mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 03:19:35 +03:00
79f7de5752
Torn reads/writes of dp_dirty_total are unlikely: on 64-bit systems due to register size, while on 32-bit due to memory constraints. And even if we hit some race, the code implementing the delay takes the lock any way. Removal of the poll-wide lock acquisition saves ~1% of CPU time on 8-thread 8KB write workload. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #15390
1495 lines
45 KiB
C
1495 lines
45 KiB
C
/*
|
||
* CDDL HEADER START
|
||
*
|
||
* The contents of this file are subject to the terms of the
|
||
* Common Development and Distribution License (the "License").
|
||
* You may not use this file except in compliance with the License.
|
||
*
|
||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
* or https://opensource.org/licenses/CDDL-1.0.
|
||
* See the License for the specific language governing permissions
|
||
* and limitations under the License.
|
||
*
|
||
* When distributing Covered Code, include this CDDL HEADER in each
|
||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
* If applicable, add the following below this CDDL HEADER, with the
|
||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
*
|
||
* CDDL HEADER END
|
||
*/
|
||
/*
|
||
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
||
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
|
||
* Copyright (c) 2013 Steven Hartland. All rights reserved.
|
||
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
||
* Copyright 2016 Nexenta Systems, Inc. All rights reserved.
|
||
*/
|
||
|
||
#include <sys/dsl_pool.h>
|
||
#include <sys/dsl_dataset.h>
|
||
#include <sys/dsl_prop.h>
|
||
#include <sys/dsl_dir.h>
|
||
#include <sys/dsl_synctask.h>
|
||
#include <sys/dsl_scan.h>
|
||
#include <sys/dnode.h>
|
||
#include <sys/dmu_tx.h>
|
||
#include <sys/dmu_objset.h>
|
||
#include <sys/arc.h>
|
||
#include <sys/zap.h>
|
||
#include <sys/zio.h>
|
||
#include <sys/zfs_context.h>
|
||
#include <sys/fs/zfs.h>
|
||
#include <sys/zfs_znode.h>
|
||
#include <sys/spa_impl.h>
|
||
#include <sys/vdev_impl.h>
|
||
#include <sys/metaslab_impl.h>
|
||
#include <sys/bptree.h>
|
||
#include <sys/zfeature.h>
|
||
#include <sys/zil_impl.h>
|
||
#include <sys/dsl_userhold.h>
|
||
#include <sys/trace_zfs.h>
|
||
#include <sys/mmp.h>
|
||
|
||
/*
|
||
* ZFS Write Throttle
|
||
* ------------------
|
||
*
|
||
* ZFS must limit the rate of incoming writes to the rate at which it is able
|
||
* to sync data modifications to the backend storage. Throttling by too much
|
||
* creates an artificial limit; throttling by too little can only be sustained
|
||
* for short periods and would lead to highly lumpy performance. On a per-pool
|
||
* basis, ZFS tracks the amount of modified (dirty) data. As operations change
|
||
* data, the amount of dirty data increases; as ZFS syncs out data, the amount
|
||
* of dirty data decreases. When the amount of dirty data exceeds a
|
||
* predetermined threshold further modifications are blocked until the amount
|
||
* of dirty data decreases (as data is synced out).
|
||
*
|
||
* The limit on dirty data is tunable, and should be adjusted according to
|
||
* both the IO capacity and available memory of the system. The larger the
|
||
* window, the more ZFS is able to aggregate and amortize metadata (and data)
|
||
* changes. However, memory is a limited resource, and allowing for more dirty
|
||
* data comes at the cost of keeping other useful data in memory (for example
|
||
* ZFS data cached by the ARC).
|
||
*
|
||
* Implementation
|
||
*
|
||
* As buffers are modified dsl_pool_willuse_space() increments both the per-
|
||
* txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
|
||
* dirty space used; dsl_pool_dirty_space() decrements those values as data
|
||
* is synced out from dsl_pool_sync(). While only the poolwide value is
|
||
* relevant, the per-txg value is useful for debugging. The tunable
|
||
* zfs_dirty_data_max determines the dirty space limit. Once that value is
|
||
* exceeded, new writes are halted until space frees up.
|
||
*
|
||
* The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
|
||
* ensure that there is a txg syncing (see the comment in txg.c for a full
|
||
* description of transaction group stages).
|
||
*
|
||
* The IO scheduler uses both the dirty space limit and current amount of
|
||
* dirty data as inputs. Those values affect the number of concurrent IOs ZFS
|
||
* issues. See the comment in vdev_queue.c for details of the IO scheduler.
|
||
*
|
||
* The delay is also calculated based on the amount of dirty data. See the
|
||
* comment above dmu_tx_delay() for details.
|
||
*/
|
||
|
||
/*
|
||
* zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
|
||
* capped at zfs_dirty_data_max_max. It can also be overridden with a module
|
||
* parameter.
|
||
*/
|
||
uint64_t zfs_dirty_data_max = 0;
|
||
uint64_t zfs_dirty_data_max_max = 0;
|
||
uint_t zfs_dirty_data_max_percent = 10;
|
||
uint_t zfs_dirty_data_max_max_percent = 25;
|
||
|
||
/*
|
||
* The upper limit of TX_WRITE log data. Write operations are throttled
|
||
* when approaching the limit until log data is cleared out after txg sync.
|
||
* It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
|
||
*/
|
||
uint64_t zfs_wrlog_data_max = 0;
|
||
|
||
/*
|
||
* If there's at least this much dirty data (as a percentage of
|
||
* zfs_dirty_data_max), push out a txg. This should be less than
|
||
* zfs_vdev_async_write_active_min_dirty_percent.
|
||
*/
|
||
static uint_t zfs_dirty_data_sync_percent = 20;
|
||
|
||
/*
|
||
* Once there is this amount of dirty data, the dmu_tx_delay() will kick in
|
||
* and delay each transaction.
|
||
* This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
|
||
*/
|
||
uint_t zfs_delay_min_dirty_percent = 60;
|
||
|
||
/*
|
||
* This controls how quickly the delay approaches infinity.
|
||
* Larger values cause it to delay more for a given amount of dirty data.
|
||
* Therefore larger values will cause there to be less dirty data for a
|
||
* given throughput.
|
||
*
|
||
* For the smoothest delay, this value should be about 1 billion divided
|
||
* by the maximum number of operations per second. This will smoothly
|
||
* handle between 10x and 1/10th this number.
