mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-25 18:59:33 +03:00
2e0e443ac4
Authored by: Chris Williamson <chris.williamson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: George Melikov <mail@gmelikov.ru> OpenZFS-issue: https://www.illumos.org/issues/7247 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2ad25b4 Closes #5689 Porting notes: - tests/zfs-tests/tests/functional/cli_root/zfs_receive/zfs_receive_013_pos.ksh renamed as zfs_receive_015_pos.ksh, zfs_receive_013_pos.ksh is now used for OpenZFS test. - libzfs_sendrecv.c: SMALLEST_POSSIBLE_MAX_DDT_MB is always used for all 32-bit builds.
3376 lines
95 KiB
C
3376 lines
95 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
|
|
* Copyright 2014 HybridCluster. All rights reserved.
|
|
* Copyright 2016 RackTop Systems.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <zfs_fletcher.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/zfs_onexit.h>
|
|
#include <sys/dmu_send.h>
|
|
#include <sys/dsl_destroy.h>
|
|
#include <sys/blkptr.h>
|
|
#include <sys/dsl_bookmark.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/bqueue.h>
|
|
#include <sys/zvol.h>
|
|
#include <sys/policy.h>
|
|
|
|
/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
|
|
int zfs_send_corrupt_data = B_FALSE;
|
|
int zfs_send_queue_length = 16 * 1024 * 1024;
|
|
int zfs_recv_queue_length = 16 * 1024 * 1024;
|
|
/* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
|
|
int zfs_send_set_freerecords_bit = B_TRUE;
|
|
|
|
static char *dmu_recv_tag = "dmu_recv_tag";
|
|
const char *recv_clone_name = "%recv";
|
|
|
|
#define BP_SPAN(datablkszsec, indblkshift, level) \
|
|
(((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
|
|
(level) * (indblkshift - SPA_BLKPTRSHIFT)))
|
|
|
|
static void byteswap_record(dmu_replay_record_t *drr);
|
|
|
|
struct send_thread_arg {
|
|
bqueue_t q;
|
|
dsl_dataset_t *ds; /* Dataset to traverse */
|
|
uint64_t fromtxg; /* Traverse from this txg */
|
|
int flags; /* flags to pass to traverse_dataset */
|
|
int error_code;
|
|
boolean_t cancel;
|
|
zbookmark_phys_t resume;
|
|
};
|
|
|
|
struct send_block_record {
|
|
boolean_t eos_marker; /* Marks the end of the stream */
|
|
blkptr_t bp;
|
|
zbookmark_phys_t zb;
|
|
uint8_t indblkshift;
|
|
uint16_t datablkszsec;
|
|
bqueue_node_t ln;
|
|
};
|
|
|
|
typedef struct dump_bytes_io {
|
|
dmu_sendarg_t *dbi_dsp;
|
|
void *dbi_buf;
|
|
int dbi_len;
|
|
} dump_bytes_io_t;
|
|
|
|
static void
|
|
dump_bytes_cb(void *arg)
|
|
{
|
|
dump_bytes_io_t *dbi = (dump_bytes_io_t *)arg;
|
|
dmu_sendarg_t *dsp = dbi->dbi_dsp;
|
|
dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
|
|
ssize_t resid; /* have to get resid to get detailed errno */
|
|
|
|
/*
|
|
* The code does not rely on this (len being a multiple of 8). We keep
|
|
* this assertion because of the corresponding assertion in
|
|
* receive_read(). Keeping this assertion ensures that we do not
|
|
* inadvertently break backwards compatibility (causing the assertion
|
|
* in receive_read() to trigger on old software).
|
|
*
|
|
* Removing the assertions could be rolled into a new feature that uses
|
|
* data that isn't 8-byte aligned; if the assertions were removed, a
|
|
* feature flag would have to be added.
|
|
*/
|
|
|
|
ASSERT0(dbi->dbi_len % 8);
|
|
|
|
dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
|
|
(caddr_t)dbi->dbi_buf, dbi->dbi_len,
|
|
0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
|
|
|
|
mutex_enter(&ds->ds_sendstream_lock);
|
|
*dsp->dsa_off += dbi->dbi_len;
|
|
mutex_exit(&ds->ds_sendstream_lock);
|
|
}
|
|
|
|
static int
|
|
dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
|
|
{
|
|
dump_bytes_io_t dbi;
|
|
|
|
dbi.dbi_dsp = dsp;
|
|
dbi.dbi_buf = buf;
|
|
dbi.dbi_len = len;
|
|
|
|
#if defined(HAVE_LARGE_STACKS)
|
|
dump_bytes_cb(&dbi);
|
|
#else
|
|
/*
|
|
* The vn_rdwr() call is performed in a taskq to ensure that there is
|
|
* always enough stack space to write safely to the target filesystem.
|
|
* The ZIO_TYPE_FREE threads are used because there can be a lot of
|
|
* them and they are used in vdev_file.c for a similar purpose.
|
|
*/
|
|
spa_taskq_dispatch_sync(dmu_objset_spa(dsp->dsa_os), ZIO_TYPE_FREE,
|
|
ZIO_TASKQ_ISSUE, dump_bytes_cb, &dbi, TQ_SLEEP);
|
|
#endif /* HAVE_LARGE_STACKS */
|
|
|
|
return (dsp->dsa_err);
|
|
}
|
|
|
|
/*
|
|
* For all record types except BEGIN, fill in the checksum (overlaid in
|
|
* drr_u.drr_checksum.drr_checksum). The checksum verifies everything
|
|
* up to the start of the checksum itself.
|
|
*/
|
|
static int
|
|
dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
|
|
{
|
|
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
|
|
(void) fletcher_4_incremental_native(dsp->dsa_drr,
|
|
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
&dsp->dsa_zc);
|
|
if (dsp->dsa_drr->drr_type == DRR_BEGIN) {
|
|
dsp->dsa_sent_begin = B_TRUE;
|
|
} else {
|
|
ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
|
|
drr_checksum.drr_checksum));
|
|
dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
|
|
}
|
|
if (dsp->dsa_drr->drr_type == DRR_END) {
|
|
dsp->dsa_sent_end = B_TRUE;
|
|
}
|
|
(void) fletcher_4_incremental_native(&dsp->dsa_drr->
|
|
drr_u.drr_checksum.drr_checksum,
|
|
sizeof (zio_cksum_t), &dsp->dsa_zc);
|
|
if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
if (payload_len != 0) {
|
|
(void) fletcher_4_incremental_native(payload, payload_len,
|
|
&dsp->dsa_zc);
|
|
if (dump_bytes(dsp, payload, payload_len) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Fill in the drr_free struct, or perform aggregation if the previous record is
|
|
* also a free record, and the two are adjacent.
|
|
*
|
|
* Note that we send free records even for a full send, because we want to be
|
|
* able to receive a full send as a clone, which requires a list of all the free
|
|
* and freeobject records that were generated on the source.
|
|
*/
|
|
static int
|
|
dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
|
|
uint64_t length)
|
|
{
|
|
struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
|
|
|
|
/*
|
|
* When we receive a free record, dbuf_free_range() assumes
|
|
* that the receiving system doesn't have any dbufs in the range
|
|
* being freed. This is always true because there is a one-record
|
|
* constraint: we only send one WRITE record for any given
|
|
* object,offset. We know that the one-record constraint is
|
|
* true because we always send data in increasing order by
|
|
* object,offset.
|
|
*
|
|
* If the increasing-order constraint ever changes, we should find
|
|
* another way to assert that the one-record constraint is still
|
|
* satisfied.
|
|
*/
|
|
ASSERT(object > dsp->dsa_last_data_object ||
|
|
(object == dsp->dsa_last_data_object &&
|
|
offset > dsp->dsa_last_data_offset));
|
|
|
|
if (length != -1ULL && offset + length < offset)
|
|
length = -1ULL;
|
|
|
|
/*
|
|
* If there is a pending op, but it's not PENDING_FREE, push it out,
|
|
* since free block aggregation can only be done for blocks of the
|
|
* same type (i.e., DRR_FREE records can only be aggregated with
|
|
* other DRR_FREE records. DRR_FREEOBJECTS records can only be
|
|
* aggregated with other DRR_FREEOBJECTS records.
|
|
*/
|
|
if (dsp->dsa_pending_op != PENDING_NONE &&
|
|
dsp->dsa_pending_op != PENDING_FREE) {
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
if (dsp->dsa_pending_op == PENDING_FREE) {
|
|
/*
|
|
* There should never be a PENDING_FREE if length is -1
|
|
* (because dump_dnode is the only place where this
|
|
* function is called with a -1, and only after flushing
|
|
* any pending record).
|
|
*/
|
|
ASSERT(length != -1ULL);
|
|
/*
|
|
* Check to see whether this free block can be aggregated
|
|
* with pending one.
|
|
*/
|
|
if (drrf->drr_object == object && drrf->drr_offset +
|
|
drrf->drr_length == offset) {
|
|
drrf->drr_length += length;
|
|
return (0);
|
|
} else {
|
|
/* not a continuation. Push out pending record */
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
}
|
|
}
|
|
/* create a FREE record and make it pending */
|
|
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
|
|
dsp->dsa_drr->drr_type = DRR_FREE;
|
|
drrf->drr_object = object;
|
|
drrf->drr_offset = offset;
|
|
drrf->drr_length = length;
|
|
drrf->drr_toguid = dsp->dsa_toguid;
|
|
if (length == -1ULL) {
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
} else {
|
|
dsp->dsa_pending_op = PENDING_FREE;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
|
|
uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp,
|
|
void *data)
|
|
{
|
|
uint64_t payload_size;
|
|
struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
|
|
|
|
/*
|
|
* We send data in increasing object, offset order.
|
|
* See comment in dump_free() for details.
|
|
*/
|
|
ASSERT(object > dsp->dsa_last_data_object ||
|
|
(object == dsp->dsa_last_data_object &&
|
|
offset > dsp->dsa_last_data_offset));
|
|
dsp->dsa_last_data_object = object;
|
|
dsp->dsa_last_data_offset = offset + lsize - 1;
|
|
|
|
/*
|
|
* If there is any kind of pending aggregation (currently either
|
|
* a grouping of free objects or free blocks), push it out to
|
|
* the stream, since aggregation can't be done across operations
|
|
* of different types.
|
|
*/
|
|
if (dsp->dsa_pending_op != PENDING_NONE) {
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
}
|
|
/* write a WRITE record */
|
|
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
|
|
dsp->dsa_drr->drr_type = DRR_WRITE;
|
|
drrw->drr_object = object;
|
|
drrw->drr_type = type;
|
|
drrw->drr_offset = offset;
|
|
drrw->drr_toguid = dsp->dsa_toguid;
|
|
drrw->drr_logical_size = lsize;
|
|
|
|
/* only set the compression fields if the buf is compressed */
|
|
if (lsize != psize) {
|
|
ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED);
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT(!BP_SHOULD_BYTESWAP(bp));
|
|
ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
|
|
ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
|
|
ASSERT3S(psize, >, 0);
|
|
ASSERT3S(lsize, >=, psize);
|
|
|
|
drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
|
|
drrw->drr_compressed_size = psize;
|
|
payload_size = drrw->drr_compressed_size;
|
|
} else {
|
|
payload_size = drrw->drr_logical_size;
|
|
}
|
|
|
|
if (bp == NULL || BP_IS_EMBEDDED(bp)) {
|
|
/*
|
|
* There's no pre-computed checksum for partial-block
|
|
* writes or embedded BP's, so (like
|
|
* fletcher4-checkummed blocks) userland will have to
|
|
* compute a dedup-capable checksum itself.
