdvp);
if (error != EBUSY)
goto out;
error = vn_lock(tdvp, LK_EXCLUSIVE);
if (error)
goto out;
VOP_UNLOCK1(tdvp);
goto relock;
}
tdzp = VTOZ(tdvp);
sdzp = VTOZ(sdvp);
error = zfs_rename_relock_lookup(sdzp, scnp, &szp, tdzp, tcnp, &tzp);
if (error != 0) {
VOP_UNLOCK1(sdvp);
VOP_UNLOCK1(tdvp);
goto out;
}
svp = ZTOV(szp);
tvp = tzp != NULL ? ZTOV(tzp) : NULL;
/*
* Now try acquire locks on svp and tvp.
*/
nvp = svp;
error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT);
if (error != 0) {
VOP_UNLOCK1(sdvp);
VOP_UNLOCK1(tdvp);
if (tvp != NULL)
vrele(tvp);
if (error != EBUSY) {
vrele(nvp);
goto out;
}
error = vn_lock(nvp, LK_EXCLUSIVE);
if (error != 0) {
vrele(nvp);
goto out;
}
VOP_UNLOCK1(nvp);
/*
* Concurrent rename race.
* XXX ?
*/
if (nvp == tdvp) {
vrele(nvp);
error = SET_ERROR(EINVAL);
goto out;
}
vrele(*svpp);
*svpp = nvp;
goto relock;
}
vrele(*svpp);
*svpp = nvp;
if (*tvpp != NULL)
vrele(*tvpp);
*tvpp = NULL;
if (tvp != NULL) {
nvp = tvp;
error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT);
if (error != 0) {
VOP_UNLOCK1(sdvp);
VOP_UNLOCK1(tdvp);
VOP_UNLOCK1(*svpp);
if (error != EBUSY) {
vrele(nvp);
goto out;
}
error = vn_lock(nvp, LK_EXCLUSIVE);
if (error != 0) {
vrele(nvp);
goto out;
}
vput(nvp);
goto relock;
}
*tvpp = nvp;
}
return (0);
out:
return (error);
}
/*
* Note that we must use VRELE_ASYNC in this function as it walks
* up the directory tree and vrele may need to acquire an exclusive
* lock if a last reference to a vnode is dropped.
*/
static int
zfs_rename_check(znode_t *szp, znode_t *sdzp, znode_t *tdzp)
{
zfsvfs_t *zfsvfs;
znode_t *zp, *zp1;
uint64_t parent;
int error;
zfsvfs = tdzp->z_zfsvfs;
if (tdzp == szp)
return (SET_ERROR(EINVAL));
if (tdzp == sdzp)
return (0);
if (tdzp->z_id == zfsvfs->z_root)
return (0);
zp = tdzp;
for (;;) {
ASSERT(!zp->z_unlinked);
if ((error = sa_lookup(zp->z_sa_hdl,
SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
break;
if (parent == szp->z_id) {
error = SET_ERROR(EINVAL);
break;
}
if (parent == zfsvfs->z_root)
break;
if (parent == sdzp->z_id)
break;
error = zfs_zget(zfsvfs, parent, &zp1);
if (error != 0)
break;
if (zp != tdzp)
VN_RELE_ASYNC(ZTOV(zp),
dsl_pool_zrele_taskq(
dmu_objset_pool(zfsvfs->z_os)));
zp = zp1;
}
if (error == ENOTDIR)
panic("checkpath: .. not a directory\n");
if (zp != tdzp)
VN_RELE_ASYNC(ZTOV(zp),
dsl_pool_zrele_taskq(dmu_objset_pool(zfsvfs->z_os)));
return (error);
}
#if __FreeBSD_version < 1300124
static void
cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
{
cache_purge(fvp);
if (tvp != NULL)
cache_purge(tvp);
cache_purge_negative(tdvp);
}
#endif
static int
zfs_do_rename_impl(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp,
vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp,
cred_t *cr);
/*
* Move an entry from the provided source directory to the target
* directory. Change the entry name as indicated.
*
* IN: sdvp - Source directory containing the "old entry".
* scnp - Old entry name.
* tdvp - Target directory to contain the "new entry".
* tcnp - New entry name.
* cr - credentials of caller.
* INOUT: svpp - Source file
* tvpp - Target file, may point to NULL initially
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* sdvp,tdvp - ctime|mtime updated
*/
/*ARGSUSED*/
static int
zfs_do_rename(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp,
vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp,
cred_t *cr)
{
int error;
ASSERT_VOP_ELOCKED(tdvp, __func__);
if (*tvpp != NULL)
ASSERT_VOP_ELOCKED(*tvpp, __func__);
/* Reject renames across filesystems. */
if ((*svpp)->v_mount != tdvp->v_mount ||
((*tvpp) != NULL && (*svpp)->v_mount != (*tvpp)->v_mount)) {
error = SET_ERROR(EXDEV);
goto out;
}
if (zfsctl_is_node(tdvp)) {
error = SET_ERROR(EXDEV);
goto out;
}
/*
* Lock all four vnodes to ensure safety and semantics of renaming.
*/
error = zfs_rename_relock(sdvp, svpp, tdvp, tvpp, scnp, tcnp);
if (error != 0) {
/* no vnodes are locked in the case of error here */
return (error);
}
error = zfs_do_rename_impl(sdvp, svpp, scnp, tdvp, tvpp, tcnp, cr);
VOP_UNLOCK1(sdvp);
VOP_UNLOCK1(*svpp);
out:
if (*tvpp != NULL)
VOP_UNLOCK1(*tvpp);
if (tdvp != *tvpp)
VOP_UNLOCK1(tdvp);
return (error);
}
static int
zfs_do_rename_impl(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp,
vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp,
cred_t *cr)
{
dmu_tx_t *tx;
zfsvfs_t *zfsvfs;
zilog_t *zilog;
znode_t *tdzp, *sdzp, *tzp, *szp;
const char *snm = scnp->cn_nameptr;
const char *tnm = tcnp->cn_nameptr;
int error;
tdzp = VTOZ(tdvp);
sdzp = VTOZ(sdvp);
zfsvfs = tdzp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(tdzp);
ZFS_VERIFY_ZP(sdzp);
zilog = zfsvfs->z_log;
if (zfsvfs->z_utf8 && u8_validate(tnm,
strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
error = SET_ERROR(EILSEQ);
goto out;
}
/* If source and target are the same file, there is nothing to do. */
if ((*svpp) == (*tvpp)) {
error = 0;
goto out;
}
if (((*svpp)->v_type == VDIR && (*svpp)->v_mountedhere != NULL) ||
((*tvpp) != NULL && (*tvpp)->v_type == VDIR &&
(*tvpp)->v_mountedhere != NULL)) {
error = SET_ERROR(EXDEV);
goto out;
}
szp = VTOZ(*svpp);
ZFS_VERIFY_ZP(szp);
tzp = *tvpp == NULL ? NULL : VTOZ(*tvpp);
if (tzp != NULL)
ZFS_VERIFY_ZP(tzp);
/*
* This is to prevent the creation of links into attribute space
* by renaming a linked file into/outof an attribute directory.
* See the comment in zfs_link() for why this is considered bad.
*/
if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
error = SET_ERROR(EINVAL);
goto out;
}
/*
* If we are using project inheritance, means if the directory has
* ZFS_PROJINHERIT set, then its descendant directories will inherit
* not only the project ID, but also the ZFS_PROJINHERIT flag. Under
* such case, we only allow renames into our tree when the project
* IDs are the same.
*/
if (tdzp->z_pflags & ZFS_PROJINHERIT &&
tdzp->z_projid != szp->z_projid) {
error = SET_ERROR(EXDEV);
goto out;
}
/*
* Must have write access at the source to remove the old entry
* and write access at the target to create the new entry.
* Note that if target and source are the same, this can be
* done in a single check.
*/
if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
goto out;
if ((*svpp)->v_type == VDIR) {
/*
* Avoid ".", "..", and aliases of "." for obvious reasons.
*/
if ((scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.') ||
sdzp == szp ||
(scnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) {
error = EINVAL;
goto out;
}
/*
* Check to make sure rename is valid.
* Can't do a move like this: /usr/a/b to /usr/a/b/c/d
*/
if ((error = zfs_rename_check(szp, sdzp, tdzp)))
goto out;
}
/*
* Does target exist?
*/
if (tzp) {
/*
* Source and target must be the same type.
*/
if ((*svpp)->v_type == VDIR) {
if ((*tvpp)->v_type != VDIR) {
error = SET_ERROR(ENOTDIR);
goto out;
} else {
cache_purge(tdvp);
if (sdvp != tdvp)
cache_purge(sdvp);
}
} else {
if ((*tvpp)->v_type == VDIR) {
error = SET_ERROR(EISDIR);
goto out;
}
}
}
vn_seqc_write_begin(*svpp);
vn_seqc_write_begin(sdvp);
if (*tvpp != NULL)
vn_seqc_write_begin(*tvpp);
if (tdvp != *tvpp)
vn_seqc_write_begin(tdvp);
vnevent_rename_src(*svpp, sdvp, scnp->cn_nameptr, ct);
if (tzp)
vnevent_rename_dest(*tvpp, tdvp, tnm, ct);
/*
* notify the target directory if it is not the same
* as source directory.