|
||
*
|
||
* Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
|
||
* multiply in dmu_tx_delay().
|
||
*/
|
||
uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
|
||
|
||
/*
|
||
* This determines the number of threads used by the dp_sync_taskq.
|
||
*/
|
||
static int zfs_sync_taskq_batch_pct = 75;
|
||
|
||
/*
|
||
* These tunables determine the behavior of how zil_itxg_clean() is
|
||
* called via zil_clean() in the context of spa_sync(). When an itxg
|
||
* list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
|
||
* If the dispatch fails, the call to zil_itxg_clean() will occur
|
||
* synchronously in the context of spa_sync(), which can negatively
|
||
* impact the performance of spa_sync() (e.g. in the case of the itxg
|
||
* list having a large number of itxs that needs to be cleaned).
|
||
*
|
||
* Thus, these tunables can be used to manipulate the behavior of the
|
||
* taskq used by zil_clean(); they determine the number of taskq entries
|
||
* that are pre-populated when the taskq is first created (via the
|
||
* "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
|
||
* taskq entries that are cached after an on-demand allocation (via the
|
||
* "zfs_zil_clean_taskq_maxalloc").
|
||
*
|
||
* The idea being, we want to try reasonably hard to ensure there will
|
||
* already be a taskq entry pre-allocated by the time that it is needed
|
||
* by zil_clean(). This way, we can avoid the possibility of an
|
||
* on-demand allocation of a new taskq entry from failing, which would
|
||
* result in zil_itxg_clean() being called synchronously from zil_clean()
|
||
* (which can adversely affect performance of spa_sync()).
|
||
*
|
||
* Additionally, the number of threads used by the taskq can be
|
||
* configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
|
||
*/
|
||
static int zfs_zil_clean_taskq_nthr_pct = 100;
|
||
static int zfs_zil_clean_taskq_minalloc = 1024;
|
||
static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
|
||
|
||
int
|
||
dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
|
||
{
|
||
uint64_t obj;
|
||
int err;
|
||
|
||
err = zap_lookup(dp->dp_meta_objset,
|
||
dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
|
||
name, sizeof (obj), 1, &obj);
|
||
if (err)
|
||
return (err);
|
||
|
||
return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
|
||
}
|
||
|
||
static dsl_pool_t *
|
||
dsl_pool_open_impl(spa_t *spa, uint64_t txg)
|
||
{
|
||
dsl_pool_t *dp;
|
||
blkptr_t *bp = spa_get_rootblkptr(spa);
|
||
|
||
dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
|
||
dp->dp_spa = spa;
|
||
dp->dp_meta_rootbp = *bp;
|
||
rrw_init(&dp->dp_config_rwlock, B_TRUE);
|
||
txg_init(dp, txg);
|
||
mmp_init(spa);
|
||
|
||
txg_list_create(&dp->dp_dirty_datasets, spa,
|
||
offsetof(dsl_dataset_t, ds_dirty_link));
|
||
txg_list_create(&dp->dp_dirty_zilogs, spa,
|
||
offsetof(zilog_t, zl_dirty_link));
|
||
txg_list_create(&dp->dp_dirty_dirs, spa,
|
||
offsetof(dsl_dir_t, dd_dirty_link));
|
||
txg_list_create(&dp->dp_sync_tasks, spa,
|
||
offsetof(dsl_sync_task_t, dst_node));
|
||
txg_list_create(&dp->dp_early_sync_tasks, spa,
|
||
offsetof(dsl_sync_task_t, dst_node));
|
||
|
||
dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
|
||
zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
|
||
TASKQ_THREADS_CPU_PCT);
|
||
|
||
dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
|
||
zfs_zil_clean_taskq_nthr_pct, minclsyspri,
|
||
zfs_zil_clean_taskq_minalloc,
|
||
zfs_zil_clean_taskq_maxalloc,
|
||
TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
|
||
|
||
mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
|
||
cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
|
||
|
||
aggsum_init(&dp->dp_wrlog_total, 0);
|
||
for (int i = 0; i < TXG_SIZE; i++) {
|
||
aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
|
||
}
|
||
|
||
dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
|
||
boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
|
||
TASKQ_THREADS_CPU_PCT);
|
||
dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
|
||
100, defclsyspri, boot_ncpus, INT_MAX,
|
||
TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
|
||
|
||
return (dp);
|
||
}
|
||
|
||
int
|
||
dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
|
||
{
|
||
int err;
|
||
dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
|
||
|
||
/*
|
||
* Initialize the caller's dsl_pool_t structure before we actually open
|
||
* the meta objset. This is done because a self-healing write zio may
|
||
* be issued as part of dmu_objset_open_impl() and the spa needs its
|
||
* dsl_pool_t initialized in order to handle the write.
|
||
*/
|
||
*dpp = dp;
|
||
|
||
err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
|
||
&dp->dp_meta_objset);
|
||
if (err != 0) {
|
||
dsl_pool_close(dp);
|
||
*dpp = NULL;
|
||
}
|
||
|
||
return (err);
|
||
}
|
||
|
||
int
|
||
dsl_pool_open(dsl_pool_t *dp)
|
||
{
|
||
int err;
|
||
dsl_dir_t *dd;
|
||
dsl_dataset_t *ds;
|
||
uint64_t obj;
|
||
|
||
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
|
||
&dp->dp_root_dir_obj);
|
||
if (err)
|
||
goto out;
|
||
|
||
err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
|
||
NULL, dp, &dp->dp_root_dir);
|
||
if (err)
|
||
goto out;
|
||
|
||
err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
|
||
if (err)
|
||
goto out;
|
||
|
||
if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
|
||
err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
|
||
if (err)
|
||
goto out;
|
||
err = dsl_dataset_hold_obj(dp,
|
||
dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
|
||
if (err == 0) {
|
||
err = dsl_dataset_hold_obj(dp,
|
||
dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
|
||
&dp->dp_origin_snap);
|
||
dsl_dataset_rele(ds, FTAG);
|
||
}
|
||
dsl_dir_rele(dd, dp);
|
||
if (err)
|
||
goto out;
|
||
}
|
||
|
||
if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
|
||
err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
|
||
&dp->dp_free_dir);
|
||
if (err)
|
||
goto out;
|
||
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
|
||
if (err)
|
||
goto out;
|
||
VERIFY0(bpobj_open(&dp->dp_free_bpobj,
|
||
dp->dp_meta_objset, obj));
|
||
}
|
||
|
||
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
|
||
if (err == 0) {
|
||
VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
|
||
dp->dp_meta_objset, obj));
|
||
} else if (err == ENOENT) {
|
||
/*
|
||
* We might not have created the remap bpobj yet.