|
|
*/
|
|
drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
|
|
} else {
|
|
drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
|
|
if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
|
|
ZCHECKSUM_FLAG_DEDUP)
|
|
drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
|
|
DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
|
|
DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
|
|
DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
|
|
drrw->drr_key.ddk_cksum = bp->blk_cksum;
|
|
}
|
|
|
|
if (dump_record(dsp, data, payload_size) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
|
|
int blksz, const blkptr_t *bp)
|
|
{
|
|
char buf[BPE_PAYLOAD_SIZE];
|
|
struct drr_write_embedded *drrw =
|
|
&(dsp->dsa_drr->drr_u.drr_write_embedded);
|
|
|
|
if (dsp->dsa_pending_op != PENDING_NONE) {
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (EINTR);
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
ASSERT(BP_IS_EMBEDDED(bp));
|
|
|
|
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
|
|
dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
|
|
drrw->drr_object = object;
|
|
drrw->drr_offset = offset;
|
|
drrw->drr_length = blksz;
|
|
drrw->drr_toguid = dsp->dsa_toguid;
|
|
drrw->drr_compression = BP_GET_COMPRESS(bp);
|
|
drrw->drr_etype = BPE_GET_ETYPE(bp);
|
|
drrw->drr_lsize = BPE_GET_LSIZE(bp);
|
|
drrw->drr_psize = BPE_GET_PSIZE(bp);
|
|
|
|
decode_embedded_bp_compressed(bp, buf);
|
|
|
|
if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
|
|
return (EINTR);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
|
|
{
|
|
struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
|
|
|
|
if (dsp->dsa_pending_op != PENDING_NONE) {
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
/* write a SPILL record */
|
|
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
|
|
dsp->dsa_drr->drr_type = DRR_SPILL;
|
|
drrs->drr_object = object;
|
|
drrs->drr_length = blksz;
|
|
drrs->drr_toguid = dsp->dsa_toguid;
|
|
|
|
if (dump_record(dsp, data, blksz) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
|
|
{
|
|
struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
|
|
|
|
/*
|
|
* If there is a pending op, but it's not PENDING_FREEOBJECTS,
|
|
* push it out, since free block aggregation can only be done for
|
|
* blocks of the same type (i.e., DRR_FREE records can only be
|
|
* aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
|
|
* can only be aggregated with other DRR_FREEOBJECTS records.
|
|
*/
|
|
if (dsp->dsa_pending_op != PENDING_NONE &&
|
|
dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
}
|
|
if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
|
|
/*
|
|
* See whether this free object array can be aggregated
|
|
* with pending one
|
|
*/
|
|
if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
|
|
drrfo->drr_numobjs += numobjs;
|
|
return (0);
|
|
} else {
|
|
/* can't be aggregated. Push out pending record */
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
}
|
|
}
|
|
|
|
/* write a FREEOBJECTS record */
|
|
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
|
|
dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
|
|
drrfo->drr_firstobj = firstobj;
|
|
drrfo->drr_numobjs = numobjs;
|
|
drrfo->drr_toguid = dsp->dsa_toguid;
|
|
|
|
dsp->dsa_pending_op = PENDING_FREEOBJECTS;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
|
|
{
|
|
struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
|
|
|
|
if (object < dsp->dsa_resume_object) {
|
|
/*
|
|
* Note: when resuming, we will visit all the dnodes in
|
|
* the block of dnodes that we are resuming from. In
|
|
* this case it's unnecessary to send the dnodes prior to
|
|
* the one we are resuming from. We should be at most one
|
|
* block's worth of dnodes behind the resume point.
|
|
*/
|
|
ASSERT3U(dsp->dsa_resume_object - object, <,
|
|
1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
|
|
return (0);
|
|
}
|
|
|
|
if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
|
|
return (dump_freeobjects(dsp, object, 1));
|
|
|
|
if (dsp->dsa_pending_op != PENDING_NONE) {
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
/* write an OBJECT record */
|
|
bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
|
|
dsp->dsa_drr->drr_type = DRR_OBJECT;
|
|
drro->drr_object = object;
|
|
drro->drr_type = dnp->dn_type;
|
|
drro->drr_bonustype = dnp->dn_bonustype;
|
|
drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
|
|
drro->drr_bonuslen = dnp->dn_bonuslen;
|
|
drro->drr_dn_slots = dnp->dn_extra_slots + 1;
|
|
drro->drr_checksumtype = dnp->dn_checksum;
|
|
drro->drr_compress = dnp->dn_compress;
|
|
drro->drr_toguid = dsp->dsa_toguid;
|
|
|
|
if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
|
drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
|
|
drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
|
|
|
|
if (dump_record(dsp, DN_BONUS(dnp),
|
|
P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
|
|
/* Free anything past the end of the file. */
|
|
if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
|
|
(dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
if (dsp->dsa_err != 0)
|
|
return (SET_ERROR(EINTR));
|
|
return (0);
|
|
}
|
|
|
|
static boolean_t
|
|
backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
|
|
{
|
|
if (!BP_IS_EMBEDDED(bp))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Compression function must be legacy, or explicitly enabled.
|
|
*/
|
|
if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
|
|
!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4)))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Embed type must be explicitly enabled.
|
|
*/
|
|
switch (BPE_GET_ETYPE(bp)) {
|
|
case BP_EMBEDDED_TYPE_DATA:
|
|
if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
|
|
return (B_TRUE);
|
|
break;
|
|
default:
|
|
return (B_FALSE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* This is the callback function to traverse_dataset that acts as the worker
|
|
* thread for dmu_send_impl.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
|
|
{
|
|
struct send_thread_arg *sta = arg;
|
|
struct send_block_record *record;
|
|
uint64_t record_size;
|
|
int err = 0;
|
|
|
|
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
|
|
zb->zb_object >= sta->resume.zb_object);
|
|
|
|
if (sta->cancel)
|
|
return (SET_ERROR(EINTR));
|
|
|
|
if (bp == NULL) {
|
|
ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
|
|
return (0);
|
|
} else if (zb->zb_level < 0) {
|
|
return (0);
|
|
}
|
|
|
|
record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
|
|
record->eos_marker = B_FALSE;
|
|
record->bp = *bp;
|
|
record->zb = *zb;
|
|
record->indblkshift = dnp->dn_indblkshift;
|
|
record->datablkszsec = dnp->dn_datablkszsec;
|
|
record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
|
|
bqueue_enqueue(&sta->q, record, record_size);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* This function kicks off the traverse_dataset. It also handles setting the
|
|
* error code of the thread in case something goes wrong, and pushes the End of
|
|
* Stream record when the traverse_dataset call has finished. If there is no
|
|
* dataset to traverse, the thread immediately pushes End of Stream marker.
|
|
*/
|
|
static void
|
|
send_traverse_thread(void *arg)
|
|
{
|
|
struct send_thread_arg *st_arg = arg;
|
|
int err;
|
|
struct send_block_record *data;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
if (st_arg->ds != NULL) {
|
|
err = traverse_dataset_resume(st_arg->ds,
|
|
st_arg->fromtxg, &st_arg->resume,
|
|
st_arg->flags, send_cb, st_arg);
|
|
|
|
if (err != EINTR)
|
|
st_arg->error_code = err;
|
|
}
|
|
data = kmem_zalloc(sizeof (*data), KM_SLEEP);
|
|
data->eos_marker = B_TRUE;
|
|
bqueue_enqueue(&st_arg->q, data, 1);
|
|
spl_fstrans_unmark(cookie);
|
|
thread_exit();
|
|
}
|
|
|
|
/*
|
|
* This function actually handles figuring out what kind of record needs to be
|
|
* dumped, reading the data (which has hopefully been prefetched), and calling
|
|
* the appropriate helper function.
|
|
*/
|
|
static int
|
|
do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
|
|
{
|
|
dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
|
|
const blkptr_t *bp = &data->bp;
|
|
const zbookmark_phys_t *zb = &data->zb;
|
|
uint8_t indblkshift = data->indblkshift;
|
|
uint16_t dblkszsec = data->datablkszsec;
|
|
spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
|
|
dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
|
|
int err = 0;
|
|
uint64_t dnobj;
|
|
|
|
ASSERT3U(zb->zb_level, >=, 0);
|
|
|
|
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
|
|
zb->zb_object >= dsa->dsa_resume_object);
|
|
|
|
if (zb->zb_object != DMU_META_DNODE_OBJECT &&
|
|
DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
|
|
return (0);
|
|
} else if (BP_IS_HOLE(bp) &&
|
|
zb->zb_object == DMU_META_DNODE_OBJECT) {
|
|
uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
|
|
uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
|
|
err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
|
|
} else if (BP_IS_HOLE(bp)) {
|
|
uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
|
|
uint64_t offset = zb->zb_blkid * span;
|
|
err = dump_free(dsa, zb->zb_object, offset, span);
|
|
} else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
|
|
return (0);
|
|
} else if (type == DMU_OT_DNODE) {
|
|
dnode_phys_t *blk;
|
|
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
|
|
arc_flags_t aflags = ARC_FLAG_WAIT;
|
|
arc_buf_t *abuf;
|
|
int i;
|
|
|
|
ASSERT0(zb->zb_level);
|
|
|
|
if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
|
|
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
|
|
&aflags, zb) != 0)
|
|
return (SET_ERROR(EIO));
|
|
|
|
blk = abuf->b_data;
|
|
dnobj = zb->zb_blkid * epb;
|
|
for (i = 0; i < epb; i += blk[i].dn_extra_slots + 1) {
|
|
err = dump_dnode(dsa, dnobj + i, blk + i);
|
|
if (err != 0)
|
|
break;
|
|
}
|
|
arc_buf_destroy(abuf, &abuf);
|
|
} else if (type == DMU_OT_SA) {
|
|
arc_flags_t aflags = ARC_FLAG_WAIT;
|
|
arc_buf_t *abuf;
|
|
int blksz = BP_GET_LSIZE(bp);
|
|
|
|
if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
|
|
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
|
|
&aflags, zb) != 0)
|
|
return (SET_ERROR(EIO));
|
|
|
|
err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
|
|
arc_buf_destroy(abuf, &abuf);
|
|
} else if (backup_do_embed(dsa, bp)) {
|
|
/* it's an embedded level-0 block of a regular object */
|
|
int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
|
|
ASSERT0(zb->zb_level);
|
|
err = dump_write_embedded(dsa, zb->zb_object,
|
|
zb->zb_blkid * blksz, blksz, bp);
|
|
} else {
|
|
/* it's a level-0 block of a regular object */
|
|
arc_flags_t aflags = ARC_FLAG_WAIT;
|
|
arc_buf_t *abuf;
|
|
int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
|
|
uint64_t offset;
|
|
enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
|
|
|
|
/*
|
|
* If we have large blocks stored on disk but the send flags
|
|
* don't allow us to send large blocks, we split the data from
|
|
* the arc buf into chunks.
|
|
*/
|
|
boolean_t split_large_blocks =
|
|
data->datablkszsec > SPA_OLD_MAXBLOCKSIZE &&
|
|
!(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
|
|
/*
|
|
* We should only request compressed data from the ARC if all
|
|
* the following are true:
|
|
* - stream compression was requested
|
|
* - we aren't splitting large blocks into smaller chunks
|
|
* - the data won't need to be byteswapped before sending
|
|
* - this isn't an embedded block
|
|
* - this isn't metadata (if receiving on a different endian
|
|
* system it can be byteswapped more easily)
|
|
*/
|
|
boolean_t request_compressed =
|
|
(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
|
|
!split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
|
|
!BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
|
|
|
|
ASSERT0(zb->zb_level);
|
|
ASSERT(zb->zb_object > dsa->dsa_resume_object ||
|
|
(zb->zb_object == dsa->dsa_resume_object &&
|
|
zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
|
|
|
|
if (request_compressed)
|
|
zioflags |= ZIO_FLAG_RAW;
|
|
|
|
if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
|
|
ZIO_PRIORITY_ASYNC_READ, zioflags,
|
|
&aflags, zb) != 0) {
|
|
if (zfs_send_corrupt_data) {
|
|
uint64_t *ptr;
|
|
/* Send a block filled with 0x"zfs badd bloc" */
|
|
abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA,
|
|
blksz);
|
|
for (ptr = abuf->b_data;
|
|
(char *)ptr < (char *)abuf->b_data + blksz;
|
|
ptr++)
|
|
*ptr = 0x2f5baddb10cULL;
|
|
} else {
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
}
|
|
|
|
offset = zb->zb_blkid * blksz;
|
|
|
|
if (split_large_blocks) {
|
|
char *buf = abuf->b_data;
|
|
ASSERT3U(arc_get_compression(abuf), ==,
|
|
ZIO_COMPRESS_OFF);
|
|
while (blksz > 0 && err == 0) {
|
|
int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
|
|
err = dump_write(dsa, type, zb->zb_object,
|
|
offset, n, n, NULL, buf);
|
|
offset += n;
|
|
buf += n;
|
|
blksz -= n;
|
|
}
|
|
} else {
|
|
err = dump_write(dsa, type, zb->zb_object, offset,
|
|
blksz, arc_buf_size(abuf), bp,
|
|
abuf->b_data);
|
|
}
|
|
arc_buf_destroy(abuf, &abuf);
|
|
}
|
|
|
|
ASSERT(err == 0 || err == EINTR);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Pop the new data off the queue, and free the old data.
|
|
*/
|
|
static struct send_block_record *
|
|
get_next_record(bqueue_t *bq, struct send_block_record *data)
|
|
{
|
|
struct send_block_record *tmp = bqueue_dequeue(bq);
|
|
kmem_free(data, sizeof (*data));
|
|
return (tmp);
|
|
}
|
|
|
|
/*
|
|
* Actually do the bulk of the work in a zfs send.