*/
if (tdvp != sdvp) {
vnevent_rename_dest_dir(tdvp, ct);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
if (sdzp != tdzp) {
dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, tdzp);
}
if (tzp) {
dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, tzp);
}
zfs_sa_upgrade_txholds(tx, szp);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
goto out_seq;
}
if (tzp) /* Attempt to remove the existing target */
error = zfs_link_destroy(tdzp, tnm, tzp, tx, 0, NULL);
if (error == 0) {
error = zfs_link_create(tdzp, tnm, szp, tx, ZRENAMING);
if (error == 0) {
szp->z_pflags |= ZFS_AV_MODIFIED;
error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
(void *)&szp->z_pflags, sizeof (uint64_t), tx);
ASSERT0(error);
error = zfs_link_destroy(sdzp, snm, szp, tx, ZRENAMING,
NULL);
if (error == 0) {
zfs_log_rename(zilog, tx, TX_RENAME, sdzp,
snm, tdzp, tnm, szp);
/*
* Update path information for the target vnode
*/
vn_renamepath(tdvp, *svpp, tnm, strlen(tnm));
} else {
/*
* At this point, we have successfully created
* the target name, but have failed to remove
* the source name. Since the create was done
* with the ZRENAMING flag, there are
* complications; for one, the link count is
* wrong. The easiest way to deal with this
* is to remove the newly created target, and
* return the original error. This must
* succeed; fortunately, it is very unlikely to
* fail, since we just created it.
*/
VERIFY0(zfs_link_destroy(tdzp, tnm, szp, tx,
ZRENAMING, NULL));
}
}
if (error == 0) {
cache_vop_rename(sdvp, *svpp, tdvp, *tvpp, scnp, tcnp);
}
}
dmu_tx_commit(tx);
out_seq:
vn_seqc_write_end(*svpp);
vn_seqc_write_end(sdvp);
if (*tvpp != NULL)
vn_seqc_write_end(*tvpp);
if (tdvp != *tvpp)
vn_seqc_write_end(tdvp);
out:
if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
int
zfs_rename(znode_t *sdzp, const char *sname, znode_t *tdzp, const char *tname,
cred_t *cr, int flags)
{
struct componentname scn, tcn;
vnode_t *sdvp, *tdvp;
vnode_t *svp, *tvp;
int error;
svp = tvp = NULL;
sdvp = ZTOV(sdzp);
tdvp = ZTOV(tdzp);
error = zfs_lookup_internal(sdzp, sname, &svp, &scn, DELETE);
if (sdzp->z_zfsvfs->z_replay == B_FALSE)
VOP_UNLOCK1(sdvp);
if (error != 0)
goto fail;
VOP_UNLOCK1(svp);
vn_lock(tdvp, LK_EXCLUSIVE | LK_RETRY);
error = zfs_lookup_internal(tdzp, tname, &tvp, &tcn, RENAME);
if (error == EJUSTRETURN)
tvp = NULL;
else if (error != 0) {
VOP_UNLOCK1(tdvp);
goto fail;
}
error = zfs_do_rename(sdvp, &svp, &scn, tdvp, &tvp, &tcn, cr);
fail:
if (svp != NULL)
vrele(svp);
if (tvp != NULL)
vrele(tvp);
return (error);
}
/*
* Insert the indicated symbolic reference entry into the directory.
*
* IN: dvp - Directory to contain new symbolic link.
* link - Name for new symlink entry.
* vap - Attributes of new entry.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime updated
*/
/*ARGSUSED*/
int
zfs_symlink(znode_t *dzp, const char *name, vattr_t *vap,
const char *link, znode_t **zpp, cred_t *cr, int flags)
{
znode_t *zp;
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
uint64_t len = strlen(link);
int error;
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
uint64_t txtype = TX_SYMLINK;
ASSERT3S(vap->va_type, ==, VLNK);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
}
if (len > MAXPATHLEN) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(ENAMETOOLONG));
}
if ((error = zfs_acl_ids_create(dzp, 0,
vap, cr, NULL, &acl_ids)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Attempt to lock directory; fail if entry already exists.
*/
error = zfs_dirent_lookup(dzp, name, &zp, ZNEW);
if (error) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
return (error);
}
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
return (error);
}
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids,
0 /* projid */)) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EDQUOT));
}
getnewvnode_reserve_();
tx = dmu_tx_create(zfsvfs->z_os);
fuid_dirtied = zfsvfs->z_fuid_dirty;
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE + len);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
getnewvnode_drop_reserve();
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Create a new object for the symlink.
* for version 4 ZPL datasets the symlink will be an SA attribute
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
if (zp->z_is_sa)
error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
__DECONST(void *, link), len, tx);
else
zfs_sa_symlink(zp, __DECONST(char *, link), len, tx);
zp->z_size = len;
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
&zp->z_size, sizeof (zp->z_size), tx);
/*
* Insert the new object into the directory.
*/
(void) zfs_link_create(dzp, name, zp, tx, ZNEW);
zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
*zpp = zp;
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
getnewvnode_drop_reserve();
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Return, in the buffer contained in the provided uio structure,
* the symbolic path referred to by vp.
*
* IN: vp - vnode of symbolic link.
* uio - structure to contain the link path.
* cr - credentials of caller.
* ct - caller context
*
* OUT: uio - structure containing the link path.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* vp - atime updated
*/
/* ARGSUSED */
static int
zfs_readlink(vnode_t *vp, zfs_uio_t *uio, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if (zp->z_is_sa)
error = sa_lookup_uio(zp->z_sa_hdl,
SA_ZPL_SYMLINK(zfsvfs), uio);
else
error = zfs_sa_readlink(zp, uio);
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Insert a new entry into directory tdvp referencing svp.
*
* IN: tdvp - Directory to contain new entry.
* svp - vnode of new entry.
* name - name of new entry.
* cr - credentials of caller.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* tdvp - ctime|mtime updated
* svp - ctime updated
*/
/* ARGSUSED */
int
zfs_link(znode_t *tdzp, znode_t *szp, const char *name, cred_t *cr,
int flags)
{
znode_t *tzp;
zfsvfs_t *zfsvfs = tdzp->z_zfsvfs;
zilog_t *zilog;
dmu_tx_t *tx;
int error;
uint64_t parent;
uid_t owner;
ASSERT3S(ZTOV(tdzp)->v_type, ==, VDIR);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(tdzp);
zilog = zfsvfs->z_log;
/*
* POSIX dictates that we return EPERM here.
* Better choices include ENOTSUP or EISDIR.
*/
if (ZTOV(szp)->v_type == VDIR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
ZFS_VERIFY_ZP(szp);
/*
* If we are using project inheritance, means if the directory has
* ZFS_PROJINHERIT set, then its descendant directories will inherit
* not only the project ID, but also the ZFS_PROJINHERIT flag. Under
* such case, we only allow hard link creation in our tree when the
* project IDs are the same.
*/
if (tdzp->z_pflags & ZFS_PROJINHERIT &&
tdzp->z_projid != szp->z_projid) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EXDEV));
}
if (szp->z_pflags & (ZFS_APPENDONLY |
ZFS_IMMUTABLE | ZFS_READONLY)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
/* Prevent links to .zfs/shares files */
if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
&parent, sizeof (uint64_t))) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
if (parent == zfsvfs->z_shares_dir) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
if (zfsvfs->z_utf8 && u8_validate(name,
strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
}
/*
* We do not support links between attributes and non-attributes
* because of the potential security risk of creating links
* into "normal" file space in order to circumvent restrictions
* imposed in attribute space.
*/
if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
if (owner != crgetuid(cr) && secpolicy_basic_link(ZTOV(szp), cr) != 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Attempt to lock directory; fail if entry already exists.
*/
error = zfs_dirent_lookup(tdzp, name, &tzp, ZNEW);
if (error) {
ZFS_EXIT(zfsvfs);
return (error);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
zfs_sa_upgrade_txholds(tx, szp);
zfs_sa_upgrade_txholds(tx, tdzp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
return (error);
}
error = zfs_link_create(tdzp, name, szp, tx, 0);
if (error == 0) {
uint64_t txtype = TX_LINK;
zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
}
dmu_tx_commit(tx);
if (error == 0) {
vnevent_link(ZTOV(szp), ct);
}
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Free or allocate space in a file. Currently, this function only
* supports the `F_FREESP' command. However, this command is somewhat
* misnamed, as its functionality includes the ability to allocate as
* well as free space.
*
* IN: ip - inode of file to free data in.
* cmd - action to take (only F_FREESP supported).
* bfp - section of file to free/alloc.
* flag - current file open mode flags.
* offset - current file offset.
* cr - credentials of caller.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* ip - ctime|mtime updated
*/
/* ARGSUSED */
int
zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
offset_t offset, cred_t *cr)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
uint64_t off, len;
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if (cmd != F_FREESP) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* Callers might not be able to detect properly that we are read-only,
* so check it explicitly here.
*/
if (zfs_is_readonly(zfsvfs)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EROFS));
}
if (bfp->l_len < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* Permissions aren't checked on Solaris because on this OS
* zfs_space() can only be called with an opened file handle.
* On Linux we can get here through truncate_range() which
* operates directly on inodes, so we need to check access rights.
*/
if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
ZFS_EXIT(zfsvfs);
return (error);
}
off = bfp->l_start;
len = bfp->l_len; /* 0 means from off to end of file */
error = zfs_freesp(zp, off, len, flag, TRUE);
ZFS_EXIT(zfsvfs);
return (error);
}
/*ARGSUSED*/
static void
zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;
ZFS_TEARDOWN_INACTIVE_ENTER_READ(zfsvfs);
if (zp->z_sa_hdl == NULL) {
/*
* The fs has been unmounted, or we did a
* suspend/resume and this file no longer exists.
*/
ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
vrecycle(vp);
return;
}
if (zp->z_unlinked) {
/*
* Fast path to recycle a vnode of a removed file.