|
||
*/
|
||
} else {
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Note: errors ignored, because the these special dirs, used for
|
||
* space accounting, are only created on demand.
|
||
*/
|
||
(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
|
||
&dp->dp_leak_dir);
|
||
|
||
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
|
||
&dp->dp_bptree_obj);
|
||
if (err != 0)
|
||
goto out;
|
||
}
|
||
|
||
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
|
||
&dp->dp_empty_bpobj);
|
||
if (err != 0)
|
||
goto out;
|
||
}
|
||
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
|
||
&dp->dp_tmp_userrefs_obj);
|
||
if (err == ENOENT)
|
||
err = 0;
|
||
if (err)
|
||
goto out;
|
||
|
||
err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
|
||
|
||
out:
|
||
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
||
return (err);
|
||
}
|
||
|
||
void
|
||
dsl_pool_close(dsl_pool_t *dp)
|
||
{
|
||
/*
|
||
* Drop our references from dsl_pool_open().
|
||
*
|
||
* Since we held the origin_snap from "syncing" context (which
|
||
* includes pool-opening context), it actually only got a "ref"
|
||
* and not a hold, so just drop that here.
|
||
*/
|
||
if (dp->dp_origin_snap != NULL)
|
||
dsl_dataset_rele(dp->dp_origin_snap, dp);
|
||
if (dp->dp_mos_dir != NULL)
|
||
dsl_dir_rele(dp->dp_mos_dir, dp);
|
||
if (dp->dp_free_dir != NULL)
|
||
dsl_dir_rele(dp->dp_free_dir, dp);
|
||
if (dp->dp_leak_dir != NULL)
|
||
dsl_dir_rele(dp->dp_leak_dir, dp);
|
||
if (dp->dp_root_dir != NULL)
|
||
dsl_dir_rele(dp->dp_root_dir, dp);
|
||
|
||
bpobj_close(&dp->dp_free_bpobj);
|
||
bpobj_close(&dp->dp_obsolete_bpobj);
|
||
|
||
/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
|
||
if (dp->dp_meta_objset != NULL)
|
||
dmu_objset_evict(dp->dp_meta_objset);
|
||
|
||
txg_list_destroy(&dp->dp_dirty_datasets);
|
||
txg_list_destroy(&dp->dp_dirty_zilogs);
|
||
txg_list_destroy(&dp->dp_sync_tasks);
|
||
txg_list_destroy(&dp->dp_early_sync_tasks);
|
||
txg_list_destroy(&dp->dp_dirty_dirs);
|
||
|
||
taskq_destroy(dp->dp_zil_clean_taskq);
|
||
taskq_destroy(dp->dp_sync_taskq);
|
||
|
||
/*
|
||
* We can't set retry to TRUE since we're explicitly specifying
|
||
* a spa to flush. This is good enough; any missed buffers for
|
||
* this spa won't cause trouble, and they'll eventually fall
|
||
* out of the ARC just like any other unused buffer.
|
||
*/
|
||
arc_flush(dp->dp_spa, FALSE);
|
||
|
||
mmp_fini(dp->dp_spa);
|
||
txg_fini(dp);
|
||
dsl_scan_fini(dp);
|
||
dmu_buf_user_evict_wait();
|
||
|
||
rrw_destroy(&dp->dp_config_rwlock);
|
||
mutex_destroy(&dp->dp_lock);
|
||
cv_destroy(&dp->dp_spaceavail_cv);
|
||
|
||
ASSERT0(aggsum_value(&dp->dp_wrlog_total));
|
||
aggsum_fini(&dp->dp_wrlog_total);
|
||
for (int i = 0; i < TXG_SIZE; i++) {
|
||
ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
|
||
aggsum_fini(&dp->dp_wrlog_pertxg[i]);
|
||
}
|
||
|
||
taskq_destroy(dp->dp_unlinked_drain_taskq);
|
||
taskq_destroy(dp->dp_zrele_taskq);
|
||
if (dp->dp_blkstats != NULL)
|
||
vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
|
||
kmem_free(dp, sizeof (dsl_pool_t));
|
||
}
|
||
|
||
void
|
||
dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
uint64_t obj;
|
||
/*
|
||
* Currently, we only create the obsolete_bpobj where there are
|
||
* indirect vdevs with referenced mappings.
|
||
*/
|
||
ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
|
||
/* create and open the obsolete_bpobj */
|
||
obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
|
||
VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
|
||
VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
|
||
spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
|
||
}
|
||
|
||
void
|
||
dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
|
||
VERIFY0(zap_remove(dp->dp_meta_objset,
|
||
DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_OBSOLETE_BPOBJ, tx));
|
||
bpobj_free(dp->dp_meta_objset,
|
||
dp->dp_obsolete_bpobj.bpo_object, tx);
|
||
bpobj_close(&dp->dp_obsolete_bpobj);
|
||
}
|
||
|
||
dsl_pool_t *
|
||
dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
|
||
dsl_crypto_params_t *dcp, uint64_t txg)
|
||
{
|
||
int err;
|
||
dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
|
||
dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
|
||
#ifdef _KERNEL
|
||
objset_t *os;
|
||
#else
|
||
objset_t *os __attribute__((unused));
|
||
#endif
|
||
dsl_dataset_t *ds;
|
||
uint64_t obj;
|
||
|
||
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
||
|
||
/* create and open the MOS (meta-objset) */
|
||
dp->dp_meta_objset = dmu_objset_create_impl(spa,
|
||
NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
|
||
spa->spa_meta_objset = dp->dp_meta_objset;
|
||
|
||
/* create the pool directory */
|
||
err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
|
||
ASSERT0(err);
|
||
|
||
/* Initialize scan structures */
|
||
VERIFY0(dsl_scan_init(dp, txg));
|
||
|
||
/* create and open the root dir */
|
||
dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
|
||
VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
|
||
NULL, dp, &dp->dp_root_dir));
|
||
|
||
/* create and open the meta-objset dir */
|
||
(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
|
||
VERIFY0(dsl_pool_open_special_dir(dp,
|
||
MOS_DIR_NAME, &dp->dp_mos_dir));
|
||
|
||
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
||
/* create and open the free dir */
|
||
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
|
||
FREE_DIR_NAME, tx);
|
||
VERIFY0(dsl_pool_open_special_dir(dp,
|
||
FREE_DIR_NAME, &dp->dp_free_dir));
|
||
|
||
/* create and open the free_bplist */
|
||
obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
|
||
VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
|
||
VERIFY0(bpobj_open(&dp->dp_free_bpobj,
|
||
dp->dp_meta_objset, obj));
|
||
}
|
||
|
||
if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
|
||
dsl_pool_create_origin(dp, tx);
|
||
|
||
/*
|
||
* Some features may be needed when creating the root dataset, so we
|
||
* create the feature objects here.