|
|
*
|
|
* Note: Releases dp using the specified tag.
|
|
*/
|
|
static int
|
|
dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
|
|
zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone,
|
|
boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
|
|
int outfd, uint64_t resumeobj, uint64_t resumeoff,
|
|
vnode_t *vp, offset_t *off)
|
|
{
|
|
objset_t *os;
|
|
dmu_replay_record_t *drr;
|
|
dmu_sendarg_t *dsp;
|
|
int err;
|
|
uint64_t fromtxg = 0;
|
|
uint64_t featureflags = 0;
|
|
struct send_thread_arg to_arg;
|
|
void *payload = NULL;
|
|
size_t payload_len = 0;
|
|
struct send_block_record *to_data;
|
|
|
|
err = dmu_objset_from_ds(to_ds, &os);
|
|
if (err != 0) {
|
|
dsl_pool_rele(dp, tag);
|
|
return (err);
|
|
}
|
|
|
|
drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
|
|
drr->drr_type = DRR_BEGIN;
|
|
drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
|
|
DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
|
|
DMU_SUBSTREAM);
|
|
|
|
bzero(&to_arg, sizeof (to_arg));
|
|
|
|
#ifdef _KERNEL
|
|
if (dmu_objset_type(os) == DMU_OST_ZFS) {
|
|
uint64_t version;
|
|
if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
|
|
kmem_free(drr, sizeof (dmu_replay_record_t));
|
|
dsl_pool_rele(dp, tag);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
if (version >= ZPL_VERSION_SA) {
|
|
featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
|
|
featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
|
|
if (to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE])
|
|
featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
|
|
if (embedok &&
|
|
spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
|
|
featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
|
|
}
|
|
if (compressok) {
|
|
featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
|
|
}
|
|
if ((featureflags &
|
|
(DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) !=
|
|
0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
|
|
featureflags |= DMU_BACKUP_FEATURE_LZ4;
|
|
}
|
|
|
|
if (resumeobj != 0 || resumeoff != 0) {
|
|
featureflags |= DMU_BACKUP_FEATURE_RESUMING;
|
|
}
|
|
|
|
DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
|
|
featureflags);
|
|
|
|
drr->drr_u.drr_begin.drr_creation_time =
|
|
dsl_dataset_phys(to_ds)->ds_creation_time;
|
|
drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
|
|
if (is_clone)
|
|
drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
|
|
drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
|
|
if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
|
|
drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
|
|
if (zfs_send_set_freerecords_bit)
|
|
drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
|
|
|
|
if (ancestor_zb != NULL) {
|
|
drr->drr_u.drr_begin.drr_fromguid =
|
|
ancestor_zb->zbm_guid;
|
|
fromtxg = ancestor_zb->zbm_creation_txg;
|
|
}
|
|
dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
|
|
if (!to_ds->ds_is_snapshot) {
|
|
(void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
|
|
sizeof (drr->drr_u.drr_begin.drr_toname));
|
|
}
|
|
|
|
dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
|
|
|
|
dsp->dsa_drr = drr;
|
|
dsp->dsa_vp = vp;
|
|
dsp->dsa_outfd = outfd;
|
|
dsp->dsa_proc = curproc;
|
|
dsp->dsa_os = os;
|
|
dsp->dsa_off = off;
|
|
dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
|
|
dsp->dsa_pending_op = PENDING_NONE;
|
|
dsp->dsa_featureflags = featureflags;
|
|
dsp->dsa_resume_object = resumeobj;
|
|
dsp->dsa_resume_offset = resumeoff;
|
|
|
|
mutex_enter(&to_ds->ds_sendstream_lock);
|
|
list_insert_head(&to_ds->ds_sendstreams, dsp);
|
|
mutex_exit(&to_ds->ds_sendstream_lock);
|
|
|
|
dsl_dataset_long_hold(to_ds, FTAG);
|
|
dsl_pool_rele(dp, tag);
|
|
|
|
if (resumeobj != 0 || resumeoff != 0) {
|
|
dmu_object_info_t to_doi;
|
|
nvlist_t *nvl;
|
|
err = dmu_object_info(os, resumeobj, &to_doi);
|
|
if (err != 0)
|
|
goto out;
|
|
SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
|
|
resumeoff / to_doi.doi_data_block_size);
|
|
|
|
nvl = fnvlist_alloc();
|
|
fnvlist_add_uint64(nvl, "resume_object", resumeobj);
|
|
fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
|
|
payload = fnvlist_pack(nvl, &payload_len);
|
|
drr->drr_payloadlen = payload_len;
|
|
fnvlist_free(nvl);
|
|
}
|
|
|
|
err = dump_record(dsp, payload, payload_len);
|
|
fnvlist_pack_free(payload, payload_len);
|
|
if (err != 0) {
|
|
err = dsp->dsa_err;
|
|
goto out;
|
|
}
|
|
|
|
err = bqueue_init(&to_arg.q, zfs_send_queue_length,
|
|
offsetof(struct send_block_record, ln));
|
|
to_arg.error_code = 0;
|
|
to_arg.cancel = B_FALSE;
|
|
to_arg.ds = to_ds;
|
|
to_arg.fromtxg = fromtxg;
|
|
to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
|
|
(void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
|
|
TS_RUN, minclsyspri);
|
|
|
|
to_data = bqueue_dequeue(&to_arg.q);
|
|
|
|
while (!to_data->eos_marker && err == 0) {
|
|
err = do_dump(dsp, to_data);
|
|
to_data = get_next_record(&to_arg.q, to_data);
|
|
if (issig(JUSTLOOKING) && issig(FORREAL))
|
|
err = EINTR;
|
|
}
|
|
|
|
if (err != 0) {
|
|
to_arg.cancel = B_TRUE;
|
|
while (!to_data->eos_marker) {
|
|
to_data = get_next_record(&to_arg.q, to_data);
|
|
}
|
|
}
|
|
kmem_free(to_data, sizeof (*to_data));
|
|
|
|
bqueue_destroy(&to_arg.q);
|
|
|
|
if (err == 0 && to_arg.error_code != 0)
|
|
err = to_arg.error_code;
|
|
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
if (dsp->dsa_pending_op != PENDING_NONE)
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
err = SET_ERROR(EINTR);
|
|
|
|
if (err != 0) {
|
|
if (err == EINTR && dsp->dsa_err != 0)
|
|
err = dsp->dsa_err;
|
|
goto out;
|
|
}
|
|
|
|
bzero(drr, sizeof (dmu_replay_record_t));
|
|
drr->drr_type = DRR_END;
|
|
drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
|
|
drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
|
|
|
|
if (dump_record(dsp, NULL, 0) != 0)
|
|
err = dsp->dsa_err;
|
|
|
|
out:
|
|
mutex_enter(&to_ds->ds_sendstream_lock);
|
|
list_remove(&to_ds->ds_sendstreams, dsp);
|
|
mutex_exit(&to_ds->ds_sendstream_lock);
|
|
|
|
VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end));
|
|
|
|
kmem_free(drr, sizeof (dmu_replay_record_t));
|
|
kmem_free(dsp, sizeof (dmu_sendarg_t));
|
|
|
|
dsl_dataset_long_rele(to_ds, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
|
|
boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
|
|
int outfd, vnode_t *vp, offset_t *off)
|
|
{
|
|
dsl_pool_t *dp;
|
|
dsl_dataset_t *ds;
|
|
dsl_dataset_t *fromds = NULL;
|
|
int err;
|
|
|
|
err = dsl_pool_hold(pool, FTAG, &dp);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
|
|
if (err != 0) {
|
|
dsl_pool_rele(dp, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
if (fromsnap != 0) {
|
|
zfs_bookmark_phys_t zb;
|
|
boolean_t is_clone;
|
|
|
|
err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
|
|
if (err != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
dsl_pool_rele(dp, FTAG);
|
|
return (err);
|
|
}
|
|
if (!dsl_dataset_is_before(ds, fromds, 0))
|
|
err = SET_ERROR(EXDEV);
|
|
zb.zbm_creation_time =
|
|
dsl_dataset_phys(fromds)->ds_creation_time;
|
|
zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
|
|
zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
|
|
is_clone = (fromds->ds_dir != ds->ds_dir);
|
|
dsl_dataset_rele(fromds, FTAG);
|
|
err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
|
|
embedok, large_block_ok, compressok, outfd, 0, 0, vp, off);
|
|
} else {
|
|
err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
|
|
embedok, large_block_ok, compressok, outfd, 0, 0, vp, off);
|
|
}
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
|
|
boolean_t large_block_ok, boolean_t compressok, int outfd,
|
|
uint64_t resumeobj, uint64_t resumeoff,
|
|
vnode_t *vp, offset_t *off)
|
|
{
|
|
dsl_pool_t *dp;
|
|
dsl_dataset_t *ds;
|
|
int err;
|
|
boolean_t owned = B_FALSE;
|
|
|
|
if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
err = dsl_pool_hold(tosnap, FTAG, &dp);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
|
|
/*
|
|
* We are sending a filesystem or volume. Ensure
|
|
* that it doesn't change by owning the dataset.
|
|
*/
|
|
err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
|
|
owned = B_TRUE;
|
|
} else {
|
|
err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
|
|
}
|
|
if (err != 0) {
|
|
dsl_pool_rele(dp, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
if (fromsnap != NULL) {
|
|
zfs_bookmark_phys_t zb;
|
|
boolean_t is_clone = B_FALSE;
|
|
int fsnamelen = strchr(tosnap, '@') - tosnap;
|
|
|
|
/*
|
|
* If the fromsnap is in a different filesystem, then
|
|
* mark the send stream as a clone.
|
|
*/
|
|
if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
|
|
(fromsnap[fsnamelen] != '@' &&
|
|
fromsnap[fsnamelen] != '#')) {
|
|
is_clone = B_TRUE;
|
|
}
|
|
|
|
if (strchr(fromsnap, '@')) {
|
|
dsl_dataset_t *fromds;
|
|
err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
|
|
if (err == 0) {
|
|
if (!dsl_dataset_is_before(ds, fromds, 0))
|
|
err = SET_ERROR(EXDEV);
|
|
zb.zbm_creation_time =
|
|
dsl_dataset_phys(fromds)->ds_creation_time;
|
|
zb.zbm_creation_txg =
|
|
dsl_dataset_phys(fromds)->ds_creation_txg;
|
|
zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
|
|
is_clone = (ds->ds_dir != fromds->ds_dir);
|
|
dsl_dataset_rele(fromds, FTAG);
|
|
}
|
|
} else {
|
|
err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
|
|
}
|
|
if (err != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
dsl_pool_rele(dp, FTAG);
|
|
return (err);
|
|
}
|
|
err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
|
|
embedok, large_block_ok, compressok,
|
|
outfd, resumeobj, resumeoff, vp, off);
|
|
} else {
|
|
err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
|
|
embedok, large_block_ok, compressok,
|
|
outfd, resumeobj, resumeoff, vp, off);
|
|
}
|
|
if (owned)
|
|
dsl_dataset_disown(ds, FTAG);
|
|
else
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
|
|
uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
|
|
{
|
|
int err;
|
|
uint64_t size;
|
|
/*
|
|
* Assume that space (both on-disk and in-stream) is dominated by
|
|
* data. We will adjust for indirect blocks and the copies property,
|
|
* but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
|
|
*/
|
|
|
|
uint64_t recordsize;
|
|
uint64_t record_count;
|
|
|
|
/* Assume all (uncompressed) blocks are recordsize. */
|
|
err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
|
|
&recordsize);
|
|
if (err != 0)
|
|
return (err);
|
|
record_count = uncompressed / recordsize;
|
|
|
|
/*
|
|
* If we're estimating a send size for a compressed stream, use the
|
|
* compressed data size to estimate the stream size. Otherwise, use the
|
|
* uncompressed data size.
|
|
*/
|
|
size = stream_compressed ? compressed : uncompressed;
|
|
|
|
/*
|
|
* Subtract out approximate space used by indirect blocks.
|
|
* Assume most space is used by data blocks (non-indirect, non-dnode).
|
|
* Assume no ditto blocks or internal fragmentation.
|
|
*
|
|
* Therefore, space used by indirect blocks is sizeof(blkptr_t) per
|
|
* block.