*/
ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
vrecycle(vp);
return;
}
if (zp->z_atime_dirty && zp->z_unlinked == 0) {
dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
(void *)&zp->z_atime, sizeof (zp->z_atime), tx);
zp->z_atime_dirty = 0;
dmu_tx_commit(tx);
}
}
ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
}
CTASSERT(sizeof (struct zfid_short) <= sizeof (struct fid));
CTASSERT(sizeof (struct zfid_long) <= sizeof (struct fid));
/*ARGSUSED*/
static int
zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
uint32_t gen;
uint64_t gen64;
uint64_t object = zp->z_id;
zfid_short_t *zfid;
int size, i, error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
&gen64, sizeof (uint64_t))) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
gen = (uint32_t)gen64;
size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
fidp->fid_len = size;
zfid = (zfid_short_t *)fidp;
zfid->zf_len = size;
for (i = 0; i < sizeof (zfid->zf_object); i++)
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
/* Must have a non-zero generation number to distinguish from .zfs */
if (gen == 0)
gen = 1;
for (i = 0; i < sizeof (zfid->zf_gen); i++)
zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
if (size == LONG_FID_LEN) {
uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
zfid_long_t *zlfid;
zlfid = (zfid_long_t *)fidp;
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
/* XXX - this should be the generation number for the objset */
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
zlfid->zf_setgen[i] = 0;
}
ZFS_EXIT(zfsvfs);
return (0);
}
static int
zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
caller_context_t *ct)
{
znode_t *zp;
zfsvfs_t *zfsvfs;
switch (cmd) {
case _PC_LINK_MAX:
*valp = MIN(LONG_MAX, ZFS_LINK_MAX);
return (0);
case _PC_FILESIZEBITS:
*valp = 64;
return (0);
case _PC_MIN_HOLE_SIZE:
*valp = (int)SPA_MINBLOCKSIZE;
return (0);
case _PC_ACL_EXTENDED:
#if 0 /* POSIX ACLs are not implemented for ZFS on FreeBSD yet. */
zp = VTOZ(vp);
zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
*valp = zfsvfs->z_acl_type == ZFSACLTYPE_POSIX ? 1 : 0;
ZFS_EXIT(zfsvfs);
#else
*valp = 0;
#endif
return (0);
case _PC_ACL_NFS4:
zp = VTOZ(vp);
zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
*valp = zfsvfs->z_acl_type == ZFS_ACLTYPE_NFSV4 ? 1 : 0;
ZFS_EXIT(zfsvfs);
return (0);
case _PC_ACL_PATH_MAX:
*valp = ACL_MAX_ENTRIES;
return (0);
default:
return (EOPNOTSUPP);
}
}
static int
zfs_getpages(struct vnode *vp, vm_page_t *ma, int count, int *rbehind,
int *rahead)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zfs_locked_range_t *lr;
vm_object_t object;
off_t start, end, obj_size;
uint_t blksz;
int pgsin_b, pgsin_a;
int error;
ZFS_ENTER_ERROR(zfsvfs, zfs_vm_pagerret_error);
ZFS_VERIFY_ZP_ERROR(zp, zfs_vm_pagerret_error);
start = IDX_TO_OFF(ma[0]->pindex);
end = IDX_TO_OFF(ma[count - 1]->pindex + 1);
/*
* Lock a range covering all required and optional pages.
* Note that we need to handle the case of the block size growing.
*/
for (;;) {
blksz = zp->z_blksz;
lr = zfs_rangelock_tryenter(&zp->z_rangelock,
rounddown(start, blksz),
roundup(end, blksz) - rounddown(start, blksz), RL_READER);
if (lr == NULL) {
if (rahead != NULL) {
*rahead = 0;
rahead = NULL;
}
if (rbehind != NULL) {
*rbehind = 0;
rbehind = NULL;
}
break;
}
if (blksz == zp->z_blksz)
break;
zfs_rangelock_exit(lr);
}
object = ma[0]->object;
zfs_vmobject_wlock(object);
obj_size = object->un_pager.vnp.vnp_size;
zfs_vmobject_wunlock(object);
if (IDX_TO_OFF(ma[count - 1]->pindex) >= obj_size) {
if (lr != NULL)
zfs_rangelock_exit(lr);
ZFS_EXIT(zfsvfs);
return (zfs_vm_pagerret_bad);
}
pgsin_b = 0;
if (rbehind != NULL) {
pgsin_b = OFF_TO_IDX(start - rounddown(start, blksz));
pgsin_b = MIN(*rbehind, pgsin_b);
}
pgsin_a = 0;
if (rahead != NULL) {
pgsin_a = OFF_TO_IDX(roundup(end, blksz) - end);
if (end + IDX_TO_OFF(pgsin_a) >= obj_size)
pgsin_a = OFF_TO_IDX(round_page(obj_size) - end);
pgsin_a = MIN(*rahead, pgsin_a);
}
/*
* NB: we need to pass the exact byte size of the data that we expect
* to read after accounting for the file size. This is required because
* ZFS will panic if we request DMU to read beyond the end of the last
* allocated block.
*/
error = dmu_read_pages(zfsvfs->z_os, zp->z_id, ma, count, &pgsin_b,
&pgsin_a, MIN(end, obj_size) - (end - PAGE_SIZE));
if (lr != NULL)
zfs_rangelock_exit(lr);
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, count*PAGE_SIZE);
ZFS_EXIT(zfsvfs);
if (error != 0)
return (zfs_vm_pagerret_error);
VM_CNT_INC(v_vnodein);
VM_CNT_ADD(v_vnodepgsin, count + pgsin_b + pgsin_a);
if (rbehind != NULL)
*rbehind = pgsin_b;
if (rahead != NULL)
*rahead = pgsin_a;
return (zfs_vm_pagerret_ok);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_getpages_args {
struct vnode *a_vp;
vm_page_t *a_m;
int a_count;
int *a_rbehind;
int *a_rahead;
};
#endif
static int
zfs_freebsd_getpages(struct vop_getpages_args *ap)
{
return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind,
ap->a_rahead));
}
static int
zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
int *rtvals)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zfs_locked_range_t *lr;
dmu_tx_t *tx;
struct sf_buf *sf;
vm_object_t object;
vm_page_t m;
caddr_t va;
size_t tocopy;
size_t lo_len;
vm_ooffset_t lo_off;
vm_ooffset_t off;
uint_t blksz;
int ncount;
int pcount;
int err;
int i;
object = vp->v_object;
KASSERT(ma[0]->object == object, ("mismatching object"));
KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
pcount = btoc(len);
ncount = pcount;
for (i = 0; i < pcount; i++)
rtvals[i] = zfs_vm_pagerret_error;
ZFS_ENTER_ERROR(zfsvfs, zfs_vm_pagerret_error);
ZFS_VERIFY_ZP_ERROR(zp, zfs_vm_pagerret_error);
off = IDX_TO_OFF(ma[0]->pindex);
blksz = zp->z_blksz;
lo_off = rounddown(off, blksz);
lo_len = roundup(len + (off - lo_off), blksz);
lr = zfs_rangelock_enter(&zp->z_rangelock, lo_off, lo_len, RL_WRITER);
zfs_vmobject_wlock(object);
if (len + off > object->un_pager.vnp.vnp_size) {
if (object->un_pager.vnp.vnp_size > off) {
int pgoff;
len = object->un_pager.vnp.vnp_size - off;
ncount = btoc(len);
if ((pgoff = (int)len & PAGE_MASK) != 0) {
/*
* If the object is locked and the following
* conditions hold, then the page's dirty
* field cannot be concurrently changed by a
* pmap operation.
*/
m = ma[ncount - 1];
vm_page_assert_sbusied(m);
KASSERT(!pmap_page_is_write_mapped(m),
("zfs_putpages: page %p is not read-only",
m));
vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
pgoff);
}
} else {
len = 0;
ncount = 0;
}
if (ncount < pcount) {
for (i = ncount; i < pcount; i++) {
rtvals[i] = zfs_vm_pagerret_bad;
}
}
}
zfs_vmobject_wunlock(object);
if (ncount == 0)
goto out;
if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) ||
zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid) ||
(zp->z_projid != ZFS_DEFAULT_PROJID &&
zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
zp->z_projid))) {
goto out;
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_write(tx, zp->z_id, off, len);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
goto out;
}
if (zp->z_blksz < PAGE_SIZE) {
for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) {
tocopy = len > PAGE_SIZE ? PAGE_SIZE : len;
va = zfs_map_page(ma[i], &sf);
dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx);
zfs_unmap_page(sf);
}
} else {
err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
}
if (err == 0) {
uint64_t mtime[2], ctime[2];
sa_bulk_attr_t bulk[3];
int count = 0;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
&mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
ASSERT0(err);
/*
* XXX we should be passing a callback to undirty
* but that would make the locking messier
*/
zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off,
len, 0, NULL, NULL);
zfs_vmobject_wlock(object);
for (i = 0; i < ncount; i++) {
rtvals[i] = zfs_vm_pagerret_ok;
vm_page_undirty(ma[i]);
}
zfs_vmobject_wunlock(object);
VM_CNT_INC(v_vnodeout);
VM_CNT_ADD(v_vnodepgsout, ncount);
}
dmu_tx_commit(tx);
out:
zfs_rangelock_exit(lr);
if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 ||
zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zfsvfs->z_log, zp->z_id);
dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, len);
ZFS_EXIT(zfsvfs);
return (rtvals[0]);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_putpages_args {
struct vnode *a_vp;
vm_page_t *a_m;
int a_count;
int a_sync;
int *a_rtvals;
};
#endif
static int
zfs_freebsd_putpages(struct vop_putpages_args *ap)
{
return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
ap->a_rtvals));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_bmap_args {
struct vnode *a_vp;
daddr_t a_bn;
struct bufobj **a_bop;
daddr_t *a_bnp;
int *a_runp;
int *a_runb;
};
#endif
static int
zfs_freebsd_bmap(struct vop_bmap_args *ap)
{
if (ap->a_bop != NULL)
*ap->a_bop = &ap->a_vp->v_bufobj;
if (ap->a_bnp != NULL)
*ap->a_bnp = ap->a_bn;
if (ap->a_runp != NULL)
*ap->a_runp = 0;
if (ap->a_runb != NULL)
*ap->a_runb = 0;
return (0);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_open_args {
struct vnode *a_vp;
int a_mode;
struct ucred *a_cred;
struct thread *a_td;
};
#endif
static int
zfs_freebsd_open(struct vop_open_args *ap)
{
vnode_t *vp = ap->a_vp;
znode_t *zp = VTOZ(vp);
int error;
error = zfs_open(&vp, ap->a_mode, ap->a_cred);
if (error == 0)
vnode_create_vobject(vp, zp->z_size, ap->a_td);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_close_args {
struct vnode *a_vp;
int a_fflag;
struct ucred *a_cred;
struct thread *a_td;
};
#endif
static int
zfs_freebsd_close(struct vop_close_args *ap)
{
return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_ioctl_args {
struct vnode *a_vp;
ulong_t a_command;
caddr_t a_data;
int a_fflag;
struct ucred *cred;
struct thread *td;
};
#endif
static int
zfs_freebsd_ioctl(struct vop_ioctl_args *ap)
{
return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
ap->a_fflag, ap->a_cred, NULL));
}
static int
ioflags(int ioflags)
{
int flags = 0;
if (ioflags & IO_APPEND)
flags |= FAPPEND;
if (ioflags & IO_NDELAY)
flags |= FNONBLOCK;
if (ioflags & IO_SYNC)
flags |= (FSYNC | FDSYNC | FRSYNC);
return (flags);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_read_args {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
};
#endif
static int
zfs_freebsd_read(struct vop_read_args *ap)
{
zfs_uio_t uio;
zfs_uio_init(&uio, ap->a_uio);
return (zfs_read(VTOZ(ap->a_vp), &uio, ioflags(ap->a_ioflag),
ap->a_cred));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_write_args {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
};
#endif
static int
zfs_freebsd_write(struct vop_write_args *ap)
{
zfs_uio_t uio;
zfs_uio_init(&uio, ap->a_uio);
return (zfs_write(VTOZ(ap->a_vp), &uio, ioflags(ap->a_ioflag),
ap->a_cred));
}
#if __FreeBSD_version >= 1300102
/*
* VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
* the comment above cache_fplookup for details.
