mirror_zfs/module/icp/algs/sha1/sha1.c
KireinaHoro 46d4fe880e
SPARC optimizations for SHA1Transform()
Passing arguments explicitly into SHA1Transform() increases the number of
registers abailable to the compiler, hence leaving more local and out registers
available. The missing symbol of sha1_consts[], which prevents compiling on
SPARC, is added back, which speeds up the process of utilizing the relative
constants.
This should fix #6738.

Signed-off-by: Pengcheng Xu <i@jsteward.moe>
2017-10-12 01:36:11 +08:00

827 lines
26 KiB
C

/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* The basic framework for this code came from the reference
* implementation for MD5. That implementation is Copyright (C)
* 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
*
* License to copy and use this software is granted provided that it
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
* Algorithm" in all material mentioning or referencing this software
* or this function.
*
* License is also granted to make and use derivative works provided
* that such works are identified as "derived from the RSA Data
* Security, Inc. MD5 Message-Digest Algorithm" in all material
* mentioning or referencing the derived work.
*
* RSA Data Security, Inc. makes no representations concerning either
* the merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this
* documentation and/or software.
*
* NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
* standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
* Not as fast as one would like -- further optimizations are encouraged
* and appreciated.
*/
#include <sys/zfs_context.h>
#include <sha1/sha1.h>
#include <sha1/sha1_consts.h>
#ifdef _LITTLE_ENDIAN
#include <sys/byteorder.h>
#define HAVE_HTONL
#endif
#define _RESTRICT_KYWD
static void Encode(uint8_t *, const uint32_t *, size_t);
#if defined(__sparc)
#define SHA1_TRANSFORM(ctx, in) \
SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
(ctx)->state[3], (ctx)->state[4], (ctx), (in))
static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
SHA1_CTX *, const uint8_t *);
#elif defined(__amd64)
#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
(in), (num))
void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
#else
#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
static void SHA1Transform(SHA1_CTX *, const uint8_t *);
#endif
static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
/*
* F, G, and H are the basic SHA1 functions.
*/
#define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
#define G(b, c, d) ((b) ^ (c) ^ (d))
#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
/*
* ROTATE_LEFT rotates x left n bits.
*/
#if defined(__GNUC__) && defined(_LP64)
static __inline__ uint64_t
ROTATE_LEFT(uint64_t value, uint32_t n)
{
uint32_t t32;
t32 = (uint32_t)value;
return ((t32 << n) | (t32 >> (32 - n)));
}
#else
#define ROTATE_LEFT(x, n) \
(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
#endif
/*
* SHA1Init()
*
* purpose: initializes the sha1 context and begins and sha1 digest operation
* input: SHA1_CTX * : the context to initializes.
* output: void
*/
void
SHA1Init(SHA1_CTX *ctx)
{
ctx->count[0] = ctx->count[1] = 0;
/*
* load magic initialization constants. Tell lint
* that these constants are unsigned by using U.
*/
ctx->state[0] = 0x67452301U;
ctx->state[1] = 0xefcdab89U;
ctx->state[2] = 0x98badcfeU;
ctx->state[3] = 0x10325476U;
ctx->state[4] = 0xc3d2e1f0U;
}
void
SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
{
uint32_t i, buf_index, buf_len;
const uint8_t *input = inptr;
#if defined(__amd64)
uint32_t block_count;
#endif /* __amd64 */
/* check for noop */
if (input_len == 0)
return;
/* compute number of bytes mod 64 */
buf_index = (ctx->count[1] >> 3) & 0x3F;
/* update number of bits */
if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
ctx->count[0]++;
ctx->count[0] += (input_len >> 29);
buf_len = 64 - buf_index;
/* transform as many times as possible */
i = 0;
if (input_len >= buf_len) {
/*
* general optimization:
*
* only do initial bcopy() and SHA1Transform() if
* buf_index != 0. if buf_index == 0, we're just
* wasting our time doing the bcopy() since there
* wasn't any data left over from a previous call to
* SHA1Update().
*/
if (buf_index) {
bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
i = buf_len;
}
#if !defined(__amd64)
for (; i + 63 < input_len; i += 64)
SHA1_TRANSFORM(ctx, &input[i]);
#else
block_count = (input_len - i) >> 6;
if (block_count > 0) {
SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
i += block_count << 6;
}
#endif /* !__amd64 */
/*
* general optimization:
*
* if i and input_len are the same, return now instead
* of calling bcopy(), since the bcopy() in this case
* will be an expensive nop.