|
|
*/
|
|
size -= record_count * sizeof (blkptr_t);
|
|
|
|
/* Add in the space for the record associated with each block. */
|
|
size += record_count * sizeof (dmu_replay_record_t);
|
|
|
|
*sizep = size;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds,
|
|
boolean_t stream_compressed, uint64_t *sizep)
|
|
{
|
|
int err;
|
|
uint64_t uncomp, comp;
|
|
|
|
ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
|
|
|
|
/* tosnap must be a snapshot */
|
|
if (!ds->ds_is_snapshot)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* fromsnap, if provided, must be a snapshot */
|
|
if (fromds != NULL && !fromds->ds_is_snapshot)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* fromsnap must be an earlier snapshot from the same fs as tosnap,
|
|
* or the origin's fs.
|
|
*/
|
|
if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
|
|
return (SET_ERROR(EXDEV));
|
|
|
|
/* Get compressed and uncompressed size estimates of changed data. */
|
|
if (fromds == NULL) {
|
|
uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
|
|
comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
|
|
} else {
|
|
uint64_t used;
|
|
err = dsl_dataset_space_written(fromds, ds,
|
|
&used, &comp, &uncomp);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
|
|
err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
|
|
stream_compressed, sizep);
|
|
return (err);
|
|
}
|
|
|
|
struct calculate_send_arg {
|
|
uint64_t uncompressed;
|
|
uint64_t compressed;
|
|
};
|
|
|
|
/*
|
|
* Simple callback used to traverse the blocks of a snapshot and sum their
|
|
* uncompressed and compressed sizes.
|
|
*/
|
|
/* ARGSUSED */
|
|
static int
|
|
dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
|
|
{
|
|
struct calculate_send_arg *space = arg;
|
|
if (bp != NULL && !BP_IS_HOLE(bp)) {
|
|
space->uncompressed += BP_GET_UCSIZE(bp);
|
|
space->compressed += BP_GET_PSIZE(bp);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a desination snapshot and a TXG, calculate the approximate size of a
|
|
* send stream sent from that TXG. from_txg may be zero, indicating that the
|
|
* whole snapshot will be sent.
|
|
*/
|
|
int
|
|
dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
|
|
boolean_t stream_compressed, uint64_t *sizep)
|
|
{
|
|
int err;
|
|
struct calculate_send_arg size = { 0 };
|
|
|
|
ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
|
|
|
|
/* tosnap must be a snapshot */
|
|
if (!dsl_dataset_is_snapshot(ds))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* verify that from_txg is before the provided snapshot was taken */
|
|
if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
/*
|
|
* traverse the blocks of the snapshot with birth times after
|
|
* from_txg, summing their uncompressed size
|
|
*/
|
|
err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
|
|
dmu_calculate_send_traversal, &size);
|
|
|
|
if (err)
|
|
return (err);
|
|
|
|
err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed,
|
|
size.compressed, stream_compressed, sizep);
|
|
return (err);
|
|
}
|
|
|
|
typedef struct dmu_recv_begin_arg {
|
|
const char *drba_origin;
|
|
dmu_recv_cookie_t *drba_cookie;
|
|
cred_t *drba_cred;
|
|
uint64_t drba_snapobj;
|
|
} dmu_recv_begin_arg_t;
|
|
|
|
static int
|
|
recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
|
|
uint64_t fromguid)
|
|
{
|
|
uint64_t val;
|
|
int error;
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
|
|
/* temporary clone name must not exist */
|
|
error = zap_lookup(dp->dp_meta_objset,
|
|
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
|
|
8, 1, &val);
|
|
if (error != ENOENT)
|
|
return (error == 0 ? EBUSY : error);
|
|
|
|
/* new snapshot name must not exist */
|
|
error = zap_lookup(dp->dp_meta_objset,
|
|
dsl_dataset_phys(ds)->ds_snapnames_zapobj,
|
|
drba->drba_cookie->drc_tosnap, 8, 1, &val);
|
|
if (error != ENOENT)
|
|
return (error == 0 ? EEXIST : error);
|
|
|
|
/*
|
|
* Check snapshot limit before receiving. We'll recheck again at the
|
|
* end, but might as well abort before receiving if we're already over
|
|
* the limit.
|
|
*
|
|
* Note that we do not check the file system limit with
|
|
* dsl_dir_fscount_check because the temporary %clones don't count
|
|
* against that limit.
|
|
*/
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
|
|
NULL, drba->drba_cred);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (fromguid != 0) {
|
|
dsl_dataset_t *snap;
|
|
uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
|
|
|
/* Find snapshot in this dir that matches fromguid. */
|
|
while (obj != 0) {
|
|
error = dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap);
|
|
if (error != 0)
|
|
return (SET_ERROR(ENODEV));
|
|
if (snap->ds_dir != ds->ds_dir) {
|
|
dsl_dataset_rele(snap, FTAG);
|
|
return (SET_ERROR(ENODEV));
|
|
}
|
|
if (dsl_dataset_phys(snap)->ds_guid == fromguid)
|
|
break;
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_dataset_rele(snap, FTAG);
|
|
}
|
|
if (obj == 0)
|
|
return (SET_ERROR(ENODEV));
|
|
|
|
if (drba->drba_cookie->drc_force) {
|
|
drba->drba_snapobj = obj;
|
|
} else {
|
|
/*
|
|
* If we are not forcing, there must be no
|
|
* changes since fromsnap.
|
|
*/
|
|
if (dsl_dataset_modified_since_snap(ds, snap)) {
|
|
dsl_dataset_rele(snap, FTAG);
|
|
return (SET_ERROR(ETXTBSY));
|
|
}
|
|
drba->drba_snapobj = ds->ds_prev->ds_object;
|
|
}
|
|
|
|
dsl_dataset_rele(snap, FTAG);
|
|
} else {
|
|
/* if full, then must be forced */
|
|
if (!drba->drba_cookie->drc_force)
|
|
return (SET_ERROR(EEXIST));
|
|
/* start from $ORIGIN@$ORIGIN, if supported */
|
|
drba->drba_snapobj = dp->dp_origin_snap != NULL ?
|
|
dp->dp_origin_snap->ds_object : 0;
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
static int
|
|
dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
|
uint64_t fromguid = drrb->drr_fromguid;
|
|
int flags = drrb->drr_flags;
|
|
int error;
|
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
|
dsl_dataset_t *ds;
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
|
|
/* already checked */
|
|
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
|
ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
|
|
|
|
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
|
|
DMU_COMPOUNDSTREAM ||
|
|
drrb->drr_type >= DMU_OST_NUMTYPES ||
|
|
((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Verify pool version supports SA if SA_SPILL feature set */
|
|
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
|
|
spa_version(dp->dp_spa) < SPA_VERSION_SA)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (drba->drba_cookie->drc_resumable &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
|
|
* record to a plain WRITE record, so the pool must have the
|
|
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
|
|
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* The receiving code doesn't know how to translate large blocks
|
|
* to smaller ones, so the pool must have the LARGE_BLOCKS
|
|
* feature enabled if the stream has LARGE_BLOCKS.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* The receiving code doesn't know how to translate large dnodes
|
|
* to smaller ones, so the pool must have the LARGE_DNODE
|
|
* feature enabled if the stream has LARGE_DNODE.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
|
|
if (error == 0) {
|
|
/* target fs already exists; recv into temp clone */
|
|
|
|
/* Can't recv a clone into an existing fs */
|
|
if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
error = recv_begin_check_existing_impl(drba, ds, fromguid);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
} else if (error == ENOENT) {
|
|
/* target fs does not exist; must be a full backup or clone */
|
|
char buf[ZFS_MAX_DATASET_NAME_LEN];
|
|
|
|
/*
|
|
* If it's a non-clone incremental, we are missing the
|
|
* target fs, so fail the recv.
|
|
*/
|
|
if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
|
|
drba->drba_origin))
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
/*
|
|
* If we're receiving a full send as a clone, and it doesn't
|
|
* contain all the necessary free records and freeobject
|
|
* records, reject it.
|
|
*/
|
|
if (fromguid == 0 && drba->drba_origin &&
|
|
!(flags & DRR_FLAG_FREERECORDS))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Open the parent of tofs */
|
|
ASSERT3U(strlen(tofs), <, sizeof (buf));
|
|
(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
|
|
error = dsl_dataset_hold(dp, buf, FTAG, &ds);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Check filesystem and snapshot limits before receiving. We'll
|
|
* recheck snapshot limits again at the end (we create the
|
|
* filesystems and increment those counts during begin_sync).
|
|
*/
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
|
|
ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
|
|
ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
if (drba->drba_origin != NULL) {
|
|
dsl_dataset_t *origin;
|
|
error = dsl_dataset_hold(dp, drba->drba_origin,
|
|
FTAG, &origin);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (error);
|
|
}
|
|
if (!origin->ds_is_snapshot) {
|
|
dsl_dataset_rele(origin, FTAG);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
|
|
fromguid != 0) {
|
|
dsl_dataset_rele(origin, FTAG);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(ENODEV));
|
|
}
|
|
dsl_dataset_rele(origin, FTAG);
|
|
}
|
|
dsl_dataset_rele(ds, FTAG);
|
|
error = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
dsl_dataset_t *ds, *newds;
|
|
uint64_t dsobj;
|
|
int error;
|
|
uint64_t crflags = 0;
|
|
|
|
if (drrb->drr_flags & DRR_FLAG_CI_DATA)
|
|
crflags |= DS_FLAG_CI_DATASET;
|
|
|
|
error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
|
|
if (error == 0) {
|
|
/* create temporary clone */
|
|
dsl_dataset_t *snap = NULL;
|
|
if (drba->drba_snapobj != 0) {
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
drba->drba_snapobj, FTAG, &snap));
|
|
}
|
|
dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
|
|
snap, crflags, drba->drba_cred, tx);
|
|
if (drba->drba_snapobj != 0)
|
|
dsl_dataset_rele(snap, FTAG);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
} else {
|
|
dsl_dir_t *dd;
|
|
const char *tail;
|
|
dsl_dataset_t *origin = NULL;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
|
|
|
|
if (drba->drba_origin != NULL) {
|
|
VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
|
|
FTAG, &origin));
|
|
}
|
|
|
|
/* Create new dataset. */
|
|
dsobj = dsl_dataset_create_sync(dd,
|
|
strrchr(tofs, '/') + 1,
|
|
origin, crflags, drba->drba_cred, tx);
|
|
if (origin != NULL)
|
|
dsl_dataset_rele(origin, FTAG);
|
|
dsl_dir_rele(dd, FTAG);
|
|
drba->drba_cookie->drc_newfs = B_TRUE;
|
|
}
|
|
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
|
|
|
|
if (drba->drba_cookie->drc_resumable) {
|
|
uint64_t one = 1;
|
|
uint64_t zero = 0;
|
|
|
|
dsl_dataset_zapify(newds, tx);
|
|
if (drrb->drr_fromguid != 0) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
|
|
8, 1, &drrb->drr_fromguid, tx));
|
|
}
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
|
|
8, 1, &drrb->drr_toguid, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
|
|
1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
|
|
8, 1, &one, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
|
|
8, 1, &zero, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
|
|
8, 1, &zero, tx));
|
|
if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
|
|
DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
|
|
8, 1, &one, tx));
|
|
}
|
|
if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
|
|
DMU_BACKUP_FEATURE_EMBED_DATA) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
|
|
8, 1, &one, tx));
|
|
}
|
|
if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
|
|
DMU_BACKUP_FEATURE_COMPRESSED) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
|
|
8, 1, &one, tx));
|
|
}
|
|
}
|
|
|
|
dmu_buf_will_dirty(newds->ds_dbuf, tx);
|
|
dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
|
|
|
|
/*
|
|
* If we actually created a non-clone, we need to create the
|
|
* objset in our new dataset.
|
|
*/
|
|
rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
|
|
if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
|
|
(void) dmu_objset_create_impl(dp->dp_spa,
|
|
newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
|
|
}
|
|
rrw_exit(&newds->ds_bp_rwlock, FTAG);
|
|
|
|
drba->drba_cookie->drc_ds = newds;
|
|
|
|
spa_history_log_internal_ds(newds, "receive", tx, "");
|
|
}
|
|
|
|
static int
|
|
dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
|
int error;
|
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
|
dsl_dataset_t *ds;
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
uint64_t val;
|
|
|
|
/* 6 extra bytes for /%recv */
|
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
|
|
|
/* already checked */
|
|
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
|
ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
|
|
|
|
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
|
|
DMU_COMPOUNDSTREAM ||
|
|
drrb->drr_type >= DMU_OST_NUMTYPES)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Verify pool version supports SA if SA_SPILL feature set */
|
|
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
|
|
spa_version(dp->dp_spa) < SPA_VERSION_SA)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
|
|
* record to a plain WRITE record, so the pool must have the
|
|
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
|
|
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
|
|
tofs, recv_clone_name);
|
|
|
|
if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
|
|
/* %recv does not exist; continue in tofs */
|
|
error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
/* check that ds is marked inconsistent */
|
|
if (!DS_IS_INCONSISTENT(ds)) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/* check that there is resuming data, and that the toguid matches */
|
|
if (!dsl_dataset_is_zapified(ds)) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
|
|
if (error != 0 || drrb->drr_toguid != val) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Check if the receive is still running. If so, it will be owned.
