mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-28 10:54:21 +03:00
6a42939fcd
These were categorized as the following:
* Dead assignment 23
* Dead increment 4
* Dead initialization 6
* Dead nested assignment 18
Most of these are harmless, but since actual issues can hide among them,
we correct them.
That said, there were a few return values that were being ignored that
appeared to merit some correction:
* `destroy_callback()` in `cmd/zfs/zfs_main.c` ignored the error from
`destroy_batched()`. We handle it by returning -1 if there is an
error.
* `zfs_do_upgrade()` in `cmd/zfs/zfs_main.c` ignored the error from
`zfs_for_each()`. We handle it by doing a binary OR of the error
value from the subsequent `zfs_for_each()` call to the existing
value. This is how errors are mostly handled inside `zfs_for_each()`.
The error value here is passed to exit from the zfs command, so doing
a binary or on it is better than what we did previously.
* `get_zap_prop()` in `module/zfs/zcp_get.c` ignored the error from
`dsl_prop_get_ds()` when the property is not of type string. We
return an error when it does. There is a small concern that the
`zfs_get_temporary_prop()` call would handle things, but in the case
that it does not, we would be pushing an uninitialized numval onto
the lua stack. It is expected that `dsl_prop_get_ds()` will succeed
anytime that `zfs_get_temporary_prop()` does, so that not giving it a
chance to fix things is not a problem.
* `draid_merge_impl()` in `tests/zfs-tests/cmd/draid.c` used
`nvlist_add_nvlist()` twice in ways in which errors are expected to
be impossible, so we switch to `fnvlist_add_nvlist()`.
A few notable ones did not merit use of the return value, so we
suppressed it with `(void)`:
* `write_free_diffs()` in `lib/libzfs/libzfs_diff.c` ignored the error
value from `describe_free()`. A look through the commit history
revealed that this was intentional.
* `arc_evict_hdr()` in `module/zfs/arc.c` did not need to use the
returned handle from `arc_hdr_realloc()` because it is already
referenced in lists.
* `spa_vdev_detach()` in `module/zfs/spa.c` has a comment explicitly
saying not to use the error from `vdev_label_init()` because whatever
causes the error could be the reason why a detach is being done.
Unfortunately, I am not presently able to analyze the kernel modules
with Clang's static analyzer, so I could have missed some cases of this.
In cases where reports were present in code that is duplicated between
Linux and FreeBSD, I made a conscious effort to fix the FreeBSD version
too.
After this commit is merged, regressions like dee8934
should become
extremely obvious with Clang's static analyzer since a regression would
appear in the results as the only instance of unused code. That assumes
that Coverity does not catch the issue first.
My local branch with fixes from all of my outstanding non-draft pull
requests shows 118 reports from Clang's static anlayzer after this
patch. That is down by 51 from 169.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Cedric Berger <cedric@precidata.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13986
904 lines
24 KiB
C
904 lines
24 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <modes/modes.h>
|
|
#include <sys/crypto/common.h>
|
|
#include <sys/crypto/impl.h>
|
|
|
|
#ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
|
|
#include <sys/byteorder.h>
|
|
#define UNALIGNED_POINTERS_PERMITTED
|
|
#endif
|
|
|
|
/*
|
|
* Encrypt multiple blocks of data in CCM mode. Decrypt for CCM mode
|
|
* is done in another function.
|
|
*/
|
|
int
|
|
ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
|
|
crypto_data_t *out, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*copy_block)(uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
size_t remainder = length;
|
|
size_t need = 0;
|
|
uint8_t *datap = (uint8_t *)data;
|
|
uint8_t *blockp;
|
|
uint8_t *lastp;
|
|
void *iov_or_mp;
|
|
offset_t offset;
|
|
uint8_t *out_data_1;
|
|
uint8_t *out_data_2;
|
|
size_t out_data_1_len;
|
|
uint64_t counter;
|
|
uint8_t *mac_buf;
|
|
|
|
if (length + ctx->ccm_remainder_len < block_size) {
|
|
/* accumulate bytes here and return */
|
|
memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
|
|
datap,
|
|
length);
|
|
ctx->ccm_remainder_len += length;
|
|
ctx->ccm_copy_to = datap;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
crypto_init_ptrs(out, &iov_or_mp, &offset);
|
|
|
|
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
|
|
|
|
do {
|
|
/* Unprocessed data from last call. */
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
need = block_size - ctx->ccm_remainder_len;
|
|
|
|
if (need > remainder)
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
|
|
memcpy(&((uint8_t *)ctx->ccm_remainder)
|
|
[ctx->ccm_remainder_len], datap, need);
|
|
|
|
blockp = (uint8_t *)ctx->ccm_remainder;
|
|
} else {
|
|
blockp = datap;
|
|
}
|
|
|
|
/*
|
|
* do CBC MAC
|
|
*
|
|
* XOR the previous cipher block current clear block.