|
||
*/
|
||
if (spa_version(spa) >= SPA_VERSION_FEATURES)
|
||
spa_feature_create_zap_objects(spa, tx);
|
||
|
||
if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
|
||
dcp->cp_crypt != ZIO_CRYPT_INHERIT)
|
||
spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
|
||
|
||
/* create the root dataset */
|
||
obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
|
||
|
||
/* create the root objset */
|
||
VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
|
||
DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
|
||
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
||
os = dmu_objset_create_impl(dp->dp_spa, ds,
|
||
dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
|
||
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
||
#ifdef _KERNEL
|
||
zfs_create_fs(os, kcred, zplprops, tx);
|
||
#endif
|
||
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
|
||
|
||
dmu_tx_commit(tx);
|
||
|
||
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
||
|
||
return (dp);
|
||
}
|
||
|
||
/*
|
||
* Account for the meta-objset space in its placeholder dsl_dir.
|
||
*/
|
||
void
|
||
dsl_pool_mos_diduse_space(dsl_pool_t *dp,
|
||
int64_t used, int64_t comp, int64_t uncomp)
|
||
{
|
||
ASSERT3U(comp, ==, uncomp); /* it's all metadata */
|
||
mutex_enter(&dp->dp_lock);
|
||
dp->dp_mos_used_delta += used;
|
||
dp->dp_mos_compressed_delta += comp;
|
||
dp->dp_mos_uncompressed_delta += uncomp;
|
||
mutex_exit(&dp->dp_lock);
|
||
}
|
||
|
||
static void
|
||
dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
||
dmu_objset_sync(dp->dp_meta_objset, zio, tx);
|
||
VERIFY0(zio_wait(zio));
|
||
dmu_objset_sync_done(dp->dp_meta_objset, tx);
|
||
taskq_wait(dp->dp_sync_taskq);
|
||
multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
|
||
|
||
dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
|
||
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
|
||
}
|
||
|
||
static void
|
||
dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
|
||
{
|
||
ASSERT(MUTEX_HELD(&dp->dp_lock));
|
||
|
||
if (delta < 0)
|
||
ASSERT3U(-delta, <=, dp->dp_dirty_total);
|
||
|
||
dp->dp_dirty_total += delta;
|
||
|
||
/*
|
||
* Note: we signal even when increasing dp_dirty_total.
|
||
* This ensures forward progress -- each thread wakes the next waiter.
|
||
*/
|
||
if (dp->dp_dirty_total < zfs_dirty_data_max)
|
||
cv_signal(&dp->dp_spaceavail_cv);
|
||
}
|
||
|
||
void
|
||
dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
|
||
{
|
||
ASSERT3S(size, >=, 0);
|
||
|
||
aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
|
||
aggsum_add(&dp->dp_wrlog_total, size);
|
||
|
||
/* Choose a value slightly bigger than min dirty sync bytes */
|
||
uint64_t sync_min =
|
||
zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
|
||
if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
|
||
txg_kick(dp, txg);
|
||
}
|
||
|
||
boolean_t
|
||
dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
|
||
{
|
||
uint64_t delay_min_bytes =
|
||
zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
|
||
|
||
return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
|
||
}
|
||
|
||
static void
|
||
dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
int64_t delta;
|
||
delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
|
||
aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
|
||
aggsum_add(&dp->dp_wrlog_total, delta);
|
||
/* Compact per-CPU sums after the big change. */
|
||
(void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
|
||
(void) aggsum_value(&dp->dp_wrlog_total);
|
||
}
|
||
|
||
#ifdef ZFS_DEBUG
|
||
static boolean_t
|
||
dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
spa_t *spa = dp->dp_spa;
|
||
vdev_t *rvd = spa->spa_root_vdev;
|
||
|
||
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
||
vdev_t *vd = rvd->vdev_child[c];
|
||
txg_list_t *tl = &vd->vdev_ms_list;
|
||
metaslab_t *ms;
|
||
|
||
for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
|
||
ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
|
||
VERIFY(range_tree_is_empty(ms->ms_freeing));
|
||
VERIFY(range_tree_is_empty(ms->ms_checkpointing));
|
||
}
|
||
}
|
||
|
||
return (B_TRUE);
|
||
}
|
||
#else
|
||
#define dsl_early_sync_task_verify(dp, txg) \
|
||
((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
|
||
#endif
|
||
|
||
void
|
||
dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
zio_t *zio;
|
||
dmu_tx_t *tx;
|
||
dsl_dir_t *dd;
|
||
dsl_dataset_t *ds;
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
list_t synced_datasets;
|
||
|
||
list_create(&synced_datasets, sizeof (dsl_dataset_t),
|
||
offsetof(dsl_dataset_t, ds_synced_link));
|
||
|
||
tx = dmu_tx_create_assigned(dp, txg);
|
||
|
||
/*
|
||
* Run all early sync tasks before writing out any dirty blocks.
|
||
* For more info on early sync tasks see block comment in
|
||
* dsl_early_sync_task().
|
||
*/
|
||
if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
|
||
dsl_sync_task_t *dst;
|
||
|
||
ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
|
||
while ((dst =
|
||
txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
|
||
ASSERT(dsl_early_sync_task_verify(dp, txg));
|
||
dsl_sync_task_sync(dst, tx);
|
||
}
|
||
ASSERT(dsl_early_sync_task_verify(dp, txg));
|
||
}
|
||
|
||
/*
|
||
* Write out all dirty blocks of dirty datasets.
|
||
*/
|
||
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
||
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
|
||
/*
|
||
* We must not sync any non-MOS datasets twice, because
|
||
* we may have taken a snapshot of them. However, we
|
||
* may sync newly-created datasets on pass 2.