|
|
* Note that nothing else can own the dataset (e.g. after the receive
|
|
* fails) because it will be marked inconsistent.
|
|
*/
|
|
if (dsl_dataset_has_owner(ds)) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EBUSY));
|
|
}
|
|
|
|
/* There should not be any snapshots of this fs yet. */
|
|
if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Note: resume point will be checked when we process the first WRITE
|
|
* record.
|
|
*/
|
|
|
|
/* check that the origin matches */
|
|
val = 0;
|
|
(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
|
|
if (drrb->drr_fromguid != val) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
dsl_dataset_t *ds;
|
|
uint64_t dsobj;
|
|
/* 6 extra bytes for /%recv */
|
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
|
|
|
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
|
|
tofs, recv_clone_name);
|
|
|
|
if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
|
|
/* %recv does not exist; continue in tofs */
|
|
VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
|
|
drba->drba_cookie->drc_newfs = B_TRUE;
|
|
}
|
|
|
|
/* clear the inconsistent flag so that we can own it */
|
|
ASSERT(DS_IS_INCONSISTENT(ds));
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
|
|
dsobj = ds->ds_object;
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
|
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
|
|
drba->drba_cookie->drc_ds = ds;
|
|
|
|
spa_history_log_internal_ds(ds, "resume receive", tx, "");
|
|
}
|
|
|
|
/*
|
|
* NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
|
|
* succeeds; otherwise we will leak the holds on the datasets.
|
|
*/
|
|
int
|
|
dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
|
|
boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
|
|
{
|
|
dmu_recv_begin_arg_t drba = { 0 };
|
|
|
|
bzero(drc, sizeof (dmu_recv_cookie_t));
|
|
drc->drc_drr_begin = drr_begin;
|
|
drc->drc_drrb = &drr_begin->drr_u.drr_begin;
|
|
drc->drc_tosnap = tosnap;
|
|
drc->drc_tofs = tofs;
|
|
drc->drc_force = force;
|
|
drc->drc_resumable = resumable;
|
|
drc->drc_cred = CRED();
|
|
|
|
if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
|
|
drc->drc_byteswap = B_TRUE;
|
|
(void) fletcher_4_incremental_byteswap(drr_begin,
|
|
sizeof (dmu_replay_record_t), &drc->drc_cksum);
|
|
byteswap_record(drr_begin);
|
|
} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
|
|
(void) fletcher_4_incremental_native(drr_begin,
|
|
sizeof (dmu_replay_record_t), &drc->drc_cksum);
|
|
} else {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
drba.drba_origin = origin;
|
|
drba.drba_cookie = drc;
|
|
drba.drba_cred = CRED();
|
|
|
|
if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
|
|
DMU_BACKUP_FEATURE_RESUMING) {
|
|
return (dsl_sync_task(tofs,
|
|
dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
|
|
&drba, 5, ZFS_SPACE_CHECK_NORMAL));
|
|
} else {
|
|
return (dsl_sync_task(tofs,
|
|
dmu_recv_begin_check, dmu_recv_begin_sync,
|
|
&drba, 5, ZFS_SPACE_CHECK_NORMAL));
|
|
}
|
|
}
|
|
|
|
struct receive_record_arg {
|
|
dmu_replay_record_t header;
|
|
void *payload; /* Pointer to a buffer containing the payload */
|
|
/*
|
|
* If the record is a write, pointer to the arc_buf_t containing the
|
|
* payload.
|
|
*/
|
|
arc_buf_t *write_buf;
|
|
int payload_size;
|
|
uint64_t bytes_read; /* bytes read from stream when record created */
|
|
boolean_t eos_marker; /* Marks the end of the stream */
|
|
bqueue_node_t node;
|
|
};
|
|
|
|
struct receive_writer_arg {
|
|
objset_t *os;
|
|
boolean_t byteswap;
|
|
bqueue_t q;
|
|
|
|
/*
|
|
* These three args are used to signal to the main thread that we're
|
|
* done.
|
|
*/
|
|
kmutex_t mutex;
|
|
kcondvar_t cv;
|
|
boolean_t done;
|
|
|
|
int err;
|
|
/* A map from guid to dataset to help handle dedup'd streams. */
|
|
avl_tree_t *guid_to_ds_map;
|
|
boolean_t resumable;
|
|
uint64_t last_object, last_offset;
|
|
uint64_t bytes_read; /* bytes read when current record created */
|
|
};
|
|
|
|
struct objlist {
|
|
list_t list; /* List of struct receive_objnode. */
|
|
/*
|
|
* Last object looked up. Used to assert that objects are being looked
|
|
* up in ascending order.
|
|
*/
|
|
uint64_t last_lookup;
|
|
};
|
|
|
|
struct receive_objnode {
|
|
list_node_t node;
|
|
uint64_t object;
|
|
};
|
|
|
|
struct receive_arg {
|
|
objset_t *os;
|
|
vnode_t *vp; /* The vnode to read the stream from */
|
|
uint64_t voff; /* The current offset in the stream */
|
|
uint64_t bytes_read;
|
|
/*
|
|
* A record that has had its payload read in, but hasn't yet been handed
|
|
* off to the worker thread.
|
|
*/
|
|
struct receive_record_arg *rrd;
|
|
/* A record that has had its header read in, but not its payload. */
|
|
struct receive_record_arg *next_rrd;
|
|
zio_cksum_t cksum;
|
|
zio_cksum_t prev_cksum;
|
|
int err;
|
|
boolean_t byteswap;
|
|
/* Sorted list of objects not to issue prefetches for. */
|
|
struct objlist ignore_objlist;
|
|
};
|
|
|
|
typedef struct guid_map_entry {
|
|
uint64_t guid;
|
|
dsl_dataset_t *gme_ds;
|
|
avl_node_t avlnode;
|
|
} guid_map_entry_t;
|
|
|
|
static int
|
|
guid_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
|
|
const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
|
|
|
|
return (AVL_CMP(gmep1->guid, gmep2->guid));
|
|
}
|
|
|
|
static void
|
|
free_guid_map_onexit(void *arg)
|
|
{
|
|
avl_tree_t *ca = arg;
|
|
void *cookie = NULL;
|
|
guid_map_entry_t *gmep;
|
|
|
|
while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
|
|
dsl_dataset_long_rele(gmep->gme_ds, gmep);
|
|
dsl_dataset_rele(gmep->gme_ds, gmep);
|
|
kmem_free(gmep, sizeof (guid_map_entry_t));
|
|
}
|
|
avl_destroy(ca);
|
|
kmem_free(ca, sizeof (avl_tree_t));
|
|
}
|
|
|
|
static int
|
|
receive_read(struct receive_arg *ra, int len, void *buf)
|
|
{
|
|
int done = 0;
|
|
|
|
/*
|
|
* The code doesn't rely on this (lengths being multiples of 8). See
|
|
* comment in dump_bytes.
|
|
*/
|
|
ASSERT0(len % 8);
|
|
|
|
while (done < len) {
|
|
ssize_t resid;
|
|
|
|
ra->err = vn_rdwr(UIO_READ, ra->vp,
|
|
(char *)buf + done, len - done,
|
|
ra->voff, UIO_SYSSPACE, FAPPEND,
|
|
RLIM64_INFINITY, CRED(), &resid);
|
|
|
|
if (resid == len - done) {
|
|
/*
|
|
* Note: ECKSUM indicates that the receive
|
|
* was interrupted and can potentially be resumed.
|
|
*/
|
|
ra->err = SET_ERROR(ECKSUM);
|
|
}
|
|
ra->voff += len - done - resid;
|
|
done = len - resid;
|
|
if (ra->err != 0)
|
|
return (ra->err);
|
|
}
|
|
|
|
ra->bytes_read += len;
|
|
|
|
ASSERT3U(done, ==, len);
|
|
return (0);
|
|
}
|
|
|
|
noinline static void
|
|
byteswap_record(dmu_replay_record_t *drr)
|
|
{
|
|
#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
|
|
#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
|
|
drr->drr_type = BSWAP_32(drr->drr_type);
|
|
drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
|
|
|
|
switch (drr->drr_type) {
|
|
case DRR_BEGIN:
|
|
DO64(drr_begin.drr_magic);
|
|
DO64(drr_begin.drr_versioninfo);
|
|
DO64(drr_begin.drr_creation_time);
|
|
DO32(drr_begin.drr_type);
|
|
DO32(drr_begin.drr_flags);
|
|
DO64(drr_begin.drr_toguid);
|
|
DO64(drr_begin.drr_fromguid);
|
|
break;
|
|
case DRR_OBJECT:
|
|
DO64(drr_object.drr_object);
|
|
DO32(drr_object.drr_type);
|
|
DO32(drr_object.drr_bonustype);
|
|
DO32(drr_object.drr_blksz);
|
|
DO32(drr_object.drr_bonuslen);
|
|
DO64(drr_object.drr_toguid);
|
|
break;
|
|
case DRR_FREEOBJECTS:
|
|
DO64(drr_freeobjects.drr_firstobj);
|
|
DO64(drr_freeobjects.drr_numobjs);
|
|
DO64(drr_freeobjects.drr_toguid);
|
|
break;
|
|
case DRR_WRITE:
|
|
DO64(drr_write.drr_object);
|
|
DO32(drr_write.drr_type);
|
|
DO64(drr_write.drr_offset);
|
|
DO64(drr_write.drr_logical_size);
|
|
DO64(drr_write.drr_toguid);
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
|
|
DO64(drr_write.drr_key.ddk_prop);
|
|
DO64(drr_write.drr_compressed_size);
|
|
break;
|
|
case DRR_WRITE_BYREF:
|
|
DO64(drr_write_byref.drr_object);
|
|
DO64(drr_write_byref.drr_offset);
|
|
DO64(drr_write_byref.drr_length);
|
|
DO64(drr_write_byref.drr_toguid);
|
|
DO64(drr_write_byref.drr_refguid);
|
|
DO64(drr_write_byref.drr_refobject);
|
|
DO64(drr_write_byref.drr_refoffset);
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
|
|
drr_key.ddk_cksum);
|
|
DO64(drr_write_byref.drr_key.ddk_prop);
|
|
break;
|
|
case DRR_WRITE_EMBEDDED:
|
|
DO64(drr_write_embedded.drr_object);
|
|
DO64(drr_write_embedded.drr_offset);
|
|
DO64(drr_write_embedded.drr_length);
|
|
DO64(drr_write_embedded.drr_toguid);
|
|
DO32(drr_write_embedded.drr_lsize);
|
|
DO32(drr_write_embedded.drr_psize);
|
|
break;
|
|
case DRR_FREE:
|
|
DO64(drr_free.drr_object);
|
|
DO64(drr_free.drr_offset);
|
|
DO64(drr_free.drr_length);
|
|
DO64(drr_free.drr_toguid);
|
|
break;
|
|
case DRR_SPILL:
|
|
DO64(drr_spill.drr_object);
|
|
DO64(drr_spill.drr_length);
|
|
DO64(drr_spill.drr_toguid);
|
|
break;
|
|
case DRR_END:
|
|
DO64(drr_end.drr_toguid);
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (drr->drr_type != DRR_BEGIN) {
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
|
|
}
|
|
|
|
#undef DO64
|
|
#undef DO32
|
|
}
|
|
|
|
static inline uint8_t
|
|
deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
|
|
{
|
|
if (bonus_type == DMU_OT_SA) {
|
|
return (1);
|
|
} else {
|
|
return (1 +
|
|
((DN_OLD_MAX_BONUSLEN -
|
|
MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
|
|
}
|
|
}
|
|
|
|
static void
|
|
save_resume_state(struct receive_writer_arg *rwa,
|
|
uint64_t object, uint64_t offset, dmu_tx_t *tx)
|
|
{
|
|
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
|
|
|
if (!rwa->resumable)
|
|
return;
|
|
|
|
/*
|
|
* We use ds_resume_bytes[] != 0 to indicate that we need to
|
|
* update this on disk, so it must not be 0.
|
|
*/
|
|
ASSERT(rwa->bytes_read != 0);
|
|
|
|
/*
|
|
* We only resume from write records, which have a valid
|
|
* (non-meta-dnode) object number.