*/
if (input_len == i)
return;
buf_index = 0;
}
/* buffer remaining input */
bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
}
/*
* SHA1Final()
*
* purpose: ends an sha1 digest operation, finalizing the message digest and
* zeroing the context.
* input: uchar_t * : A buffer to store the digest.
* : The function actually uses void* because many
* : callers pass things other than uchar_t here.
* SHA1_CTX * : the context to finalize, save, and zero
* output: void
*/
void
SHA1Final(void *digest, SHA1_CTX *ctx)
{
uint8_t bitcount_be[sizeof (ctx->count)];
uint32_t index = (ctx->count[1] >> 3) & 0x3f;
/* store bit count, big endian */
Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
/* pad out to 56 mod 64 */
SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
/* append length (before padding) */
SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
/* store state in digest */
Encode(digest, ctx->state, sizeof (ctx->state));
/* zeroize sensitive information */
bzero(ctx, sizeof (*ctx));
}
#if !defined(__amd64)
typedef uint32_t sha1word;
/*
* sparc optimization:
*
* on the sparc, we can load big endian 32-bit data easily. note that
* special care must be taken to ensure the address is 32-bit aligned.
* in the interest of speed, we don't check to make sure, since
* careful programming can guarantee this for us.
*/
#if defined(_BIG_ENDIAN)
#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
#elif defined(HAVE_HTONL)
#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
#else
/* little endian -- will work on big endian, but slowly */
#define LOAD_BIG_32(addr) \
(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
#endif /* _BIG_ENDIAN */
/*
* SHA1Transform()
*/
#if defined(W_ARRAY)
#define W(n) w[n]
#else /* !defined(W_ARRAY) */
#define W(n) w_ ## n
#endif /* !defined(W_ARRAY) */
#if defined(__sparc)
/*
* sparc register window optimization:
*
* `a', `b', `c', `d', and `e' are passed into SHA1Transform
* explicitly since it increases the number of registers available to
* the compiler. under this scheme, these variables can be held in
* %i0 - %i4, which leaves more local and out registers available.
*
* purpose: sha1 transformation -- updates the digest based on `block'
* input: uint32_t : bytes 1 - 4 of the digest
* uint32_t : bytes 5 - 8 of the digest
* uint32_t : bytes 9 - 12 of the digest
* uint32_t : bytes 12 - 16 of the digest
* uint32_t : bytes 16 - 20 of the digest
* SHA1_CTX * : the context to update
* uint8_t [64]: the block to use to update the digest
* output: void
*/
void
SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
SHA1_CTX *ctx, const uint8_t blk[64])
{
/*
* sparc optimization:
*
* while it is somewhat counter-intuitive, on sparc, it is
* more efficient to place all the constants used in this
* function in an array and load the values out of the array
* than to manually load the constants. this is because
* setting a register to a 32-bit value takes two ops in most
* cases: a `sethi' and an `or', but loading a 32-bit value
* from memory only takes one `ld' (or `lduw' on v9). while
* this increases memory usage, the compiler can find enough
* other things to do while waiting to keep the pipeline does
* not stall. additionally, it is likely that many of these
* constants are cached so that later accesses do not even go
* out to the bus.
*
* this array is declared `static' to keep the compiler from
* having to bcopy() this array onto the stack frame of
* SHA1Transform() each time it is called -- which is
* unacceptably expensive.
*
* the `const' is to ensure that callers are good citizens and
* do not try to munge the array. since these routines are
* going to be called from inside multithreaded kernelland,
* this is a good safety check. -- `sha1_consts' will end up in
* .rodata.
*
* unfortunately, loading from an array in this manner hurts
* performance under Intel. So, there is a macro,
* SHA1_CONST(), used in SHA1Transform(), that either expands to
* a reference to this array, or to the actual constant,
* depending on what platform this code is compiled for.
*/
static const uint32_t sha1_consts[] = {
SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
};
/*
* general optimization:
*
* use individual integers instead of using an array. this is a
* win, although the amount it wins by seems to vary quite a bit.
*/
uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
/*
* sparc optimization:
*
* if `block' is already aligned on a 4-byte boundary, use
* LOAD_BIG_32() directly. otherwise, bcopy() into a
* buffer that *is* aligned on a 4-byte boundary and then do
* the LOAD_BIG_32() on that buffer. benchmarks have shown
* that using the bcopy() is better than loading the bytes
* individually and doing the endian-swap by hand.