*/
static int
zfs_freebsd_fplookup_vexec(struct vop_fplookup_vexec_args *v)
{
vnode_t *vp;
znode_t *zp;
uint64_t pflags;
vp = v->a_vp;
zp = VTOZ_SMR(vp);
if (__predict_false(zp == NULL))
return (EAGAIN);
pflags = atomic_load_64(&zp->z_pflags);
if (pflags & ZFS_AV_QUARANTINED)
return (EAGAIN);
if (pflags & ZFS_XATTR)
return (EAGAIN);
if ((pflags & ZFS_NO_EXECS_DENIED) == 0)
return (EAGAIN);
return (0);
}
#endif
#if __FreeBSD_version >= 1300139
static int
zfs_freebsd_fplookup_symlink(struct vop_fplookup_symlink_args *v)
{
vnode_t *vp;
znode_t *zp;
char *target;
vp = v->a_vp;
zp = VTOZ_SMR(vp);
if (__predict_false(zp == NULL)) {
return (EAGAIN);
}
target = atomic_load_consume_ptr(&zp->z_cached_symlink);
if (target == NULL) {
return (EAGAIN);
}
return (cache_symlink_resolve(v->a_fpl, target, strlen(target)));
}
#endif
#ifndef _SYS_SYSPROTO_H_
struct vop_access_args {
struct vnode *a_vp;
accmode_t a_accmode;
struct ucred *a_cred;
struct thread *a_td;
};
#endif
static int
zfs_freebsd_access(struct vop_access_args *ap)
{
vnode_t *vp = ap->a_vp;
znode_t *zp = VTOZ(vp);
accmode_t accmode;
int error = 0;
if (ap->a_accmode == VEXEC) {
if (zfs_fastaccesschk_execute(zp, ap->a_cred) == 0)
return (0);
}
/*
* ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
*/
accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
if (accmode != 0)
error = zfs_access(zp, accmode, 0, ap->a_cred);
/*
* VADMIN has to be handled by vaccess().
*/
if (error == 0) {
accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
if (accmode != 0) {
#if __FreeBSD_version >= 1300105
error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
zp->z_gid, accmode, ap->a_cred);
#else
error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
zp->z_gid, accmode, ap->a_cred, NULL);
#endif
}
}
/*
* For VEXEC, ensure that at least one execute bit is set for
* non-directories.
*/
if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
(zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
error = EACCES;
}
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_lookup_args {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
};
#endif
static int
zfs_freebsd_lookup(struct vop_lookup_args *ap, boolean_t cached)
{
struct componentname *cnp = ap->a_cnp;
char nm[NAME_MAX + 1];
ASSERT3U(cnp->cn_namelen, <, sizeof (nm));
strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof (nm)));
return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
cnp->cn_cred, 0, cached));
}
static int
zfs_freebsd_cachedlookup(struct vop_cachedlookup_args *ap)
{
return (zfs_freebsd_lookup((struct vop_lookup_args *)ap, B_TRUE));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_lookup_args {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
};
#endif
static int
zfs_cache_lookup(struct vop_lookup_args *ap)
{
zfsvfs_t *zfsvfs;
zfsvfs = ap->a_dvp->v_mount->mnt_data;
if (zfsvfs->z_use_namecache)
return (vfs_cache_lookup(ap));
else
return (zfs_freebsd_lookup(ap, B_FALSE));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_create_args {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
};
#endif
static int
zfs_freebsd_create(struct vop_create_args *ap)
{
zfsvfs_t *zfsvfs;
struct componentname *cnp = ap->a_cnp;
vattr_t *vap = ap->a_vap;
znode_t *zp = NULL;
int rc, mode;
ASSERT(cnp->cn_flags & SAVENAME);
vattr_init_mask(vap);
mode = vap->va_mode & ALLPERMS;
zfsvfs = ap->a_dvp->v_mount->mnt_data;
*ap->a_vpp = NULL;
rc = zfs_create(VTOZ(ap->a_dvp), cnp->cn_nameptr, vap, !EXCL, mode,
&zp, cnp->cn_cred, 0 /* flag */, NULL /* vsecattr */);
if (rc == 0)
*ap->a_vpp = ZTOV(zp);
if (zfsvfs->z_use_namecache &&
rc == 0 && (cnp->cn_flags & MAKEENTRY) != 0)
cache_enter(ap->a_dvp, *ap->a_vpp, cnp);
return (rc);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_remove_args {
struct vnode *a_dvp;
struct vnode *a_vp;
struct componentname *a_cnp;
};
#endif
static int
zfs_freebsd_remove(struct vop_remove_args *ap)
{
ASSERT(ap->a_cnp->cn_flags & SAVENAME);
return (zfs_remove_(ap->a_dvp, ap->a_vp, ap->a_cnp->cn_nameptr,
ap->a_cnp->cn_cred));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_mkdir_args {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
};
#endif
static int
zfs_freebsd_mkdir(struct vop_mkdir_args *ap)
{
vattr_t *vap = ap->a_vap;
znode_t *zp = NULL;
int rc;
ASSERT(ap->a_cnp->cn_flags & SAVENAME);
vattr_init_mask(vap);
*ap->a_vpp = NULL;
rc = zfs_mkdir(VTOZ(ap->a_dvp), ap->a_cnp->cn_nameptr, vap, &zp,
ap->a_cnp->cn_cred, 0, NULL);
if (rc == 0)
*ap->a_vpp = ZTOV(zp);
return (rc);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_rmdir_args {
struct vnode *a_dvp;
struct vnode *a_vp;
struct componentname *a_cnp;
};
#endif
static int
zfs_freebsd_rmdir(struct vop_rmdir_args *ap)
{
struct componentname *cnp = ap->a_cnp;
ASSERT(cnp->cn_flags & SAVENAME);
return (zfs_rmdir_(ap->a_dvp, ap->a_vp, cnp->cn_nameptr, cnp->cn_cred));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_readdir_args {
struct vnode *a_vp;
struct uio *a_uio;
struct ucred *a_cred;
int *a_eofflag;
int *a_ncookies;
cookie_t **a_cookies;
};
#endif
static int
zfs_freebsd_readdir(struct vop_readdir_args *ap)
{
zfs_uio_t uio;
zfs_uio_init(&uio, ap->a_uio);
return (zfs_readdir(ap->a_vp, &uio, ap->a_cred, ap->a_eofflag,
ap->a_ncookies, ap->a_cookies));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_fsync_args {
struct vnode *a_vp;
int a_waitfor;
struct thread *a_td;
};
#endif
static int
zfs_freebsd_fsync(struct vop_fsync_args *ap)
{
vop_stdfsync(ap);
return (zfs_fsync(VTOZ(ap->a_vp), 0, ap->a_td->td_ucred));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_getattr_args {
struct vnode *a_vp;
struct vattr *a_vap;
struct ucred *a_cred;
};
#endif
static int
zfs_freebsd_getattr(struct vop_getattr_args *ap)
{
vattr_t *vap = ap->a_vap;
xvattr_t xvap;
ulong_t fflags = 0;
int error;
xva_init(&xvap);
xvap.xva_vattr = *vap;
xvap.xva_vattr.va_mask |= AT_XVATTR;
/* Convert chflags into ZFS-type flags. */
/* XXX: what about SF_SETTABLE?. */
XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
XVA_SET_REQ(&xvap, XAT_APPENDONLY);
XVA_SET_REQ(&xvap, XAT_NOUNLINK);
XVA_SET_REQ(&xvap, XAT_NODUMP);
XVA_SET_REQ(&xvap, XAT_READONLY);
XVA_SET_REQ(&xvap, XAT_ARCHIVE);
XVA_SET_REQ(&xvap, XAT_SYSTEM);
XVA_SET_REQ(&xvap, XAT_HIDDEN);
XVA_SET_REQ(&xvap, XAT_REPARSE);
XVA_SET_REQ(&xvap, XAT_OFFLINE);
XVA_SET_REQ(&xvap, XAT_SPARSE);
error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred);
if (error != 0)
return (error);
/* Convert ZFS xattr into chflags. */
#define FLAG_CHECK(fflag, xflag, xfield) do { \
if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0) \
fflags |= (fflag); \
} while (0)
FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
xvap.xva_xoptattrs.xoa_immutable);
FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
xvap.xva_xoptattrs.xoa_appendonly);
FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
xvap.xva_xoptattrs.xoa_nounlink);
FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
xvap.xva_xoptattrs.xoa_archive);
FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
xvap.xva_xoptattrs.xoa_nodump);
FLAG_CHECK(UF_READONLY, XAT_READONLY,
xvap.xva_xoptattrs.xoa_readonly);
FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
xvap.xva_xoptattrs.xoa_system);
FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
xvap.xva_xoptattrs.xoa_hidden);
FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
xvap.xva_xoptattrs.xoa_reparse);
FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
xvap.xva_xoptattrs.xoa_offline);
FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
xvap.xva_xoptattrs.xoa_sparse);
#undef FLAG_CHECK
*vap = xvap.xva_vattr;
vap->va_flags = fflags;
return (0);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_setattr_args {
struct vnode *a_vp;
struct vattr *a_vap;
struct ucred *a_cred;
};
#endif
static int
zfs_freebsd_setattr(struct vop_setattr_args *ap)
{
vnode_t *vp = ap->a_vp;
vattr_t *vap = ap->a_vap;
cred_t *cred = ap->a_cred;
xvattr_t xvap;
ulong_t fflags;
uint64_t zflags;
vattr_init_mask(vap);
vap->va_mask &= ~AT_NOSET;
xva_init(&xvap);
xvap.xva_vattr = *vap;
zflags = VTOZ(vp)->z_pflags;
if (vap->va_flags != VNOVAL) {
zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
int error;
if (zfsvfs->z_use_fuids == B_FALSE)
return (EOPNOTSUPP);
fflags = vap->va_flags;
/*
* XXX KDM
* We need to figure out whether it makes sense to allow
* UF_REPARSE through, since we don't really have other
* facilities to handle reparse points and zfs_setattr()
* doesn't currently allow setting that attribute anyway.