|
|
*/
|
|
ASSERT(object != 0);
|
|
|
|
/*
|
|
* For resuming to work correctly, we must receive records in order,
|
|
* sorted by object,offset. This is checked by the callers, but
|
|
* assert it here for good measure.
|
|
*/
|
|
ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
|
|
ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
|
|
offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
|
|
ASSERT3U(rwa->bytes_read, >=,
|
|
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
|
|
|
|
rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
|
|
rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
|
|
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
|
|
}
|
|
|
|
noinline static int
|
|
receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
|
|
void *data)
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_tx_t *tx;
|
|
uint64_t object;
|
|
int err;
|
|
|
|
if (drro->drr_type == DMU_OT_NONE ||
|
|
!DMU_OT_IS_VALID(drro->drr_type) ||
|
|
!DMU_OT_IS_VALID(drro->drr_bonustype) ||
|
|
drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
|
|
drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
|
|
P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
|
|
drro->drr_blksz < SPA_MINBLOCKSIZE ||
|
|
drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
|
|
drro->drr_bonuslen >
|
|
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os)))) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
err = dmu_object_info(rwa->os, drro->drr_object, &doi);
|
|
|
|
if (err != 0 && err != ENOENT)
|
|
return (SET_ERROR(EINVAL));
|
|
object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
|
|
|
|
/*
|
|
* If we are losing blkptrs or changing the block size this must
|
|
* be a new file instance. We must clear out the previous file
|
|
* contents before we can change this type of metadata in the dnode.
|
|
*/
|
|
if (err == 0) {
|
|
int nblkptr;
|
|
|
|
nblkptr = deduce_nblkptr(drro->drr_bonustype,
|
|
drro->drr_bonuslen);
|
|
|
|
if (drro->drr_blksz != doi.doi_data_block_size ||
|
|
nblkptr < doi.doi_nblkptr) {
|
|
err = dmu_free_long_range(rwa->os, drro->drr_object,
|
|
0, DMU_OBJECT_END);
|
|
if (err != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
dmu_tx_hold_bonus(tx, object);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
if (object == DMU_NEW_OBJECT) {
|
|
/* currently free, want to be allocated */
|
|
err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
|
|
drro->drr_type, drro->drr_blksz,
|
|
drro->drr_bonustype, drro->drr_bonuslen,
|
|
drro->drr_dn_slots << DNODE_SHIFT, tx);
|
|
} else if (drro->drr_type != doi.doi_type ||
|
|
drro->drr_blksz != doi.doi_data_block_size ||
|
|
drro->drr_bonustype != doi.doi_bonus_type ||
|
|
drro->drr_bonuslen != doi.doi_bonus_size) {
|
|
/* currently allocated, but with different properties */
|
|
err = dmu_object_reclaim(rwa->os, drro->drr_object,
|
|
drro->drr_type, drro->drr_blksz,
|
|
drro->drr_bonustype, drro->drr_bonuslen, tx);
|
|
}
|
|
if (err != 0) {
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
dmu_object_set_checksum(rwa->os, drro->drr_object,
|
|
drro->drr_checksumtype, tx);
|
|
dmu_object_set_compress(rwa->os, drro->drr_object,
|
|
drro->drr_compress, tx);
|
|
|
|
if (data != NULL) {
|
|
dmu_buf_t *db;
|
|
|
|
VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
|
|
bcopy(data, db->db_data, drro->drr_bonuslen);
|
|
if (rwa->byteswap) {
|
|
dmu_object_byteswap_t byteswap =
|
|
DMU_OT_BYTESWAP(drro->drr_bonustype);
|
|
dmu_ot_byteswap[byteswap].ob_func(db->db_data,
|
|
drro->drr_bonuslen);
|
|
}
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
noinline static int
|
|
receive_freeobjects(struct receive_writer_arg *rwa,
|
|
struct drr_freeobjects *drrfo)
|
|
{
|
|
uint64_t obj;
|
|
int next_err = 0;
|
|
|
|
if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
|
|
obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
|
|
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
|
|
dmu_object_info_t doi;
|
|
int err;
|
|
|
|
err = dmu_object_info(rwa->os, obj, &doi);
|
|
if (err == ENOENT) {
|
|
obj++;
|
|
continue;
|
|
} else if (err != 0) {
|
|
return (err);
|
|
}
|
|
|
|
err = dmu_free_long_object(rwa->os, obj);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
if (next_err != ESRCH)
|
|
return (next_err);
|
|
return (0);
|
|
}
|
|
|
|
noinline static int
|
|
receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
|
|
arc_buf_t *abuf)
|
|
{
|
|
dmu_tx_t *tx;
|
|
dmu_buf_t *bonus;
|
|
int err;
|
|
|
|
if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
|
|
!DMU_OT_IS_VALID(drrw->drr_type))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* For resuming to work, records must be in increasing order
|
|
* by (object, offset).
|
|
*/
|
|
if (drrw->drr_object < rwa->last_object ||
|
|
(drrw->drr_object == rwa->last_object &&
|
|
drrw->drr_offset < rwa->last_offset)) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
rwa->last_object = drrw->drr_object;
|
|
rwa->last_offset = drrw->drr_offset;
|
|
|
|
if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_write(tx, drrw->drr_object,
|
|
drrw->drr_offset, drrw->drr_logical_size);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
if (rwa->byteswap) {
|
|
dmu_object_byteswap_t byteswap =
|
|
DMU_OT_BYTESWAP(drrw->drr_type);
|
|
dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
|
|
DRR_WRITE_PAYLOAD_SIZE(drrw));
|
|
}
|
|
|
|
/* use the bonus buf to look up the dnode in dmu_assign_arcbuf */
|
|
if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
|
|
|
|
/*
|
|
* Note: If the receive fails, we want the resume stream to start
|
|
* with the same record that we last successfully received (as opposed
|
|
* to the next record), so that we can verify that we are
|
|
* resuming from the correct location.
|
|
*/
|
|
save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
|
|
dmu_tx_commit(tx);
|
|
dmu_buf_rele(bonus, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
|
|
* streams to refer to a copy of the data that is already on the
|
|
* system because it came in earlier in the stream. This function
|
|
* finds the earlier copy of the data, and uses that copy instead of
|
|
* data from the stream to fulfill this write.
|
|
*/
|
|
static int
|
|
receive_write_byref(struct receive_writer_arg *rwa,
|
|
struct drr_write_byref *drrwbr)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int err;
|
|
guid_map_entry_t gmesrch;
|
|
guid_map_entry_t *gmep;
|
|
avl_index_t where;
|
|
objset_t *ref_os = NULL;
|
|
dmu_buf_t *dbp;
|
|
|
|
if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* If the GUID of the referenced dataset is different from the
|
|
* GUID of the target dataset, find the referenced dataset.
|
|
*/
|
|
if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
|
|
gmesrch.guid = drrwbr->drr_refguid;
|
|
if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
|
|
&where)) == NULL) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
|
|
return (SET_ERROR(EINVAL));
|
|
} else {
|
|
ref_os = rwa->os;
|
|
}
|
|
|
|
err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
|
|
drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_write(tx, drrwbr->drr_object,
|
|
drrwbr->drr_offset, drrwbr->drr_length);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
dmu_write(rwa->os, drrwbr->drr_object,
|
|
drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
|
|
dmu_buf_rele(dbp, FTAG);
|
|
|
|
/* See comment in restore_write. */
|
|
save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
receive_write_embedded(struct receive_writer_arg *rwa,
|
|
struct drr_write_embedded *drrwe, void *data)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int err;
|
|
|
|
if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
|
|
return (EINVAL);
|
|
|
|
if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
|
|
return (EINVAL);
|
|
|
|
if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
|
|
return (EINVAL);
|
|
if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
|
|
return (EINVAL);
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_write(tx, drrwe->drr_object,
|
|
drrwe->drr_offset, drrwe->drr_length);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
dmu_write_embedded(rwa->os, drrwe->drr_object,
|
|
drrwe->drr_offset, data, drrwe->drr_etype,
|
|
drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
|
|
rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
|
|
|
|
/* See comment in restore_write. */
|
|
save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
|
|
void *data)
|
|
{
|
|
dmu_tx_t *tx;
|
|
dmu_buf_t *db, *db_spill;
|
|
int err;
|
|
|
|
if (drrs->drr_length < SPA_MINBLOCKSIZE ||
|
|
drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
|
|
if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
|
|
dmu_buf_rele(db, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_spill(tx, db->db_object);
|
|
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_buf_rele(db, FTAG);
|
|
dmu_buf_rele(db_spill, FTAG);
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
dmu_buf_will_dirty(db_spill, tx);
|
|
|
|
if (db_spill->db_size < drrs->drr_length)
|
|
VERIFY(0 == dbuf_spill_set_blksz(db_spill,
|
|
drrs->drr_length, tx));
|
|
bcopy(data, db_spill->db_data, drrs->drr_length);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
dmu_buf_rele(db_spill, FTAG);
|
|
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
noinline static int
|
|
receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
|
|
{
|
|
int err;
|
|
|
|
if (drrf->drr_length != -1ULL &&
|
|
drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
err = dmu_free_long_range(rwa->os, drrf->drr_object,
|
|
drrf->drr_offset, drrf->drr_length);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/* used to destroy the drc_ds on error */
|
|
static void
|
|
dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
|
|
{
|
|
if (drc->drc_resumable) {
|
|
/* wait for our resume state to be written to disk */
|
|
txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
|
|
dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
|
|
} else {
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
dsl_dataset_name(drc->drc_ds, name);
|
|
dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
|
|
(void) dsl_destroy_head(name);
|
|
}
|
|
}
|
|
|
|
static void
|
|
receive_cksum(struct receive_arg *ra, int len, void *buf)
|
|
{
|
|
if (ra->byteswap) {
|
|
(void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
|
|
} else {
|
|
(void) fletcher_4_incremental_native(buf, len, &ra->cksum);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read the payload into a buffer of size len, and update the current record's
|
|
* payload field.
|
|
* Allocate ra->next_rrd and read the next record's header into
|
|
* ra->next_rrd->header.
|
|
* Verify checksum of payload and next record.
|
|
*/
|
|
static int
|
|
receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
|
|
{
|
|
int err;
|
|
zio_cksum_t cksum_orig;
|
|
zio_cksum_t *cksump;
|
|
|
|
if (len != 0) {
|
|
ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
|
|
err = receive_read(ra, len, buf);
|
|
if (err != 0)
|
|
return (err);
|
|
receive_cksum(ra, len, buf);
|
|
|
|
/* note: rrd is NULL when reading the begin record's payload */
|
|
if (ra->rrd != NULL) {
|
|
ra->rrd->payload = buf;
|
|
ra->rrd->payload_size = len;
|
|
ra->rrd->bytes_read = ra->bytes_read;
|
|
}
|
|
}
|
|
|
|
ra->prev_cksum = ra->cksum;
|
|
|
|
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
|
|
err = receive_read(ra, sizeof (ra->next_rrd->header),
|
|
&ra->next_rrd->header);
|
|
ra->next_rrd->bytes_read = ra->bytes_read;
|
|
if (err != 0) {
|
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
|
ra->next_rrd = NULL;
|
|
return (err);
|
|
}
|
|
if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
|
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
|
ra->next_rrd = NULL;
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Note: checksum is of everything up to but not including the
|
|
* checksum itself.
|
|
*/
|
|
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
|
|
receive_cksum(ra,
|
|
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
&ra->next_rrd->header);
|
|
|
|
cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
|
|
cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
|
|
|
|
if (ra->byteswap)
|
|
byteswap_record(&ra->next_rrd->header);
|
|
|
|
if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
|
|
!ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
|
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
|
ra->next_rrd = NULL;
|
|
return (SET_ERROR(ECKSUM));
|
|
}
|
|
|
|
receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
objlist_create(struct objlist *list)
|
|
{
|
|
list_create(&list->list, sizeof (struct receive_objnode),
|
|
offsetof(struct receive_objnode, node));
|
|
list->last_lookup = 0;
|
|
}
|
|
|
|
static void
|
|
objlist_destroy(struct objlist *list)
|
|
{
|
|
struct receive_objnode *n;
|
|
|
|
for (n = list_remove_head(&list->list);
|
|
n != NULL; n = list_remove_head(&list->list)) {
|
|
kmem_free(n, sizeof (*n));
|
|
}
|
|
list_destroy(&list->list);
|
|
}
|
|
|
|
/*
|
|
* This function looks through the objlist to see if the specified object number
|
|
* is contained in the objlist. In the process, it will remove all object
|
|
* numbers in the list that are smaller than the specified object number. Thus,
|
|
* any lookup of an object number smaller than a previously looked up object
|
|
* number will always return false; therefore, all lookups should be done in
|
|
* ascending order.