|
||
*/
|
||
ASSERT(!list_link_active(&ds->ds_synced_link));
|
||
list_insert_tail(&synced_datasets, ds);
|
||
dsl_dataset_sync(ds, zio, tx);
|
||
}
|
||
VERIFY0(zio_wait(zio));
|
||
|
||
/*
|
||
* Update the long range free counter after
|
||
* we're done syncing user data
|
||
*/
|
||
mutex_enter(&dp->dp_lock);
|
||
ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
|
||
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
|
||
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
|
||
mutex_exit(&dp->dp_lock);
|
||
|
||
/*
|
||
* After the data blocks have been written (ensured by the zio_wait()
|
||
* above), update the user/group/project space accounting. This happens
|
||
* in tasks dispatched to dp_sync_taskq, so wait for them before
|
||
* continuing.
|
||
*/
|
||
for (ds = list_head(&synced_datasets); ds != NULL;
|
||
ds = list_next(&synced_datasets, ds)) {
|
||
dmu_objset_sync_done(ds->ds_objset, tx);
|
||
}
|
||
taskq_wait(dp->dp_sync_taskq);
|
||
|
||
/*
|
||
* Sync the datasets again to push out the changes due to
|
||
* userspace updates. This must be done before we process the
|
||
* sync tasks, so that any snapshots will have the correct
|
||
* user accounting information (and we won't get confused
|
||
* about which blocks are part of the snapshot).
|
||
*/
|
||
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
||
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
|
||
objset_t *os = ds->ds_objset;
|
||
|
||
ASSERT(list_link_active(&ds->ds_synced_link));
|
||
dmu_buf_rele(ds->ds_dbuf, ds);
|
||
dsl_dataset_sync(ds, zio, tx);
|
||
|
||
/*
|
||
* Release any key mappings created by calls to
|
||
* dsl_dataset_dirty() from the userquota accounting
|
||
* code paths.
|
||
*/
|
||
if (os->os_encrypted && !os->os_raw_receive &&
|
||
!os->os_next_write_raw[txg & TXG_MASK]) {
|
||
ASSERT3P(ds->ds_key_mapping, !=, NULL);
|
||
key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
|
||
}
|
||
}
|
||
VERIFY0(zio_wait(zio));
|
||
|
||
/*
|
||
* Now that the datasets have been completely synced, we can
|
||
* clean up our in-memory structures accumulated while syncing:
|
||
*
|
||
* - move dead blocks from the pending deadlist and livelists
|
||
* to the on-disk versions
|
||
* - release hold from dsl_dataset_dirty()
|
||
* - release key mapping hold from dsl_dataset_dirty()
|
||
*/
|
||
while ((ds = list_remove_head(&synced_datasets)) != NULL) {
|
||
objset_t *os = ds->ds_objset;
|
||
|
||
if (os->os_encrypted && !os->os_raw_receive &&
|
||
!os->os_next_write_raw[txg & TXG_MASK]) {
|
||
ASSERT3P(ds->ds_key_mapping, !=, NULL);
|
||
key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
|
||
}
|
||
|
||
dsl_dataset_sync_done(ds, tx);
|
||
dmu_buf_rele(ds->ds_dbuf, ds);
|
||
}
|
||
|
||
while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
|
||
dsl_dir_sync(dd, tx);
|
||
}
|
||
|
||
/*
|
||
* The MOS's space is accounted for in the pool/$MOS
|
||
* (dp_mos_dir). We can't modify the mos while we're syncing
|
||
* it, so we remember the deltas and apply them here.
|
||
*/
|
||
if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
|
||
dp->dp_mos_uncompressed_delta != 0) {
|
||
dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
|
||
dp->dp_mos_used_delta,
|
||
dp->dp_mos_compressed_delta,
|
||
dp->dp_mos_uncompressed_delta, tx);
|
||
dp->dp_mos_used_delta = 0;
|
||
dp->dp_mos_compressed_delta = 0;
|
||
dp->dp_mos_uncompressed_delta = 0;
|
||
}
|
||
|
||
if (dmu_objset_is_dirty(mos, txg)) {
|
||
dsl_pool_sync_mos(dp, tx);
|
||
}
|
||
|
||
/*
|
||
* We have written all of the accounted dirty data, so our
|
||
* dp_space_towrite should now be zero. However, some seldom-used
|
||
* code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
|
||
* the accounting of any dirtied space now.
|
||
*
|
||
* Note that, besides any dirty data from datasets, the amount of
|
||
* dirty data in the MOS is also accounted by the pool. Therefore,
|
||
* we want to do this cleanup after dsl_pool_sync_mos() so we don't
|
||
* attempt to update the accounting for the same dirty data twice.
|
||
* (i.e. at this point we only update the accounting for the space
|
||
* that we know that we "leaked").
|
||
*/
|
||
dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
|
||
|
||
/*
|
||
* If we modify a dataset in the same txg that we want to destroy it,
|
||
* its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
|
||
* dsl_dir_destroy_check() will fail if there are unexpected holds.
|
||
* Therefore, we want to sync the MOS (thus syncing the dd_dbuf
|
||
* and clearing the hold on it) before we process the sync_tasks.
|
||
* The MOS data dirtied by the sync_tasks will be synced on the next
|
||
* pass.
|
||
*/
|
||
if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
|
||
dsl_sync_task_t *dst;
|
||
/*
|
||
* No more sync tasks should have been added while we
|
||
* were syncing.
|
||
*/
|
||
ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
|
||
while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
|
||
dsl_sync_task_sync(dst, tx);
|
||
}
|
||
|
||
dmu_tx_commit(tx);
|
||
|
||
DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
|
||
}
|
||
|
||
void
|
||
dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
zilog_t *zilog;
|
||
|
||
while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
|
||
dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
|
||
/*
|
||
* We don't remove the zilog from the dp_dirty_zilogs
|
||
* list until after we've cleaned it. This ensures that
|
||
* callers of zilog_is_dirty() receive an accurate
|
||
* answer when they are racing with the spa sync thread.
|
||
*/
|
||
zil_clean(zilog, txg);
|
||
(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
|
||
ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
|
||
dmu_buf_rele(ds->ds_dbuf, zilog);
|
||
}
|
||
|
||
dsl_pool_wrlog_clear(dp, txg);
|
||
|
||
ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
|
||
}
|
||
|
||
/*
|
||
* TRUE if the current thread is the tx_sync_thread or if we
|
||
* are being called from SPA context during pool initialization.