*/
if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
UF_OFFLINE|UF_SPARSE)) != 0)
return (EOPNOTSUPP);
/*
* Unprivileged processes are not permitted to unset system
* flags, or modify flags if any system flags are set.
* Privileged non-jail processes may not modify system flags
* if securelevel > 0 and any existing system flags are set.
* Privileged jail processes behave like privileged non-jail
* processes if the PR_ALLOW_CHFLAGS permission bit is set;
* otherwise, they behave like unprivileged processes.
*/
if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
spl_priv_check_cred(cred, PRIV_VFS_SYSFLAGS) == 0) {
if (zflags &
(ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
error = securelevel_gt(cred, 0);
if (error != 0)
return (error);
}
} else {
/*
* Callers may only modify the file flags on
* objects they have VADMIN rights for.
*/
if ((error = VOP_ACCESS(vp, VADMIN, cred,
curthread)) != 0)
return (error);
if (zflags &
(ZFS_IMMUTABLE | ZFS_APPENDONLY |
ZFS_NOUNLINK)) {
return (EPERM);
}
if (fflags &
(SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
return (EPERM);
}
}
#define FLAG_CHANGE(fflag, zflag, xflag, xfield) do { \
if (((fflags & (fflag)) && !(zflags & (zflag))) || \
((zflags & (zflag)) && !(fflags & (fflag)))) { \
XVA_SET_REQ(&xvap, (xflag)); \
(xfield) = ((fflags & (fflag)) != 0); \
} \
} while (0)
/* Convert chflags into ZFS-type flags. */
/* XXX: what about SF_SETTABLE?. */
FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
xvap.xva_xoptattrs.xoa_immutable);
FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
xvap.xva_xoptattrs.xoa_appendonly);
FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
xvap.xva_xoptattrs.xoa_nounlink);
FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
xvap.xva_xoptattrs.xoa_archive);
FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
xvap.xva_xoptattrs.xoa_nodump);
FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
xvap.xva_xoptattrs.xoa_readonly);
FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
xvap.xva_xoptattrs.xoa_system);
FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
xvap.xva_xoptattrs.xoa_hidden);
FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
xvap.xva_xoptattrs.xoa_reparse);
FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
xvap.xva_xoptattrs.xoa_offline);
FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
xvap.xva_xoptattrs.xoa_sparse);
#undef FLAG_CHANGE
}
if (vap->va_birthtime.tv_sec != VNOVAL) {
xvap.xva_vattr.va_mask |= AT_XVATTR;
XVA_SET_REQ(&xvap, XAT_CREATETIME);
}
return (zfs_setattr(VTOZ(vp), (vattr_t *)&xvap, 0, cred));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_rename_args {
struct vnode *a_fdvp;
struct vnode *a_fvp;
struct componentname *a_fcnp;
struct vnode *a_tdvp;
struct vnode *a_tvp;
struct componentname *a_tcnp;
};
#endif
static int
zfs_freebsd_rename(struct vop_rename_args *ap)
{
vnode_t *fdvp = ap->a_fdvp;
vnode_t *fvp = ap->a_fvp;
vnode_t *tdvp = ap->a_tdvp;
vnode_t *tvp = ap->a_tvp;
int error;
ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
error = zfs_do_rename(fdvp, &fvp, ap->a_fcnp, tdvp, &tvp,
ap->a_tcnp, ap->a_fcnp->cn_cred);
vrele(fdvp);
vrele(fvp);
vrele(tdvp);
if (tvp != NULL)
vrele(tvp);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_symlink_args {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
char *a_target;
};
#endif
static int
zfs_freebsd_symlink(struct vop_symlink_args *ap)
{
struct componentname *cnp = ap->a_cnp;
vattr_t *vap = ap->a_vap;
znode_t *zp = NULL;
#if __FreeBSD_version >= 1300139
char *symlink;
size_t symlink_len;
#endif
int rc;
ASSERT(cnp->cn_flags & SAVENAME);
vap->va_type = VLNK; /* FreeBSD: Syscall only sets va_mode. */
vattr_init_mask(vap);
*ap->a_vpp = NULL;
rc = zfs_symlink(VTOZ(ap->a_dvp), cnp->cn_nameptr, vap,
ap->a_target, &zp, cnp->cn_cred, 0 /* flags */);
if (rc == 0) {
*ap->a_vpp = ZTOV(zp);
ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
#if __FreeBSD_version >= 1300139
MPASS(zp->z_cached_symlink == NULL);
symlink_len = strlen(ap->a_target);
symlink = cache_symlink_alloc(symlink_len + 1, M_WAITOK);
if (symlink != NULL) {
memcpy(symlink, ap->a_target, symlink_len);
symlink[symlink_len] = '\0';
atomic_store_rel_ptr((uintptr_t *)&zp->z_cached_symlink,
(uintptr_t)symlink);
}
#endif
}
return (rc);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_readlink_args {
struct vnode *a_vp;
struct uio *a_uio;
struct ucred *a_cred;
};
#endif
static int
zfs_freebsd_readlink(struct vop_readlink_args *ap)
{
zfs_uio_t uio;
int error;
#if __FreeBSD_version >= 1300139
znode_t *zp = VTOZ(ap->a_vp);
char *symlink, *base;
size_t symlink_len;
bool trycache;
#endif
zfs_uio_init(&uio, ap->a_uio);
#if __FreeBSD_version >= 1300139
trycache = false;
if (zfs_uio_segflg(&uio) == UIO_SYSSPACE &&
zfs_uio_iovcnt(&uio) == 1) {
base = zfs_uio_iovbase(&uio, 0);
symlink_len = zfs_uio_iovlen(&uio, 0);
trycache = true;
}
#endif
error = zfs_readlink(ap->a_vp, &uio, ap->a_cred, NULL);
#if __FreeBSD_version >= 1300139
if (atomic_load_ptr(&zp->z_cached_symlink) != NULL ||
error != 0 || !trycache) {
return (error);
}
symlink_len -= zfs_uio_resid(&uio);
symlink = cache_symlink_alloc(symlink_len + 1, M_WAITOK);
if (symlink != NULL) {
memcpy(symlink, base, symlink_len);
symlink[symlink_len] = '\0';
if (!atomic_cmpset_rel_ptr((uintptr_t *)&zp->z_cached_symlink,
(uintptr_t)NULL, (uintptr_t)symlink)) {
cache_symlink_free(symlink, symlink_len + 1);
}
}
#endif
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_link_args {
struct vnode *a_tdvp;
struct vnode *a_vp;
struct componentname *a_cnp;
};
#endif
static int
zfs_freebsd_link(struct vop_link_args *ap)
{
struct componentname *cnp = ap->a_cnp;
vnode_t *vp = ap->a_vp;
vnode_t *tdvp = ap->a_tdvp;
if (tdvp->v_mount != vp->v_mount)
return (EXDEV);
ASSERT(cnp->cn_flags & SAVENAME);
return (zfs_link(VTOZ(tdvp), VTOZ(vp),
cnp->cn_nameptr, cnp->cn_cred, 0));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_inactive_args {
struct vnode *a_vp;
struct thread *a_td;
};
#endif
static int
zfs_freebsd_inactive(struct vop_inactive_args *ap)
{
vnode_t *vp = ap->a_vp;
#if __FreeBSD_version >= 1300123
zfs_inactive(vp, curthread->td_ucred, NULL);
#else
zfs_inactive(vp, ap->a_td->td_ucred, NULL);
#endif
return (0);
}
#if __FreeBSD_version >= 1300042
#ifndef _SYS_SYSPROTO_H_
struct vop_need_inactive_args {
struct vnode *a_vp;
struct thread *a_td;
};
#endif
static int
zfs_freebsd_need_inactive(struct vop_need_inactive_args *ap)
{
vnode_t *vp = ap->a_vp;
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int need;
if (vn_need_pageq_flush(vp))
return (1);
if (!ZFS_TEARDOWN_INACTIVE_TRY_ENTER_READ(zfsvfs))
return (1);
need = (zp->z_sa_hdl == NULL || zp->z_unlinked || zp->z_atime_dirty);
ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
return (need);
}
#endif
#ifndef _SYS_SYSPROTO_H_
struct vop_reclaim_args {
struct vnode *a_vp;
struct thread *a_td;
};
#endif
static int
zfs_freebsd_reclaim(struct vop_reclaim_args *ap)
{
vnode_t *vp = ap->a_vp;
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
ASSERT3P(zp, !=, NULL);
#if __FreeBSD_version < 1300042
/* Destroy the vm object and flush associated pages. */
vnode_destroy_vobject(vp);
#endif
/*
* z_teardown_inactive_lock protects from a race with
* zfs_znode_dmu_fini in zfsvfs_teardown during
* force unmount.