|
|
*/
|
|
static boolean_t
|
|
objlist_exists(struct objlist *list, uint64_t object)
|
|
{
|
|
struct receive_objnode *node = list_head(&list->list);
|
|
ASSERT3U(object, >=, list->last_lookup);
|
|
list->last_lookup = object;
|
|
while (node != NULL && node->object < object) {
|
|
VERIFY3P(node, ==, list_remove_head(&list->list));
|
|
kmem_free(node, sizeof (*node));
|
|
node = list_head(&list->list);
|
|
}
|
|
return (node != NULL && node->object == object);
|
|
}
|
|
|
|
/*
|
|
* The objlist is a list of object numbers stored in ascending order. However,
|
|
* the insertion of new object numbers does not seek out the correct location to
|
|
* store a new object number; instead, it appends it to the list for simplicity.
|
|
* Thus, any users must take care to only insert new object numbers in ascending
|
|
* order.
|
|
*/
|
|
static void
|
|
objlist_insert(struct objlist *list, uint64_t object)
|
|
{
|
|
struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
|
|
node->object = object;
|
|
#ifdef ZFS_DEBUG
|
|
{
|
|
struct receive_objnode *last_object = list_tail(&list->list);
|
|
uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
|
|
ASSERT3U(node->object, >, last_objnum);
|
|
}
|
|
#endif
|
|
list_insert_tail(&list->list, node);
|
|
}
|
|
|
|
/*
|
|
* Issue the prefetch reads for any necessary indirect blocks.
|
|
*
|
|
* We use the object ignore list to tell us whether or not to issue prefetches
|
|
* for a given object. We do this for both correctness (in case the blocksize
|
|
* of an object has changed) and performance (if the object doesn't exist, don't
|
|
* needlessly try to issue prefetches). We also trim the list as we go through
|
|
* the stream to prevent it from growing to an unbounded size.
|
|
*
|
|
* The object numbers within will always be in sorted order, and any write
|
|
* records we see will also be in sorted order, but they're not sorted with
|
|
* respect to each other (i.e. we can get several object records before
|
|
* receiving each object's write records). As a result, once we've reached a
|
|
* given object number, we can safely remove any reference to lower object
|
|
* numbers in the ignore list. In practice, we receive up to 32 object records
|
|
* before receiving write records, so the list can have up to 32 nodes in it.
|
|
*/
|
|
/* ARGSUSED */
|
|
static void
|
|
receive_read_prefetch(struct receive_arg *ra,
|
|
uint64_t object, uint64_t offset, uint64_t length)
|
|
{
|
|
if (!objlist_exists(&ra->ignore_objlist, object)) {
|
|
dmu_prefetch(ra->os, object, 1, offset, length,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read records off the stream, issuing any necessary prefetches.
|
|
*/
|
|
static int
|
|
receive_read_record(struct receive_arg *ra)
|
|
{
|
|
int err;
|
|
|
|
switch (ra->rrd->header.drr_type) {
|
|
case DRR_OBJECT:
|
|
{
|
|
struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
|
|
uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
|
|
void *buf = kmem_zalloc(size, KM_SLEEP);
|
|
dmu_object_info_t doi;
|
|
err = receive_read_payload_and_next_header(ra, size, buf);
|
|
if (err != 0) {
|
|
kmem_free(buf, size);
|
|
return (err);
|
|
}
|
|
err = dmu_object_info(ra->os, drro->drr_object, &doi);
|
|
/*
|
|
* See receive_read_prefetch for an explanation why we're
|
|
* storing this object in the ignore_obj_list.
|
|
*/
|
|
if (err == ENOENT ||
|
|
(err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
|
|
objlist_insert(&ra->ignore_objlist, drro->drr_object);
|
|
err = 0;
|
|
}
|
|
return (err);
|
|
}
|
|
case DRR_FREEOBJECTS:
|
|
{
|
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
|
return (err);
|
|
}
|
|
case DRR_WRITE:
|
|
{
|
|
struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
|
|
arc_buf_t *abuf;
|
|
boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
|
|
if (DRR_WRITE_COMPRESSED(drrw)) {
|
|
ASSERT3U(drrw->drr_compressed_size, >, 0);
|
|
ASSERT3U(drrw->drr_logical_size, >=,
|
|
drrw->drr_compressed_size);
|
|
ASSERT(!is_meta);
|
|
abuf = arc_loan_compressed_buf(
|
|
dmu_objset_spa(ra->os),
|
|
drrw->drr_compressed_size, drrw->drr_logical_size,
|
|
drrw->drr_compressiontype);
|
|
} else {
|
|
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
|
|
is_meta, drrw->drr_logical_size);
|
|
}
|
|
|
|
err = receive_read_payload_and_next_header(ra,
|
|
DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
|
|
if (err != 0) {
|
|
dmu_return_arcbuf(abuf);
|
|
return (err);
|
|
}
|
|
ra->rrd->write_buf = abuf;
|
|
receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
|
|
drrw->drr_logical_size);
|
|
return (err);
|
|
}
|
|
case DRR_WRITE_BYREF:
|
|
{
|
|
struct drr_write_byref *drrwb =
|
|
&ra->rrd->header.drr_u.drr_write_byref;
|
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
|
receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
|
|
drrwb->drr_length);
|
|
return (err);
|
|
}
|
|
case DRR_WRITE_EMBEDDED:
|
|
{
|
|
struct drr_write_embedded *drrwe =
|
|
&ra->rrd->header.drr_u.drr_write_embedded;
|
|
uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
|
|
void *buf = kmem_zalloc(size, KM_SLEEP);
|
|
|
|
err = receive_read_payload_and_next_header(ra, size, buf);
|
|
if (err != 0) {
|
|
kmem_free(buf, size);
|
|
return (err);
|
|
}
|
|
|
|
receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
|
|
drrwe->drr_length);
|
|
return (err);
|
|
}
|
|
case DRR_FREE:
|
|
{
|
|
/*
|
|
* It might be beneficial to prefetch indirect blocks here, but
|
|
* we don't really have the data to decide for sure.
|
|
*/
|
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
|
return (err);
|
|
}
|
|
case DRR_END:
|
|
{
|
|
struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
|
|
if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
|
|
return (SET_ERROR(ECKSUM));
|
|
return (0);
|
|
}
|
|
case DRR_SPILL:
|
|
{
|
|
struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
|
|
void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
|
|
err = receive_read_payload_and_next_header(ra, drrs->drr_length,
|
|
buf);
|
|
if (err != 0)
|
|
kmem_free(buf, drrs->drr_length);
|
|
return (err);
|
|
}
|
|
default:
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Commit the records to the pool.
|
|
*/
|
|
static int
|
|
receive_process_record(struct receive_writer_arg *rwa,
|
|
struct receive_record_arg *rrd)
|
|
{
|
|
int err;
|
|
|
|
/* Processing in order, therefore bytes_read should be increasing. */
|
|
ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
|
|
rwa->bytes_read = rrd->bytes_read;
|
|
|
|
switch (rrd->header.drr_type) {
|
|
case DRR_OBJECT:
|
|
{
|
|
struct drr_object *drro = &rrd->header.drr_u.drr_object;
|
|
err = receive_object(rwa, drro, rrd->payload);
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
return (err);
|
|
}
|
|
case DRR_FREEOBJECTS:
|
|
{
|
|
struct drr_freeobjects *drrfo =
|
|
&rrd->header.drr_u.drr_freeobjects;
|
|
return (receive_freeobjects(rwa, drrfo));
|
|
}
|
|
case DRR_WRITE:
|
|
{
|
|
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
|
|
err = receive_write(rwa, drrw, rrd->write_buf);
|
|
/* if receive_write() is successful, it consumes the arc_buf */
|
|
if (err != 0)
|
|
dmu_return_arcbuf(rrd->write_buf);
|
|
rrd->write_buf = NULL;
|
|
rrd->payload = NULL;
|
|
return (err);
|
|
}
|
|
case DRR_WRITE_BYREF:
|
|
{
|
|
struct drr_write_byref *drrwbr =
|
|
&rrd->header.drr_u.drr_write_byref;
|
|
return (receive_write_byref(rwa, drrwbr));
|
|
}
|
|
case DRR_WRITE_EMBEDDED:
|
|
{
|
|
struct drr_write_embedded *drrwe =
|
|
&rrd->header.drr_u.drr_write_embedded;
|
|
err = receive_write_embedded(rwa, drrwe, rrd->payload);
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
return (err);
|
|
}
|
|
case DRR_FREE:
|
|
{
|
|
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
|
|
return (receive_free(rwa, drrf));
|
|
}
|
|
case DRR_SPILL:
|
|
{
|
|
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
|
|
err = receive_spill(rwa, drrs, rrd->payload);
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
return (err);
|
|
}
|
|
default:
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* dmu_recv_stream's worker thread; pull records off the queue, and then call
|
|
* receive_process_record When we're done, signal the main thread and exit.
|
|
*/
|
|
static void
|
|
receive_writer_thread(void *arg)
|
|
{
|
|
struct receive_writer_arg *rwa = arg;
|
|
struct receive_record_arg *rrd;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
|
|
rrd = bqueue_dequeue(&rwa->q)) {
|
|
/*
|
|
* If there's an error, the main thread will stop putting things
|
|
* on the queue, but we need to clear everything in it before we
|
|
* can exit.
|
|
*/
|
|
if (rwa->err == 0) {
|
|
rwa->err = receive_process_record(rwa, rrd);
|
|
} else if (rrd->write_buf != NULL) {
|
|
dmu_return_arcbuf(rrd->write_buf);
|
|
rrd->write_buf = NULL;
|
|
rrd->payload = NULL;
|
|
} else if (rrd->payload != NULL) {
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
}
|
|
kmem_free(rrd, sizeof (*rrd));
|
|
}
|
|
kmem_free(rrd, sizeof (*rrd));
|
|
mutex_enter(&rwa->mutex);
|
|
rwa->done = B_TRUE;
|
|
cv_signal(&rwa->cv);
|
|
mutex_exit(&rwa->mutex);
|
|
spl_fstrans_unmark(cookie);
|
|
thread_exit();
|
|
}
|
|
|
|
static int
|
|
resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
|
|
{
|
|
uint64_t val;
|
|
objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
|
|
uint64_t dsobj = dmu_objset_id(ra->os);
|
|
uint64_t resume_obj, resume_off;
|
|
|
|
if (nvlist_lookup_uint64(begin_nvl,
|
|
"resume_object", &resume_obj) != 0 ||
|
|
nvlist_lookup_uint64(begin_nvl,
|
|
"resume_offset", &resume_off) != 0) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
VERIFY0(zap_lookup(mos, dsobj,
|
|
DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
|
|
if (resume_obj != val)
|
|
return (SET_ERROR(EINVAL));
|
|
VERIFY0(zap_lookup(mos, dsobj,
|
|
DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
|
|
if (resume_off != val)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read in the stream's records, one by one, and apply them to the pool. There
|
|
* are two threads involved; the thread that calls this function will spin up a
|
|
* worker thread, read the records off the stream one by one, and issue
|
|
* prefetches for any necessary indirect blocks. It will then push the records
|
|
* onto an internal blocking queue. The worker thread will pull the records off
|
|
* the queue, and actually write the data into the DMU. This way, the worker
|
|
* thread doesn't have to wait for reads to complete, since everything it needs
|
|
* (the indirect blocks) will be prefetched.
|
|
*
|
|
* NB: callers *must* call dmu_recv_end() if this succeeds.
|
|
*/
|
|
int
|
|
dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
|
|
int cleanup_fd, uint64_t *action_handlep)
|
|
{
|
|
int err = 0;
|
|
struct receive_arg *ra;
|
|
struct receive_writer_arg *rwa;
|
|
int featureflags;
|
|
uint32_t payloadlen;
|
|
void *payload;
|
|
nvlist_t *begin_nvl = NULL;
|
|
|
|
ra = kmem_zalloc(sizeof (*ra), KM_SLEEP);
|
|
rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
|
|
|
|
ra->byteswap = drc->drc_byteswap;
|
|
ra->cksum = drc->drc_cksum;
|
|
ra->vp = vp;
|
|
ra->voff = *voffp;
|
|
|
|
if (dsl_dataset_is_zapified(drc->drc_ds)) {
|
|
(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
|
|
drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
|
|
sizeof (ra->bytes_read), 1, &ra->bytes_read);
|
|
}
|
|
|
|
objlist_create(&ra->ignore_objlist);
|
|
|
|
/* these were verified in dmu_recv_begin */
|
|
ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
|
|
DMU_SUBSTREAM);
|
|
ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
|
|
|
|
/*
|
|
* Open the objset we are modifying.