|
|
* mac_buf always contain previous cipher block.
|
|
*/
|
|
xor_block(blockp, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
|
|
/* ccm_cb is the counter block */
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
|
|
(uint8_t *)ctx->ccm_tmp);
|
|
|
|
lastp = (uint8_t *)ctx->ccm_tmp;
|
|
|
|
/*
|
|
* Increment counter. Counter bits are confined
|
|
* to the bottom 64 bits of the counter block.
|
|
*/
|
|
#ifdef _ZFS_LITTLE_ENDIAN
|
|
counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
|
|
counter = htonll(counter + 1);
|
|
#else
|
|
counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
|
|
counter++;
|
|
#endif /* _ZFS_LITTLE_ENDIAN */
|
|
counter &= ctx->ccm_counter_mask;
|
|
ctx->ccm_cb[1] =
|
|
(ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
|
|
|
|
/*
|
|
* XOR encrypted counter block with the current clear block.
|
|
*/
|
|
xor_block(blockp, lastp);
|
|
|
|
ctx->ccm_processed_data_len += block_size;
|
|
|
|
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
|
|
&out_data_1_len, &out_data_2, block_size);
|
|
|
|
/* copy block to where it belongs */
|
|
if (out_data_1_len == block_size) {
|
|
copy_block(lastp, out_data_1);
|
|
} else {
|
|
memcpy(out_data_1, lastp, out_data_1_len);
|
|
if (out_data_2 != NULL) {
|
|
memcpy(out_data_2,
|
|
lastp + out_data_1_len,
|
|
block_size - out_data_1_len);
|
|
}
|
|
}
|
|
/* update offset */
|
|
out->cd_offset += block_size;
|
|
|
|
/* Update pointer to next block of data to be processed. */
|
|
if (ctx->ccm_remainder_len != 0) {
|
|
datap += need;
|
|
ctx->ccm_remainder_len = 0;
|
|
} else {
|
|
datap += block_size;
|
|
}
|
|
|
|
remainder = (size_t)&data[length] - (size_t)datap;
|
|
|
|
/* Incomplete last block. */
|
|
if (remainder > 0 && remainder < block_size) {
|
|
memcpy(ctx->ccm_remainder, datap, remainder);
|
|
ctx->ccm_remainder_len = remainder;
|
|
ctx->ccm_copy_to = datap;
|
|
goto out;
|
|
}
|
|
ctx->ccm_copy_to = NULL;
|
|
|
|
} while (remainder > 0);
|
|
|
|
out:
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
void
|
|
calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
|
|
{
|
|
uint64_t counter;
|
|
uint8_t *counterp, *mac_buf;
|
|
int i;
|
|
|
|
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
|
|
|
|
/* first counter block start with index 0 */
|
|
counter = 0;
|
|
ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
|
|
|
|
counterp = (uint8_t *)ctx->ccm_tmp;
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
|
|
|
|
/* calculate XOR of MAC with first counter block */
|
|
for (i = 0; i < ctx->ccm_mac_len; i++) {
|
|
ccm_mac[i] = mac_buf[i] ^ counterp[i];
|
|
}
|
|
}
|
|
|
|
int
|
|
ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
|
|
void *iov_or_mp;
|
|
offset_t offset;
|
|
uint8_t *out_data_1;
|
|
uint8_t *out_data_2;
|
|
size_t out_data_1_len;
|
|
int i;
|
|
|
|
if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
/*
|
|
* When we get here, the number of bytes of payload processed
|
|
* plus whatever data remains, if any,
|
|
* should be the same as the number of bytes that's being
|
|
* passed in the argument during init time.