|
||
*/
|
||
int
|
||
dsl_pool_sync_context(dsl_pool_t *dp)
|
||
{
|
||
return (curthread == dp->dp_tx.tx_sync_thread ||
|
||
spa_is_initializing(dp->dp_spa) ||
|
||
taskq_member(dp->dp_sync_taskq, curthread));
|
||
}
|
||
|
||
/*
|
||
* This function returns the amount of allocatable space in the pool
|
||
* minus whatever space is currently reserved by ZFS for specific
|
||
* purposes. Specifically:
|
||
*
|
||
* 1] Any reserved SLOP space
|
||
* 2] Any space used by the checkpoint
|
||
* 3] Any space used for deferred frees
|
||
*
|
||
* The latter 2 are especially important because they are needed to
|
||
* rectify the SPA's and DMU's different understanding of how much space
|
||
* is used. Now the DMU is aware of that extra space tracked by the SPA
|
||
* without having to maintain a separate special dir (e.g similar to
|
||
* $MOS, $FREEING, and $LEAKED).
|
||
*
|
||
* Note: By deferred frees here, we mean the frees that were deferred
|
||
* in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
|
||
* segments placed in ms_defer trees during metaslab_sync_done().
|
||
*/
|
||
uint64_t
|
||
dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
|
||
{
|
||
spa_t *spa = dp->dp_spa;
|
||
uint64_t space, resv, adjustedsize;
|
||
uint64_t spa_deferred_frees =
|
||
spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
|
||
|
||
space = spa_get_dspace(spa)
|
||
- spa_get_checkpoint_space(spa) - spa_deferred_frees;
|
||
resv = spa_get_slop_space(spa);
|
||
|
||
switch (slop_policy) {
|
||
case ZFS_SPACE_CHECK_NORMAL:
|
||
break;
|
||
case ZFS_SPACE_CHECK_RESERVED:
|
||
resv >>= 1;
|
||
break;
|
||
case ZFS_SPACE_CHECK_EXTRA_RESERVED:
|
||
resv >>= 2;
|
||
break;
|
||
case ZFS_SPACE_CHECK_NONE:
|
||
resv = 0;
|
||
break;
|
||
default:
|
||
panic("invalid slop policy value: %d", slop_policy);
|
||
break;
|
||
}
|
||
adjustedsize = (space >= resv) ? (space - resv) : 0;
|
||
|
||
return (adjustedsize);
|
||
}
|
||
|
||
uint64_t
|
||
dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
|
||
{
|
||
uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
|
||
uint64_t deferred =
|
||
metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
|
||
uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
|
||
return (quota);
|
||
}
|
||
|
||
uint64_t
|
||
dsl_pool_deferred_space(dsl_pool_t *dp)
|
||
{
|
||
return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
|
||
}
|
||
|
||
boolean_t
|
||
dsl_pool_need_dirty_delay(dsl_pool_t *dp)
|
||
{
|
||
uint64_t delay_min_bytes =
|
||
zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
|
||
|
||
/*
|
||
* We are not taking the dp_lock here and few other places, since torn
|
||
* reads are unlikely: on 64-bit systems due to register size and on
|
||
* 32-bit due to memory constraints. Pool-wide locks in hot path may
|
||
* be too expensive, while we do not need a precise result here.
|
||
*/
|
||
return (dp->dp_dirty_total > delay_min_bytes);
|
||
}
|
||
|
||
static boolean_t
|
||
dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
uint64_t dirty_min_bytes =
|
||
zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
|
||
uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
|
||
|
||
return (dirty > dirty_min_bytes);
|
||
}
|
||
|
||
void
|
||
dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
|
||
{
|
||
if (space > 0) {
|
||
mutex_enter(&dp->dp_lock);
|
||
dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
|
||
dsl_pool_dirty_delta(dp, space);
|
||
boolean_t needsync = !dmu_tx_is_syncing(tx) &&
|
||
dsl_pool_need_dirty_sync(dp, tx->tx_txg);
|
||
mutex_exit(&dp->dp_lock);
|
||
|
||
if (needsync)
|
||
txg_kick(dp, tx->tx_txg);
|
||
}
|
||
}
|
||
|
||
void
|
||
dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
|
||
{
|
||
ASSERT3S(space, >=, 0);
|
||
if (space == 0)
|
||
return;
|
||
|
||
mutex_enter(&dp->dp_lock);
|
||
if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
|
||
/* XXX writing something we didn't dirty? */
|
||
space = dp->dp_dirty_pertxg[txg & TXG_MASK];
|
||
}
|
||
ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
|
||
dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
|
||
ASSERT3U(dp->dp_dirty_total, >=, space);
|
||
dsl_pool_dirty_delta(dp, -space);
|
||
mutex_exit(&dp->dp_lock);
|
||
}
|
||
|
||
static int
|
||
upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
|
||
{
|
||
dmu_tx_t *tx = arg;
|
||
dsl_dataset_t *ds, *prev = NULL;
|
||
int err;
|
||
|
||
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
|
||
if (err)
|
||
return (err);
|
||
|
||
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
|
||
err = dsl_dataset_hold_obj(dp,
|
||
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
|
||
if (err) {
|
||
dsl_dataset_rele(ds, FTAG);
|
||
return (err);
|
||
}
|
||
|
||
if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
|
||
break;
|
||
dsl_dataset_rele(ds, FTAG);
|
||
ds = prev;
|
||
prev = NULL;
|
||
}
|
||
|
||
if (prev == NULL) {
|
||
prev = dp->dp_origin_snap;
|
||
|
||
/*
|
||
* The $ORIGIN can't have any data, or the accounting
|
||
* will be wrong.