*/
ZFS_TEARDOWN_INACTIVE_ENTER_READ(zfsvfs);
if (zp->z_sa_hdl == NULL)
zfs_znode_free(zp);
else
zfs_zinactive(zp);
ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
vp->v_data = NULL;
return (0);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_fid_args {
struct vnode *a_vp;
struct fid *a_fid;
};
#endif
static int
zfs_freebsd_fid(struct vop_fid_args *ap)
{
return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
}
#ifndef _SYS_SYSPROTO_H_
struct vop_pathconf_args {
struct vnode *a_vp;
int a_name;
register_t *a_retval;
} *ap;
#endif
static int
zfs_freebsd_pathconf(struct vop_pathconf_args *ap)
{
ulong_t val;
int error;
error = zfs_pathconf(ap->a_vp, ap->a_name, &val,
curthread->td_ucred, NULL);
if (error == 0) {
*ap->a_retval = val;
return (error);
}
if (error != EOPNOTSUPP)
return (error);
switch (ap->a_name) {
case _PC_NAME_MAX:
*ap->a_retval = NAME_MAX;
return (0);
#if __FreeBSD_version >= 1400032
case _PC_DEALLOC_PRESENT:
*ap->a_retval = 1;
return (0);
#endif
case _PC_PIPE_BUF:
if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) {
*ap->a_retval = PIPE_BUF;
return (0);
}
return (EINVAL);
default:
return (vop_stdpathconf(ap));
}
}
/*
* FreeBSD's extended attributes namespace defines file name prefix for ZFS'
* extended attribute name:
*
* NAMESPACE PREFIX
* system freebsd:system:
* user (none, can be used to access ZFS fsattr(5) attributes
* created on Solaris)
*/
static int
zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
size_t size)
{
const char *namespace, *prefix, *suffix;
/* We don't allow '/' character in attribute name. */
if (strchr(name, '/') != NULL)
return (SET_ERROR(EINVAL));
/* We don't allow attribute names that start with "freebsd:" string. */
if (strncmp(name, "freebsd:", 8) == 0)
return (SET_ERROR(EINVAL));
bzero(attrname, size);
switch (attrnamespace) {
case EXTATTR_NAMESPACE_USER:
#if 0
prefix = "freebsd:";
namespace = EXTATTR_NAMESPACE_USER_STRING;
suffix = ":";
#else
/*
* This is the default namespace by which we can access all
* attributes created on Solaris.
*/
prefix = namespace = suffix = "";
#endif
break;
case EXTATTR_NAMESPACE_SYSTEM:
prefix = "freebsd:";
namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
suffix = ":";
break;
case EXTATTR_NAMESPACE_EMPTY:
default:
return (SET_ERROR(EINVAL));
}
if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
name) >= size) {
return (SET_ERROR(ENAMETOOLONG));
}
return (0);
}
static int
zfs_ensure_xattr_cached(znode_t *zp)
{
int error = 0;
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
if (zp->z_xattr_cached != NULL)
return (0);
if (rw_write_held(&zp->z_xattr_lock))
return (zfs_sa_get_xattr(zp));
if (!rw_tryupgrade(&zp->z_xattr_lock)) {
rw_exit(&zp->z_xattr_lock);
rw_enter(&zp->z_xattr_lock, RW_WRITER);
}
if (zp->z_xattr_cached == NULL)
error = zfs_sa_get_xattr(zp);
rw_downgrade(&zp->z_xattr_lock);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_getextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
#endif
static int
zfs_getextattr_dir(struct vop_getextattr_args *ap, const char *attrname)
{
struct thread *td = ap->a_td;
struct nameidata nd;
struct vattr va;
vnode_t *xvp = NULL, *vp;
int error, flags;
error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred,
LOOKUP_XATTR, B_FALSE);
if (error != 0)
return (error);
flags = FREAD;
#if __FreeBSD_version < 1400043
NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
xvp, td);
#else
NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp);
#endif
error = vn_open_cred(&nd, &flags, 0, VN_OPEN_INVFS, ap->a_cred, NULL);
vp = nd.ni_vp;
NDFREE_PNBUF(&nd);
if (error != 0)
return (error);
if (ap->a_size != NULL) {
error = VOP_GETATTR(vp, &va, ap->a_cred);
if (error == 0)
*ap->a_size = (size_t)va.va_size;
} else if (ap->a_uio != NULL)
error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
VOP_UNLOCK1(vp);
vn_close(vp, flags, ap->a_cred, td);
return (error);
}
static int
zfs_getextattr_sa(struct vop_getextattr_args *ap, const char *attrname)
{
znode_t *zp = VTOZ(ap->a_vp);
uchar_t *nv_value;
uint_t nv_size;
int error;
error = zfs_ensure_xattr_cached(zp);
if (error != 0)
return (error);
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
ASSERT3P(zp->z_xattr_cached, !=, NULL);
error = nvlist_lookup_byte_array(zp->z_xattr_cached, attrname,
&nv_value, &nv_size);
if (error)
return (error);
if (ap->a_size != NULL)
*ap->a_size = nv_size;
else if (ap->a_uio != NULL)
error = uiomove(nv_value, nv_size, ap->a_uio);
return (error);
}
/*
* Vnode operation to retrieve a named extended attribute.
*/
static int
zfs_getextattr(struct vop_getextattr_args *ap)
{
znode_t *zp = VTOZ(ap->a_vp);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
char attrname[EXTATTR_MAXNAMELEN+1];
int error;
/*
* If the xattr property is off, refuse the request.
*/
if (!(zfsvfs->z_flags & ZSB_XATTR))
return (SET_ERROR(EOPNOTSUPP));
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VREAD);
if (error != 0)
return (error);
error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
sizeof (attrname));
if (error != 0)
return (error);
error = ENOENT;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
rw_enter(&zp->z_xattr_lock, RW_READER);
if (zfsvfs->z_use_sa && zp->z_is_sa)
error = zfs_getextattr_sa(ap, attrname);
if (error == ENOENT)
error = zfs_getextattr_dir(ap, attrname);
rw_exit(&zp->z_xattr_lock);
ZFS_EXIT(zfsvfs);
if (error == ENOENT)
error = SET_ERROR(ENOATTR);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_deleteextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
#endif
static int
zfs_deleteextattr_dir(struct vop_deleteextattr_args *ap, const char *attrname)
{
struct nameidata nd;
vnode_t *xvp = NULL, *vp;
int error;
error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred,
LOOKUP_XATTR, B_FALSE);
if (error != 0)
return (error);
#if __FreeBSD_version < 1400043
NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
UIO_SYSSPACE, attrname, xvp, ap->a_td);
#else
NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
UIO_SYSSPACE, attrname, xvp);
#endif
error = namei(&nd);
vp = nd.ni_vp;
if (error != 0) {
NDFREE_PNBUF(&nd);
return (error);
}
error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
NDFREE_PNBUF(&nd);
vput(nd.ni_dvp);
if (vp == nd.ni_dvp)
vrele(vp);
else
vput(vp);
return (error);
}
static int
zfs_deleteextattr_sa(struct vop_deleteextattr_args *ap, const char *attrname)
{
znode_t *zp = VTOZ(ap->a_vp);
nvlist_t *nvl;
int error;
error = zfs_ensure_xattr_cached(zp);
if (error != 0)
return (error);
ASSERT(RW_WRITE_HELD(&zp->z_xattr_lock));
ASSERT3P(zp->z_xattr_cached, !=, NULL);
nvl = zp->z_xattr_cached;
error = nvlist_remove(nvl, attrname, DATA_TYPE_BYTE_ARRAY);
if (error == 0)
error = zfs_sa_set_xattr(zp);
if (error != 0) {
zp->z_xattr_cached = NULL;
nvlist_free(nvl);
}
return (error);
}
/*
* Vnode operation to remove a named attribute.
*/
static int
zfs_deleteextattr(struct vop_deleteextattr_args *ap)
{
znode_t *zp = VTOZ(ap->a_vp);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
char attrname[EXTATTR_MAXNAMELEN+1];
int error;
/*
* If the xattr property is off, refuse the request.