|
|
*/
|
|
VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os));
|
|
|
|
ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
|
|
|
|
featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
|
|
|
|
/* if this stream is dedup'ed, set up the avl tree for guid mapping */
|
|
if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
|
|
minor_t minor;
|
|
|
|
if (cleanup_fd == -1) {
|
|
ra->err = SET_ERROR(EBADF);
|
|
goto out;
|
|
}
|
|
ra->err = zfs_onexit_fd_hold(cleanup_fd, &minor);
|
|
if (ra->err != 0) {
|
|
cleanup_fd = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (*action_handlep == 0) {
|
|
rwa->guid_to_ds_map =
|
|
kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
|
|
avl_create(rwa->guid_to_ds_map, guid_compare,
|
|
sizeof (guid_map_entry_t),
|
|
offsetof(guid_map_entry_t, avlnode));
|
|
err = zfs_onexit_add_cb(minor,
|
|
free_guid_map_onexit, rwa->guid_to_ds_map,
|
|
action_handlep);
|
|
if (ra->err != 0)
|
|
goto out;
|
|
} else {
|
|
err = zfs_onexit_cb_data(minor, *action_handlep,
|
|
(void **)&rwa->guid_to_ds_map);
|
|
if (ra->err != 0)
|
|
goto out;
|
|
}
|
|
|
|
drc->drc_guid_to_ds_map = rwa->guid_to_ds_map;
|
|
}
|
|
|
|
payloadlen = drc->drc_drr_begin->drr_payloadlen;
|
|
payload = NULL;
|
|
if (payloadlen != 0)
|
|
payload = kmem_alloc(payloadlen, KM_SLEEP);
|
|
|
|
err = receive_read_payload_and_next_header(ra, payloadlen, payload);
|
|
if (err != 0) {
|
|
if (payloadlen != 0)
|
|
kmem_free(payload, payloadlen);
|
|
goto out;
|
|
}
|
|
if (payloadlen != 0) {
|
|
err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
|
|
kmem_free(payload, payloadlen);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
|
|
err = resume_check(ra, begin_nvl);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
(void) bqueue_init(&rwa->q, zfs_recv_queue_length,
|
|
offsetof(struct receive_record_arg, node));
|
|
cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
|
|
mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
|
|
rwa->os = ra->os;
|
|
rwa->byteswap = drc->drc_byteswap;
|
|
rwa->resumable = drc->drc_resumable;
|
|
|
|
(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
|
|
TS_RUN, minclsyspri);
|
|
/*
|
|
* We're reading rwa->err without locks, which is safe since we are the
|
|
* only reader, and the worker thread is the only writer. It's ok if we
|
|
* miss a write for an iteration or two of the loop, since the writer
|
|
* thread will keep freeing records we send it until we send it an eos
|
|
* marker.
|
|
*
|
|
* We can leave this loop in 3 ways: First, if rwa->err is
|
|
* non-zero. In that case, the writer thread will free the rrd we just
|
|
* pushed. Second, if we're interrupted; in that case, either it's the
|
|
* first loop and ra->rrd was never allocated, or it's later and ra->rrd
|
|
* has been handed off to the writer thread who will free it. Finally,
|
|
* if receive_read_record fails or we're at the end of the stream, then
|
|
* we free ra->rrd and exit.
|
|
*/
|
|
while (rwa->err == 0) {
|
|
if (issig(JUSTLOOKING) && issig(FORREAL)) {
|
|
err = SET_ERROR(EINTR);
|
|
break;
|
|
}
|
|
|
|
ASSERT3P(ra->rrd, ==, NULL);
|
|
ra->rrd = ra->next_rrd;
|
|
ra->next_rrd = NULL;
|
|
/* Allocates and loads header into ra->next_rrd */
|
|
err = receive_read_record(ra);
|
|
|
|
if (ra->rrd->header.drr_type == DRR_END || err != 0) {
|
|
kmem_free(ra->rrd, sizeof (*ra->rrd));
|
|
ra->rrd = NULL;
|
|
break;
|
|
}
|
|
|
|
bqueue_enqueue(&rwa->q, ra->rrd,
|
|
sizeof (struct receive_record_arg) + ra->rrd->payload_size);
|
|
ra->rrd = NULL;
|
|
}
|
|
if (ra->next_rrd == NULL)
|
|
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
|
|
ra->next_rrd->eos_marker = B_TRUE;
|
|
bqueue_enqueue(&rwa->q, ra->next_rrd, 1);
|
|
|
|
mutex_enter(&rwa->mutex);
|
|
while (!rwa->done) {
|
|
cv_wait(&rwa->cv, &rwa->mutex);
|
|
}
|
|
mutex_exit(&rwa->mutex);
|
|
|
|
cv_destroy(&rwa->cv);
|
|
mutex_destroy(&rwa->mutex);
|
|
bqueue_destroy(&rwa->q);
|
|
if (err == 0)
|
|
err = rwa->err;
|
|
|
|
out:
|
|
nvlist_free(begin_nvl);
|
|
if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
|
|
zfs_onexit_fd_rele(cleanup_fd);
|
|
|
|
if (err != 0) {
|
|
/*
|
|
* Clean up references. If receive is not resumable,
|
|
* destroy what we created, so we don't leave it in
|
|
* the inconsistent state.
|
|
*/
|
|
dmu_recv_cleanup_ds(drc);
|
|
}
|
|
|
|
*voffp = ra->voff;
|
|
objlist_destroy(&ra->ignore_objlist);
|
|
kmem_free(ra, sizeof (*ra));
|
|
kmem_free(rwa, sizeof (*rwa));
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dmu_recv_end_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_cookie_t *drc = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
int error;
|
|
|
|
ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
|
|
|
|
if (!drc->drc_newfs) {
|
|
dsl_dataset_t *origin_head;
|
|
|
|
error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
|
|
if (error != 0)
|
|
return (error);
|
|
if (drc->drc_force) {
|
|
/*
|
|
* We will destroy any snapshots in tofs (i.e. before
|
|
* origin_head) that are after the origin (which is
|
|
* the snap before drc_ds, because drc_ds can not
|
|
* have any snaps of its own).
|
|
*/
|
|
uint64_t obj;
|
|
|
|
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
while (obj !=
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
|
|
dsl_dataset_t *snap;
|
|
error = dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap);
|
|
if (error != 0)
|
|
break;
|
|
if (snap->ds_dir != origin_head->ds_dir)
|
|
error = SET_ERROR(EINVAL);
|
|
if (error == 0) {
|
|
error = dsl_destroy_snapshot_check_impl(
|
|
snap, B_FALSE);
|
|
}
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_dataset_rele(snap, FTAG);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
if (error != 0) {
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
return (error);
|
|
}
|
|
}
|
|
error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
|
|
origin_head, drc->drc_force, drc->drc_owner, tx);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
return (error);
|
|
}
|
|
error = dsl_dataset_snapshot_check_impl(origin_head,
|
|
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
|
|
} else {
|
|
error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
|
|
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_cookie_t *drc = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
|
|
spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
|
|
tx, "snap=%s", drc->drc_tosnap);
|
|
|
|
if (!drc->drc_newfs) {
|
|
dsl_dataset_t *origin_head;
|
|
|
|
VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
|
|
&origin_head));
|
|
|
|
if (drc->drc_force) {
|
|
/*
|
|
* Destroy any snapshots of drc_tofs (origin_head)
|
|
* after the origin (the snap before drc_ds).
|
|
*/
|
|
uint64_t obj;
|
|
|
|
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
while (obj !=
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
|
|
dsl_dataset_t *snap;
|
|
VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap));
|
|
ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_destroy_snapshot_sync_impl(snap,
|
|
B_FALSE, tx);
|
|
dsl_dataset_rele(snap, FTAG);
|
|
}
|
|
}
|
|
VERIFY3P(drc->drc_ds->ds_prev, ==,
|
|
origin_head->ds_prev);
|
|
|
|
dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
|
|
origin_head, tx);
|
|
dsl_dataset_snapshot_sync_impl(origin_head,
|
|
drc->drc_tosnap, tx);
|
|
|
|
/* set snapshot's creation time and guid */
|
|
dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
|
|
drc->drc_drrb->drr_creation_time;
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
|
|
drc->drc_drrb->drr_toguid;
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
|
|
dsl_dataset_phys(origin_head)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
drc->drc_newsnapobj =
|
|
dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
dsl_destroy_head_sync_impl(drc->drc_ds, tx);
|
|
|
|
if (drc->drc_owner != NULL)
|
|
VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
|
|
} else {
|
|
dsl_dataset_t *ds = drc->drc_ds;
|
|
|
|
dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
|
|
|
|
/* set snapshot's creation time and guid */
|
|
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
|
|
drc->drc_drrb->drr_creation_time;
|
|
dsl_dataset_phys(ds->ds_prev)->ds_guid =
|
|
drc->drc_drrb->drr_toguid;
|
|
dsl_dataset_phys(ds->ds_prev)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
|
|
if (dsl_dataset_has_resume_receive_state(ds)) {
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_FROMGUID, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_OBJECT, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_OFFSET, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_BYTES, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TOGUID, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TONAME, tx);
|
|
}
|
|
drc->drc_newsnapobj =
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
|
|
}
|
|
zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE);
|
|
/*
|
|
* Release the hold from dmu_recv_begin. This must be done before
|
|
* we return to open context, so that when we free the dataset's dnode,
|
|
* we can evict its bonus buffer.
|
|
*/
|
|
dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
|
|
drc->drc_ds = NULL;
|
|
}
|
|
|
|
static int
|
|
add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
|
|
{
|
|
dsl_pool_t *dp;
|
|
dsl_dataset_t *snapds;
|
|
guid_map_entry_t *gmep;
|
|
int err;
|
|
|
|
ASSERT(guid_map != NULL);
|
|
|
|
err = dsl_pool_hold(name, FTAG, &dp);
|
|
if (err != 0)
|
|
return (err);
|
|
gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
|
|
err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
|
|
if (err == 0) {
|
|
gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
|
|
gmep->gme_ds = snapds;
|
|
avl_add(guid_map, gmep);
|
|
dsl_dataset_long_hold(snapds, gmep);
|
|
} else {
|
|
kmem_free(gmep, sizeof (*gmep));
|
|
}
|
|
|
|
dsl_pool_rele(dp, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
static int dmu_recv_end_modified_blocks = 3;
|
|
|
|
static int
|
|
dmu_recv_existing_end(dmu_recv_cookie_t *drc)
|
|
{
|
|
#ifdef _KERNEL
|
|
/*
|
|
* We will be destroying the ds; make sure its origin is unmounted if
|
|
* necessary.
|
|
*/
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
dsl_dataset_name(drc->drc_ds, name);
|
|
zfs_destroy_unmount_origin(name);
|
|
#endif
|
|
|
|
return (dsl_sync_task(drc->drc_tofs,
|
|
dmu_recv_end_check, dmu_recv_end_sync, drc,
|
|
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
|
|
}
|
|
|
|
static int
|
|
dmu_recv_new_end(dmu_recv_cookie_t *drc)
|
|
{
|
|
return (dsl_sync_task(drc->drc_tofs,
|
|
dmu_recv_end_check, dmu_recv_end_sync, drc,
|
|
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
|
|
}
|
|
|
|
int
|
|
dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
|
|
{
|
|
int error;
|
|
|
|
drc->drc_owner = owner;
|
|
|
|
if (drc->drc_newfs)
|
|
error = dmu_recv_new_end(drc);
|
|
else
|
|
error = dmu_recv_existing_end(drc);
|
|
|
|
if (error != 0) {
|
|
dmu_recv_cleanup_ds(drc);
|
|
} else if (drc->drc_guid_to_ds_map != NULL) {
|
|
(void) add_ds_to_guidmap(drc->drc_tofs,
|
|
drc->drc_guid_to_ds_map,
|
|
drc->drc_newsnapobj);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return TRUE if this objset is currently being received into.
|
|
*/
|
|
boolean_t
|
|
dmu_objset_is_receiving(objset_t *os)
|
|
{
|
|
return (os->os_dsl_dataset != NULL &&
|
|
os->os_dsl_dataset->ds_owner == dmu_recv_tag);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
module_param(zfs_send_corrupt_data, int, 0644);
|
|
MODULE_PARM_DESC(zfs_send_corrupt_data, "Allow sending corrupt data");
|
|
#endif
|