*
* even though it's quite tempting to assign to do:
*
* blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
*
* and only have one set of LOAD_BIG_32()'s, the compiler
* *does not* like that, so please resist the urge.
*/
if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9);
w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8);
w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7);
w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6);
w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5);
w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4);
w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3);
w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2);
w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1);
w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0);
} else {
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_15 = LOAD_BIG_32(blk + 60);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_14 = LOAD_BIG_32(blk + 56);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_13 = LOAD_BIG_32(blk + 52);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_12 = LOAD_BIG_32(blk + 48);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_11 = LOAD_BIG_32(blk + 44);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_10 = LOAD_BIG_32(blk + 40);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_9 = LOAD_BIG_32(blk + 36);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_8 = LOAD_BIG_32(blk + 32);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_7 = LOAD_BIG_32(blk + 28);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_6 = LOAD_BIG_32(blk + 24);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_5 = LOAD_BIG_32(blk + 20);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_4 = LOAD_BIG_32(blk + 16);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_3 = LOAD_BIG_32(blk + 12);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_2 = LOAD_BIG_32(blk + 8);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_1 = LOAD_BIG_32(blk + 4);
/* LINTED E_BAD_PTR_CAST_ALIGN */
w_0 = LOAD_BIG_32(blk + 0);
}
#else /* !defined(__sparc) */
void /* CSTYLED */
SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
{
/* CSTYLED */
sha1word a = ctx->state[0];
sha1word b = ctx->state[1];
sha1word c = ctx->state[2];
sha1word d = ctx->state[3];
sha1word e = ctx->state[4];
#if defined(W_ARRAY)
sha1word w[16];
#else /* !defined(W_ARRAY) */
sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
#endif /* !defined(W_ARRAY) */
W(0) = LOAD_BIG_32((void *)(blk + 0));
W(1) = LOAD_BIG_32((void *)(blk + 4));
W(2) = LOAD_BIG_32((void *)(blk + 8));
W(3) = LOAD_BIG_32((void *)(blk + 12));
W(4) = LOAD_BIG_32((void *)(blk + 16));
W(5) = LOAD_BIG_32((void *)(blk + 20));
W(6) = LOAD_BIG_32((void *)(blk + 24));
W(7) = LOAD_BIG_32((void *)(blk + 28));
W(8) = LOAD_BIG_32((void *)(blk + 32));
W(9) = LOAD_BIG_32((void *)(blk + 36));
W(10) = LOAD_BIG_32((void *)(blk + 40));
W(11) = LOAD_BIG_32((void *)(blk + 44));
W(12) = LOAD_BIG_32((void *)(blk + 48));
W(13) = LOAD_BIG_32((void *)(blk + 52));
W(14) = LOAD_BIG_32((void *)(blk + 56));
W(15) = LOAD_BIG_32((void *)(blk + 60));
#endif /* !defined(__sparc) */
/*
* general optimization:
*
* even though this approach is described in the standard as
* being slower algorithmically, it is 30-40% faster than the
* "faster" version under SPARC, because this version has more
* of the constraints specified at compile-time and uses fewer
* variables (and therefore has better register utilization)
* than its "speedier" brother. (i've tried both, trust me)
*
* for either method given in the spec, there is an "assignment"
* phase where the following takes place:
*
* tmp = (main_computation);
* e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
*
* we can make the algorithm go faster by not doing this work,
* but just pretending that `d' is now `e', etc. this works
* really well and obviates the need for a temporary variable.
* however, we still explicitly perform the rotate action,
* since it is cheaper on SPARC to do it once than to have to
* do it over and over again.