*/
if (!(zfsvfs->z_flags & ZSB_XATTR))
return (SET_ERROR(EOPNOTSUPP));
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VWRITE);
if (error != 0)
return (error);
error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
sizeof (attrname));
if (error != 0)
return (error);
size_t size = 0;
struct vop_getextattr_args vga = {
.a_vp = ap->a_vp,
.a_size = &size,
.a_cred = ap->a_cred,
.a_td = ap->a_td,
};
error = ENOENT;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
rw_enter(&zp->z_xattr_lock, RW_WRITER);
if (zfsvfs->z_use_sa && zp->z_is_sa) {
error = zfs_getextattr_sa(&vga, attrname);
if (error == 0)
error = zfs_deleteextattr_sa(ap, attrname);
}
if (error == ENOENT) {
error = zfs_getextattr_dir(&vga, attrname);
if (error == 0)
error = zfs_deleteextattr_dir(ap, attrname);
}
rw_exit(&zp->z_xattr_lock);
ZFS_EXIT(zfsvfs);
if (error == ENOENT)
error = SET_ERROR(ENOATTR);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_setextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
#endif
static int
zfs_setextattr_dir(struct vop_setextattr_args *ap, const char *attrname)
{
struct thread *td = ap->a_td;
struct nameidata nd;
struct vattr va;
vnode_t *xvp = NULL, *vp;
int error, flags;
error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred,
LOOKUP_XATTR | CREATE_XATTR_DIR, B_FALSE);
if (error != 0)
return (error);
flags = FFLAGS(O_WRONLY | O_CREAT);
#if __FreeBSD_version < 1400043
NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp, td);
#else
NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp);
#endif
error = vn_open_cred(&nd, &flags, 0600, VN_OPEN_INVFS, ap->a_cred,
NULL);
vp = nd.ni_vp;
NDFREE_PNBUF(&nd);
if (error != 0)
return (error);
VATTR_NULL(&va);
va.va_size = 0;
error = VOP_SETATTR(vp, &va, ap->a_cred);
if (error == 0)
VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred);
VOP_UNLOCK1(vp);
vn_close(vp, flags, ap->a_cred, td);
return (error);
}
static int
zfs_setextattr_sa(struct vop_setextattr_args *ap, const char *attrname)
{
znode_t *zp = VTOZ(ap->a_vp);
nvlist_t *nvl;
size_t sa_size;
int error;
error = zfs_ensure_xattr_cached(zp);
if (error != 0)
return (error);
ASSERT(RW_WRITE_HELD(&zp->z_xattr_lock));
ASSERT3P(zp->z_xattr_cached, !=, NULL);
nvl = zp->z_xattr_cached;
size_t entry_size = ap->a_uio->uio_resid;
if (entry_size > DXATTR_MAX_ENTRY_SIZE)
return (SET_ERROR(EFBIG));
error = nvlist_size(nvl, &sa_size, NV_ENCODE_XDR);
if (error != 0)
return (error);
if (sa_size > DXATTR_MAX_SA_SIZE)
return (SET_ERROR(EFBIG));
uchar_t *buf = kmem_alloc(entry_size, KM_SLEEP);
error = uiomove(buf, entry_size, ap->a_uio);
if (error == 0)
error = nvlist_add_byte_array(nvl, attrname, buf, entry_size);
kmem_free(buf, entry_size);
if (error == 0)
error = zfs_sa_set_xattr(zp);
if (error != 0) {
zp->z_xattr_cached = NULL;
nvlist_free(nvl);
}
return (error);
}
/*
* Vnode operation to set a named attribute.
*/
static int
zfs_setextattr(struct vop_setextattr_args *ap)
{
znode_t *zp = VTOZ(ap->a_vp);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
char attrname[EXTATTR_MAXNAMELEN+1];
int error;
/*
* If the xattr property is off, refuse the request.
*/
if (!(zfsvfs->z_flags & ZSB_XATTR))
return (SET_ERROR(EOPNOTSUPP));
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VWRITE);
if (error != 0)
return (error);
error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
sizeof (attrname));
if (error != 0)
return (error);
struct vop_deleteextattr_args vda = {
.a_vp = ap->a_vp,
.a_cred = ap->a_cred,
.a_td = ap->a_td,
};
error = ENOENT;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
rw_enter(&zp->z_xattr_lock, RW_WRITER);
if (zfsvfs->z_use_sa && zp->z_is_sa && zfsvfs->z_xattr_sa) {
error = zfs_setextattr_sa(ap, attrname);
if (error == 0)
/*
* Successfully put into SA, we need to clear the one
* in dir if present.
*/
zfs_deleteextattr_dir(&vda, attrname);
}
if (error) {
error = zfs_setextattr_dir(ap, attrname);
if (error == 0 && zp->z_is_sa)
/*
* Successfully put into dir, we need to clear the one
* in SA if present.
*/
zfs_deleteextattr_sa(&vda, attrname);
}
rw_exit(&zp->z_xattr_lock);
ZFS_EXIT(zfsvfs);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_listextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
#endif
static int
zfs_listextattr_dir(struct vop_listextattr_args *ap, const char *attrprefix)
{
struct thread *td = ap->a_td;
struct nameidata nd;
uint8_t dirbuf[sizeof (struct dirent)];
struct iovec aiov;
struct uio auio;
vnode_t *xvp = NULL, *vp;
int error, eof;
error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred,
LOOKUP_XATTR, B_FALSE);
if (error != 0) {
/*
* ENOATTR means that the EA directory does not yet exist,
* i.e. there are no extended attributes there.
*/
if (error == ENOATTR)
error = 0;
return (error);
}
#if __FreeBSD_version < 1400043
NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
UIO_SYSSPACE, ".", xvp, td);
#else
NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
UIO_SYSSPACE, ".", xvp);
#endif
error = namei(&nd);
vp = nd.ni_vp;
NDFREE_PNBUF(&nd);
if (error != 0)
return (error);
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_td = td;
auio.uio_rw = UIO_READ;
auio.uio_offset = 0;
size_t plen = strlen(attrprefix);
do {
aiov.iov_base = (void *)dirbuf;
aiov.iov_len = sizeof (dirbuf);
auio.uio_resid = sizeof (dirbuf);
error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
if (error != 0)
break;
int done = sizeof (dirbuf) - auio.uio_resid;
for (int pos = 0; pos < done; ) {
struct dirent *dp = (struct dirent *)(dirbuf + pos);
pos += dp->d_reclen;
/*
* XXX: Temporarily we also accept DT_UNKNOWN, as this
* is what we get when attribute was created on Solaris.
*/
if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
continue;
else if (plen == 0 &&
strncmp(dp->d_name, "freebsd:", 8) == 0)
continue;
else if (strncmp(dp->d_name, attrprefix, plen) != 0)
continue;
uint8_t nlen = dp->d_namlen - plen;
if (ap->a_size != NULL) {
*ap->a_size += 1 + nlen;
} else if (ap->a_uio != NULL) {
/*
* Format of extattr name entry is one byte for
* length and the rest for name.
*/
error = uiomove(&nlen, 1, ap->a_uio);
if (error == 0) {
char *namep = dp->d_name + plen;
error = uiomove(namep, nlen, ap->a_uio);
}
if (error != 0)
break;
}
}
} while (!eof && error == 0);
vput(vp);
return (error);
}
static int
zfs_listextattr_sa(struct vop_listextattr_args *ap, const char *attrprefix)
{
znode_t *zp = VTOZ(ap->a_vp);
int error;
error = zfs_ensure_xattr_cached(zp);
if (error != 0)
return (error);
ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
ASSERT3P(zp->z_xattr_cached, !=, NULL);
size_t plen = strlen(attrprefix);
nvpair_t *nvp = NULL;
while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) {
ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY);
const char *name = nvpair_name(nvp);
if (plen == 0 && strncmp(name, "freebsd:", 8) == 0)
continue;
else if (strncmp(name, attrprefix, plen) != 0)
continue;
uint8_t nlen = strlen(name) - plen;
if (ap->a_size != NULL) {
*ap->a_size += 1 + nlen;
} else if (ap->a_uio != NULL) {
/*
* Format of extattr name entry is one byte for
* length and the rest for name.
*/
error = uiomove(&nlen, 1, ap->a_uio);
if (error == 0) {
char *namep = __DECONST(char *, name) + plen;
error = uiomove(namep, nlen, ap->a_uio);
}
if (error != 0)
break;
}
}
return (error);
}
/*
* Vnode operation to retrieve extended attributes on a vnode.
*/
static int
zfs_listextattr(struct vop_listextattr_args *ap)
{
znode_t *zp = VTOZ(ap->a_vp);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
char attrprefix[16];
int error;
if (ap->a_size != NULL)
*ap->a_size = 0;
/*
* If the xattr property is off, refuse the request.
*/
if (!(zfsvfs->z_flags & ZSB_XATTR))
return (SET_ERROR(EOPNOTSUPP));
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VREAD);
if (error != 0)
return (error);
error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
sizeof (attrprefix));
if (error != 0)
return (error);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
rw_enter(&zp->z_xattr_lock, RW_READER);
if (zfsvfs->z_use_sa && zp->z_is_sa)
error = zfs_listextattr_sa(ap, attrprefix);
if (error == 0)
error = zfs_listextattr_dir(ap, attrprefix);
rw_exit(&zp->z_xattr_lock);
ZFS_EXIT(zfsvfs);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_getacl_args {
struct vnode *vp;
acl_type_t type;
struct acl *aclp;
struct ucred *cred;
struct thread *td;
};
#endif
static int
zfs_freebsd_getacl(struct vop_getacl_args *ap)
{
int error;
vsecattr_t vsecattr;
if (ap->a_type != ACL_TYPE_NFS4)
return (EINVAL);
vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
if ((error = zfs_getsecattr(VTOZ(ap->a_vp),
&vsecattr, 0, ap->a_cred)))
return (error);
error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp,
vsecattr.vsa_aclcnt);
if (vsecattr.vsa_aclentp != NULL)
kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_setacl_args {
struct vnode *vp;
acl_type_t type;
struct acl *aclp;
struct ucred *cred;
struct thread *td;
};
#endif
static int
zfs_freebsd_setacl(struct vop_setacl_args *ap)
{
int error;
vsecattr_t vsecattr;
int aclbsize; /* size of acl list in bytes */
aclent_t *aaclp;
if (ap->a_type != ACL_TYPE_NFS4)
return (EINVAL);
if (ap->a_aclp == NULL)
return (EINVAL);
if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
return (EINVAL);
/*
* With NFSv4 ACLs, chmod(2) may need to add additional entries,
* splitting every entry into two and appending "canonical six"
* entries at the end. Don't allow for setting an ACL that would
* cause chmod(2) to run out of ACL entries.