|
||
*/
|
||
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
||
ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
|
||
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
||
|
||
/* The origin doesn't get attached to itself */
|
||
if (ds->ds_object == prev->ds_object) {
|
||
dsl_dataset_rele(ds, FTAG);
|
||
return (0);
|
||
}
|
||
|
||
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
||
dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
|
||
dsl_dataset_phys(ds)->ds_prev_snap_txg =
|
||
dsl_dataset_phys(prev)->ds_creation_txg;
|
||
|
||
dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
|
||
dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
|
||
|
||
dmu_buf_will_dirty(prev->ds_dbuf, tx);
|
||
dsl_dataset_phys(prev)->ds_num_children++;
|
||
|
||
if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
|
||
ASSERT(ds->ds_prev == NULL);
|
||
VERIFY0(dsl_dataset_hold_obj(dp,
|
||
dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
||
ds, &ds->ds_prev));
|
||
}
|
||
}
|
||
|
||
ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
|
||
ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
|
||
|
||
if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
|
||
dmu_buf_will_dirty(prev->ds_dbuf, tx);
|
||
dsl_dataset_phys(prev)->ds_next_clones_obj =
|
||
zap_create(dp->dp_meta_objset,
|
||
DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
|
||
}
|
||
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
||
dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
|
||
|
||
dsl_dataset_rele(ds, FTAG);
|
||
if (prev != dp->dp_origin_snap)
|
||
dsl_dataset_rele(prev, FTAG);
|
||
return (0);
|
||
}
|
||
|
||
void
|
||
dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
ASSERT(dp->dp_origin_snap != NULL);
|
||
|
||
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
|
||
tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
|
||
}
|
||
|
||
static int
|
||
upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
||
{
|
||
dmu_tx_t *tx = arg;
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
|
||
if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
|
||
dsl_dataset_t *origin;
|
||
|
||
VERIFY0(dsl_dataset_hold_obj(dp,
|
||
dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
|
||
|
||
if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
|
||
dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
|
||
dsl_dir_phys(origin->ds_dir)->dd_clones =
|
||
zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
|
||
0, tx);
|
||
}
|
||
|
||
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
||
dsl_dir_phys(origin->ds_dir)->dd_clones,
|
||
ds->ds_object, tx));
|
||
|
||
dsl_dataset_rele(origin, FTAG);
|
||
}
|
||
return (0);
|
||
}
|
||
|
||
void
|
||
dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
uint64_t obj;
|
||
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
|
||
(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
|
||
VERIFY0(dsl_pool_open_special_dir(dp,
|
||
FREE_DIR_NAME, &dp->dp_free_dir));
|
||
|
||
/*
|
||
* We can't use bpobj_alloc(), because spa_version() still
|
||
* returns the old version, and we need a new-version bpobj with
|
||
* subobj support. So call dmu_object_alloc() directly.
|
||
*/
|
||
obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
|
||
SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
|
||
VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
|
||
VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
|
||
|
||
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
||
upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
|
||
}
|
||
|
||
void
|
||
dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
uint64_t dsobj;
|
||
dsl_dataset_t *ds;
|
||
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
ASSERT(dp->dp_origin_snap == NULL);
|
||
ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
|
||
|
||
/* create the origin dir, ds, & snap-ds */
|
||
dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
|
||
NULL, 0, kcred, NULL, tx);
|
||
VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
|
||
dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
|
||
VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
||
dp, &dp->dp_origin_snap));
|
||
dsl_dataset_rele(ds, FTAG);
|
||
}
|
||
|
||
taskq_t *
|
||
dsl_pool_zrele_taskq(dsl_pool_t *dp)
|
||
{
|
||
return (dp->dp_zrele_taskq);
|
||
}
|
||
|
||
taskq_t *
|
||
dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
|
||
{
|
||
return (dp->dp_unlinked_drain_taskq);
|
||
}
|
||
|
||
/*
|
||
* Walk through the pool-wide zap object of temporary snapshot user holds
|
||
* and release them.
|
||
*/
|
||
void
|
||
dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
|
||
{
|
||
zap_attribute_t za;
|
||
zap_cursor_t zc;
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
uint64_t zapobj = dp->dp_tmp_userrefs_obj;
|
||
nvlist_t *holds;
|
||
|
||
if (zapobj == 0)
|
||
return;
|
||
ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
|
||
|
||
holds = fnvlist_alloc();
|
||
|
||
for (zap_cursor_init(&zc, mos, zapobj);
|
||
zap_cursor_retrieve(&zc, &za) == 0;
|
||
zap_cursor_advance(&zc)) {
|
||
char *htag;
|
||
nvlist_t *tags;
|
||
|
||
htag = strchr(za.za_name, '-');
|
||
*htag = '\0';
|
||
++htag;
|
||
if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
|
||
tags = fnvlist_alloc();
|
||
fnvlist_add_boolean(tags, htag);
|
||
fnvlist_add_nvlist(holds, za.za_name, tags);
|
||
fnvlist_free(tags);
|
||
} else {
|
||
fnvlist_add_boolean(tags, htag);
|
||
}
|
||
}
|
||
dsl_dataset_user_release_tmp(dp, holds);
|
||
fnvlist_free(holds);
|
||
zap_cursor_fini(&zc);
|
||
}
|
||
|
||
/*
|
||
* Create the pool-wide zap object for storing temporary snapshot holds.
|
||
*/
|
||
static void
|
||
dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
|
||
ASSERT(dp->dp_tmp_userrefs_obj == 0);
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
|
||
dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
|
||
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
|
||
}
|
||
|
||
static int
|
||
dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
|
||
const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
|
||
{
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
uint64_t zapobj = dp->dp_tmp_userrefs_obj;
|
||
char *name;
|
||
int error;
|
||
|
||
ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
|
||
/*
|
||
* If the pool was created prior to SPA_VERSION_USERREFS, the
|
||
* zap object for temporary holds might not exist yet.
|
||
*/
|
||
if (zapobj == 0) {
|
||
if (holding) {
|
||
dsl_pool_user_hold_create_obj(dp, tx);
|
||
zapobj = dp->dp_tmp_userrefs_obj;
|
||
} else {
|
||
return (SET_ERROR(ENOENT));
|
||
}
|
||
}
|
||
|
||
name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
|
||
if (holding)
|
||
error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
|
||
else
|
||
error = zap_remove(mos, zapobj, name, tx);
|
||
kmem_strfree(name);
|
||
|
||
return (error);
|
||
}
|
||
|
||
/*
|
||
* Add a temporary hold for the given dataset object and tag.
|
||
*/
|
||
int
|
||
dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
|
||
uint64_t now, dmu_tx_t *tx)
|
||
{
|
||
return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
|
||
}
|
||
|
||
/*
|
||
* Release a temporary hold for the given dataset object and tag.