*/
/* round 1 */
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
b = ROTATE_LEFT(b, 30);
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
a = ROTATE_LEFT(a, 30);
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
e = ROTATE_LEFT(e, 30);
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
d = ROTATE_LEFT(d, 30);
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
c = ROTATE_LEFT(c, 30);
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
b = ROTATE_LEFT(b, 30);
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
a = ROTATE_LEFT(a, 30);
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
e = ROTATE_LEFT(e, 30);
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
d = ROTATE_LEFT(d, 30);
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
c = ROTATE_LEFT(c, 30);
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
b = ROTATE_LEFT(b, 30);
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
a = ROTATE_LEFT(a, 30);
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
e = ROTATE_LEFT(e, 30);
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
d = ROTATE_LEFT(d, 30);
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
c = ROTATE_LEFT(c, 30);
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
b = ROTATE_LEFT(b, 30);
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
a = ROTATE_LEFT(a, 30);
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
e = ROTATE_LEFT(e, 30);
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
d = ROTATE_LEFT(d, 30);
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
c = ROTATE_LEFT(c, 30);
/* round 2 */
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
b = ROTATE_LEFT(b, 30);
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
a = ROTATE_LEFT(a, 30);
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
e = ROTATE_LEFT(e, 30);
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
d = ROTATE_LEFT(d, 30);
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
c = ROTATE_LEFT(c, 30);
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
b = ROTATE_LEFT(b, 30);
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
a = ROTATE_LEFT(a, 30);
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
e = ROTATE_LEFT(e, 30);
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
d = ROTATE_LEFT(d, 30);
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
c = ROTATE_LEFT(c, 30);
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
b = ROTATE_LEFT(b, 30);
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
a = ROTATE_LEFT(a, 30);
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
e = ROTATE_LEFT(e, 30);
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
d = ROTATE_LEFT(d, 30);
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
c = ROTATE_LEFT(c, 30);
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
b = ROTATE_LEFT(b, 30);
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
a = ROTATE_LEFT(a, 30);
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
e = ROTATE_LEFT(e, 30);
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
d = ROTATE_LEFT(d, 30);
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
c = ROTATE_LEFT(c, 30);
/* round 3 */
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
b = ROTATE_LEFT(b, 30);
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
a = ROTATE_LEFT(a, 30);
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
e = ROTATE_LEFT(e, 30);
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
d = ROTATE_LEFT(d, 30);
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
c = ROTATE_LEFT(c, 30);
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
b = ROTATE_LEFT(b, 30);
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
a = ROTATE_LEFT(a, 30);
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
e = ROTATE_LEFT(e, 30);
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
d = ROTATE_LEFT(d, 30);
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
c = ROTATE_LEFT(c, 30);
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
b = ROTATE_LEFT(b, 30);
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
a = ROTATE_LEFT(a, 30);
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
e = ROTATE_LEFT(e, 30);
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
d = ROTATE_LEFT(d, 30);
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
c = ROTATE_LEFT(c, 30);
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
b = ROTATE_LEFT(b, 30);
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
a = ROTATE_LEFT(a, 30);
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
e = ROTATE_LEFT(e, 30);
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
d = ROTATE_LEFT(d, 30);
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
c = ROTATE_LEFT(c, 30);
/* round 4 */
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
b = ROTATE_LEFT(b, 30);
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
a = ROTATE_LEFT(a, 30);
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
e = ROTATE_LEFT(e, 30);
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
d = ROTATE_LEFT(d, 30);
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
c = ROTATE_LEFT(c, 30);
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
b = ROTATE_LEFT(b, 30);
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
a = ROTATE_LEFT(a, 30);
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
e = ROTATE_LEFT(e, 30);
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
d = ROTATE_LEFT(d, 30);
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
c = ROTATE_LEFT(c, 30);
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
b = ROTATE_LEFT(b, 30);
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
a = ROTATE_LEFT(a, 30);
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
e = ROTATE_LEFT(e, 30);
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
d = ROTATE_LEFT(d, 30);
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
c = ROTATE_LEFT(c, 30);
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
b = ROTATE_LEFT(b, 30);
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
a = ROTATE_LEFT(a, 30);
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
e = ROTATE_LEFT(e, 30);
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
d = ROTATE_LEFT(d, 30);
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
SHA1_CONST(3);
ctx->state[1] += b;
ctx->state[2] += ROTATE_LEFT(c, 30);
ctx->state[3] += d;
ctx->state[4] += e;
/* zeroize sensitive information */
W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
}
#endif /* !__amd64 */
/*
* Encode()
*
* purpose: to convert a list of numbers from little endian to big endian
* input: uint8_t * : place to store the converted big endian numbers
* uint32_t * : place to get numbers to convert from
* size_t : the length of the input in bytes
* output: void
*/
static void
Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
size_t len)
{
size_t i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (input[i] >> 24) & 0xff;
output[j + 1] = (input[i] >> 16) & 0xff;
output[j + 2] = (input[i] >> 8) & 0xff;
output[j + 3] = input[i] & 0xff;
}
}