*/
if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
return (ENOSPC);
error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
if (error != 0)
return (error);
vsecattr.vsa_mask = VSA_ACE;
aclbsize = ap->a_aclp->acl_cnt * sizeof (ace_t);
vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
aaclp = vsecattr.vsa_aclentp;
vsecattr.vsa_aclentsz = aclbsize;
aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
error = zfs_setsecattr(VTOZ(ap->a_vp), &vsecattr, 0, ap->a_cred);
kmem_free(aaclp, aclbsize);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct vop_aclcheck_args {
struct vnode *vp;
acl_type_t type;
struct acl *aclp;
struct ucred *cred;
struct thread *td;
};
#endif
static int
zfs_freebsd_aclcheck(struct vop_aclcheck_args *ap)
{
return (EOPNOTSUPP);
}
static int
zfs_vptocnp(struct vop_vptocnp_args *ap)
{
vnode_t *covered_vp;
vnode_t *vp = ap->a_vp;
zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
znode_t *zp = VTOZ(vp);
int ltype;
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/*
* If we are a snapshot mounted under .zfs, run the operation
* on the covered vnode.
*/
if (zp->z_id != zfsvfs->z_root || zfsvfs->z_parent == zfsvfs) {
char name[MAXNAMLEN + 1];
znode_t *dzp;
size_t len;
error = zfs_znode_parent_and_name(zp, &dzp, name);
if (error == 0) {
len = strlen(name);
if (*ap->a_buflen < len)
error = SET_ERROR(ENOMEM);
}
if (error == 0) {
*ap->a_buflen -= len;
bcopy(name, ap->a_buf + *ap->a_buflen, len);
*ap->a_vpp = ZTOV(dzp);
}
ZFS_EXIT(zfsvfs);
return (error);
}
ZFS_EXIT(zfsvfs);
covered_vp = vp->v_mount->mnt_vnodecovered;
#if __FreeBSD_version >= 1300045
enum vgetstate vs = vget_prep(covered_vp);
#else
vhold(covered_vp);
#endif
ltype = VOP_ISLOCKED(vp);
VOP_UNLOCK1(vp);
#if __FreeBSD_version >= 1300045
error = vget_finish(covered_vp, LK_SHARED, vs);
#else
error = vget(covered_vp, LK_SHARED | LK_VNHELD, curthread);
#endif
if (error == 0) {
#if __FreeBSD_version >= 1300123
error = VOP_VPTOCNP(covered_vp, ap->a_vpp, ap->a_buf,
ap->a_buflen);
#else
error = VOP_VPTOCNP(covered_vp, ap->a_vpp, ap->a_cred,
ap->a_buf, ap->a_buflen);
#endif
vput(covered_vp);
}
vn_lock(vp, ltype | LK_RETRY);
if (VN_IS_DOOMED(vp))
error = SET_ERROR(ENOENT);
return (error);
}
#if __FreeBSD_version >= 1400032
static int
zfs_deallocate(struct vop_deallocate_args *ap)
{
znode_t *zp = VTOZ(ap->a_vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog;
off_t off, len, file_sz;
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/*
* Callers might not be able to detect properly that we are read-only,
* so check it explicitly here.
*/
if (zfs_is_readonly(zfsvfs)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EROFS));
}
zilog = zfsvfs->z_log;
off = *ap->a_offset;
len = *ap->a_len;
file_sz = zp->z_size;
if (off + len > file_sz)
len = file_sz - off;
/* Fast path for out-of-range request. */
if (len <= 0) {
*ap->a_len = 0;
ZFS_EXIT(zfsvfs);
return (0);
}
error = zfs_freesp(zp, off, len, O_RDWR, TRUE);
if (error == 0) {
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS ||
(ap->a_ioflag & IO_SYNC) != 0)
zil_commit(zilog, zp->z_id);
*ap->a_offset = off + len;
*ap->a_len = 0;
}
ZFS_EXIT(zfsvfs);
return (error);
}
#endif
struct vop_vector zfs_vnodeops;
struct vop_vector zfs_fifoops;
struct vop_vector zfs_shareops;
struct vop_vector zfs_vnodeops = {
.vop_default = &default_vnodeops,
.vop_inactive = zfs_freebsd_inactive,
#if __FreeBSD_version >= 1300042
.vop_need_inactive = zfs_freebsd_need_inactive,
#endif
.vop_reclaim = zfs_freebsd_reclaim,
#if __FreeBSD_version >= 1300102
.vop_fplookup_vexec = zfs_freebsd_fplookup_vexec,
#endif
#if __FreeBSD_version >= 1300139
.vop_fplookup_symlink = zfs_freebsd_fplookup_symlink,
#endif
.vop_access = zfs_freebsd_access,
.vop_allocate = VOP_EINVAL,
#if __FreeBSD_version >= 1400032
.vop_deallocate = zfs_deallocate,
#endif
.vop_lookup = zfs_cache_lookup,
.vop_cachedlookup = zfs_freebsd_cachedlookup,
.vop_getattr = zfs_freebsd_getattr,
.vop_setattr = zfs_freebsd_setattr,
.vop_create = zfs_freebsd_create,
.vop_mknod = (vop_mknod_t *)zfs_freebsd_create,
.vop_mkdir = zfs_freebsd_mkdir,
.vop_readdir = zfs_freebsd_readdir,
.vop_fsync = zfs_freebsd_fsync,
.vop_open = zfs_freebsd_open,
.vop_close = zfs_freebsd_close,
.vop_rmdir = zfs_freebsd_rmdir,
.vop_ioctl = zfs_freebsd_ioctl,
.vop_link = zfs_freebsd_link,
.vop_symlink = zfs_freebsd_symlink,
.vop_readlink = zfs_freebsd_readlink,
.vop_read = zfs_freebsd_read,
.vop_write = zfs_freebsd_write,
.vop_remove = zfs_freebsd_remove,
.vop_rename = zfs_freebsd_rename,
.vop_pathconf = zfs_freebsd_pathconf,
.vop_bmap = zfs_freebsd_bmap,
.vop_fid = zfs_freebsd_fid,
.vop_getextattr = zfs_getextattr,
.vop_deleteextattr = zfs_deleteextattr,
.vop_setextattr = zfs_setextattr,
.vop_listextattr = zfs_listextattr,
.vop_getacl = zfs_freebsd_getacl,
.vop_setacl = zfs_freebsd_setacl,
.vop_aclcheck = zfs_freebsd_aclcheck,
.vop_getpages = zfs_freebsd_getpages,
.vop_putpages = zfs_freebsd_putpages,
.vop_vptocnp = zfs_vptocnp,
#if __FreeBSD_version >= 1300064
.vop_lock1 = vop_lock,
.vop_unlock = vop_unlock,
.vop_islocked = vop_islocked,
#endif
#if __FreeBSD_version >= 1400043
.vop_add_writecount = vop_stdadd_writecount_nomsync,
#endif
};
VFS_VOP_VECTOR_REGISTER(zfs_vnodeops);
struct vop_vector zfs_fifoops = {
.vop_default = &fifo_specops,
.vop_fsync = zfs_freebsd_fsync,
#if __FreeBSD_version >= 1300102
.vop_fplookup_vexec = zfs_freebsd_fplookup_vexec,
#endif
#if __FreeBSD_version >= 1300139
.vop_fplookup_symlink = zfs_freebsd_fplookup_symlink,
#endif
.vop_access = zfs_freebsd_access,
.vop_getattr = zfs_freebsd_getattr,
.vop_inactive = zfs_freebsd_inactive,
.vop_read = VOP_PANIC,
.vop_reclaim = zfs_freebsd_reclaim,
.vop_setattr = zfs_freebsd_setattr,
.vop_write = VOP_PANIC,
.vop_pathconf = zfs_freebsd_pathconf,
.vop_fid = zfs_freebsd_fid,
.vop_getacl = zfs_freebsd_getacl,
.vop_setacl = zfs_freebsd_setacl,
.vop_aclcheck = zfs_freebsd_aclcheck,
#if __FreeBSD_version >= 1400043
.vop_add_writecount = vop_stdadd_writecount_nomsync,
#endif
};
VFS_VOP_VECTOR_REGISTER(zfs_fifoops);
/*
* special share hidden files vnode operations template
*/
struct vop_vector zfs_shareops = {
.vop_default = &default_vnodeops,
#if __FreeBSD_version >= 1300121
.vop_fplookup_vexec = VOP_EAGAIN,
#endif
#if __FreeBSD_version >= 1300139
.vop_fplookup_symlink = VOP_EAGAIN,
#endif
.vop_access = zfs_freebsd_access,
.vop_inactive = zfs_freebsd_inactive,
.vop_reclaim = zfs_freebsd_reclaim,
.vop_fid = zfs_freebsd_fid,
.vop_pathconf = zfs_freebsd_pathconf,
#if __FreeBSD_version >= 1400043
.vop_add_writecount = vop_stdadd_writecount_nomsync,
#endif
};
VFS_VOP_VECTOR_REGISTER(zfs_shareops);