|
||
*/
|
||
int
|
||
dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
|
||
dmu_tx_t *tx)
|
||
{
|
||
return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
|
||
tx, B_FALSE));
|
||
}
|
||
|
||
/*
|
||
* DSL Pool Configuration Lock
|
||
*
|
||
* The dp_config_rwlock protects against changes to DSL state (e.g. dataset
|
||
* creation / destruction / rename / property setting). It must be held for
|
||
* read to hold a dataset or dsl_dir. I.e. you must call
|
||
* dsl_pool_config_enter() or dsl_pool_hold() before calling
|
||
* dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
|
||
* must be held continuously until all datasets and dsl_dirs are released.
|
||
*
|
||
* The only exception to this rule is that if a "long hold" is placed on
|
||
* a dataset, then the dp_config_rwlock may be dropped while the dataset
|
||
* is still held. The long hold will prevent the dataset from being
|
||
* destroyed -- the destroy will fail with EBUSY. A long hold can be
|
||
* obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
|
||
* (by calling dsl_{dataset,objset}_{try}own{_obj}).
|
||
*
|
||
* Legitimate long-holders (including owners) should be long-running, cancelable
|
||
* tasks that should cause "zfs destroy" to fail. This includes DMU
|
||
* consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
|
||
* "zfs send", and "zfs diff". There are several other long-holders whose
|
||
* uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
|
||
*
|
||
* The usual formula for long-holding would be:
|
||
* dsl_pool_hold()
|
||
* dsl_dataset_hold()
|
||
* ... perform checks ...
|
||
* dsl_dataset_long_hold()
|
||
* dsl_pool_rele()
|
||
* ... perform long-running task ...
|
||
* dsl_dataset_long_rele()
|
||
* dsl_dataset_rele()
|
||
*
|
||
* Note that when the long hold is released, the dataset is still held but
|
||
* the pool is not held. The dataset may change arbitrarily during this time
|
||
* (e.g. it could be destroyed). Therefore you shouldn't do anything to the
|
||
* dataset except release it.
|
||
*
|
||
* Operations generally fall somewhere into the following taxonomy:
|
||
*
|
||
* Read-Only Modifying
|
||
*
|
||
* Dataset Layer / MOS zfs get zfs destroy
|
||
*
|
||
* Individual Dataset read() write()
|
||
*
|
||
*
|
||
* Dataset Layer Operations
|
||
*
|
||
* Modifying operations should generally use dsl_sync_task(). The synctask
|
||
* infrastructure enforces proper locking strategy with respect to the
|
||
* dp_config_rwlock. See the comment above dsl_sync_task() for details.
|
||
*
|
||
* Read-only operations will manually hold the pool, then the dataset, obtain
|
||
* information from the dataset, then release the pool and dataset.
|
||
* dmu_objset_{hold,rele}() are convenience routines that also do the pool
|
||
* hold/rele.
|
||
*
|
||
*
|
||
* Operations On Individual Datasets
|
||
*
|
||
* Objects _within_ an objset should only be modified by the current 'owner'
|
||
* of the objset to prevent incorrect concurrent modification. Thus, use
|
||
* {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
|
||
* and fail with EBUSY if there is already an owner. The owner can then
|
||
* implement its own locking strategy, independent of the dataset layer's
|
||
* locking infrastructure.
|
||
* (E.g., the ZPL has its own set of locks to control concurrency. A regular
|
||
* vnop will not reach into the dataset layer).
|
||
*
|
||
* Ideally, objects would also only be read by the objset’s owner, so that we
|
||
* don’t observe state mid-modification.
|
||
* (E.g. the ZPL is creating a new object and linking it into a directory; if
|
||
* you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
|
||
* intermediate state. The ioctl level violates this but in pretty benign
|
||
* ways, e.g. reading the zpl props object.)
|
||
*/
|
||
|
||
int
|
||
dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
|
||
{
|
||
spa_t *spa;
|
||
int error;
|
||
|
||
error = spa_open(name, &spa, tag);
|
||
if (error == 0) {
|
||
*dp = spa_get_dsl(spa);
|
||
dsl_pool_config_enter(*dp, tag);
|
||
}
|
||
return (error);
|
||
}
|
||
|
||
void
|
||
dsl_pool_rele(dsl_pool_t *dp, const void *tag)
|
||
{
|
||
dsl_pool_config_exit(dp, tag);
|
||
spa_close(dp->dp_spa, tag);
|
||
}
|
||
|
||
void
|
||
dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
|
||
{
|
||
/*
|
||
* We use a "reentrant" reader-writer lock, but not reentrantly.
|
||
*
|
||
* The rrwlock can (with the track_all flag) track all reading threads,
|
||
* which is very useful for debugging which code path failed to release
|
||
* the lock, and for verifying that the *current* thread does hold
|
||
* the lock.
|
||
*
|
||
* (Unlike a rwlock, which knows that N threads hold it for
|
||
* read, but not *which* threads, so rw_held(RW_READER) returns TRUE
|
||
* if any thread holds it for read, even if this thread doesn't).
|
||
*/
|
||
ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
|
||
rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
|
||
}
|
||
|
||
void
|
||
dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
|
||
{
|
||
ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
|
||
rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
|
||
}
|
||
|
||
void
|
||
dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
|
||
{
|
||
rrw_exit(&dp->dp_config_rwlock, tag);
|
||
}
|
||
|
||
boolean_t
|
||
dsl_pool_config_held(dsl_pool_t *dp)
|
||
{
|
||
return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
|
||
}
|
||
|
||
boolean_t
|
||
dsl_pool_config_held_writer(dsl_pool_t *dp)
|
||
{
|
||
return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
|
||
}
|
||
|
||
EXPORT_SYMBOL(dsl_pool_config_enter);
|
||
EXPORT_SYMBOL(dsl_pool_config_exit);
|
||
|
||
/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
|
||
"Max percent of RAM allowed to be dirty");
|
||
|
||
/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
|
||
"zfs_dirty_data_max upper bound as % of RAM");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
|
||
"Transaction delay threshold");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
|
||
"Determines the dirty space limit");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
|
||
"The size limit of write-transaction zil log data");
|
||
|
||
/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
|
||
"zfs_dirty_data_max upper bound in bytes");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
|
||
"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
|
||
"How quickly delay approaches infinity");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
|
||
"Max percent of CPUs that are used to sync dirty data");
|
||
|
||
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
|
||
"Max percent of CPUs that are used per dp_sync_taskq");
|
||
|
||
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
|
||
"Number of taskq entries that are pre-populated");
|
||
|
||
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
|
||
"Max number of taskq entries that are cached");
|