|
|
*/
|
|
if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
|
|
!= (ctx->ccm_data_len)) {
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
|
|
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
|
|
/* ccm_mac_input_buf is not used for encryption */
|
|
macp = (uint8_t *)ctx->ccm_mac_input_buf;
|
|
memset(macp, 0, block_size);
|
|
|
|
/* copy remainder to temporary buffer */
|
|
memcpy(macp, ctx->ccm_remainder, ctx->ccm_remainder_len);
|
|
|
|
/* calculate the CBC MAC */
|
|
xor_block(macp, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
|
|
/* calculate the counter mode */
|
|
lastp = (uint8_t *)ctx->ccm_tmp;
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
|
|
|
|
/* XOR with counter block */
|
|
for (i = 0; i < ctx->ccm_remainder_len; i++) {
|
|
macp[i] ^= lastp[i];
|
|
}
|
|
ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
|
|
}
|
|
|
|
/* Calculate the CCM MAC */
|
|
ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
|
|
calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
|
|
|
|
crypto_init_ptrs(out, &iov_or_mp, &offset);
|
|
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
|
|
&out_data_1_len, &out_data_2,
|
|
ctx->ccm_remainder_len + ctx->ccm_mac_len);
|
|
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
/* copy temporary block to where it belongs */
|
|
if (out_data_2 == NULL) {
|
|
/* everything will fit in out_data_1 */
|
|
memcpy(out_data_1, macp, ctx->ccm_remainder_len);
|
|
memcpy(out_data_1 + ctx->ccm_remainder_len, ccm_mac_p,
|
|
ctx->ccm_mac_len);
|
|
} else {
|
|
if (out_data_1_len < ctx->ccm_remainder_len) {
|
|
size_t data_2_len_used;
|
|
|
|
memcpy(out_data_1, macp, out_data_1_len);
|
|
|
|
data_2_len_used = ctx->ccm_remainder_len
|
|
- out_data_1_len;
|
|
|
|
memcpy(out_data_2,
|
|
(uint8_t *)macp + out_data_1_len,
|
|
data_2_len_used);
|
|
memcpy(out_data_2 + data_2_len_used,
|
|
ccm_mac_p,
|
|
ctx->ccm_mac_len);
|
|
} else {
|
|
memcpy(out_data_1, macp, out_data_1_len);
|
|
if (out_data_1_len == ctx->ccm_remainder_len) {
|
|
/* mac will be in out_data_2 */
|
|
memcpy(out_data_2, ccm_mac_p,
|
|
ctx->ccm_mac_len);
|
|
} else {
|
|
size_t len_not_used = out_data_1_len -
|
|
ctx->ccm_remainder_len;
|
|
/*
|
|
* part of mac in will be in
|
|
* out_data_1, part of the mac will be
|
|
* in out_data_2
|
|
*/
|
|
memcpy(out_data_1 +
|
|
ctx->ccm_remainder_len,
|
|
ccm_mac_p, len_not_used);
|
|
memcpy(out_data_2,
|
|
ccm_mac_p + len_not_used,
|
|
ctx->ccm_mac_len - len_not_used);
|
|
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* copy block to where it belongs */
|
|
memcpy(out_data_1, ccm_mac_p, out_data_1_len);
|
|
if (out_data_2 != NULL) {
|
|
memcpy(out_data_2, ccm_mac_p + out_data_1_len,
|
|
block_size - out_data_1_len);
|
|
}
|
|
}
|
|
out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
|
|
ctx->ccm_remainder_len = 0;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* This will only deal with decrypting the last block of the input that
|
|
* might not be a multiple of block length.
|
|
*/
|
|
static void
|
|
ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
|
|
{
|
|
uint8_t *datap, *outp, *counterp;
|
|
int i;
|
|
|
|
datap = (uint8_t *)ctx->ccm_remainder;
|
|
outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
|
|
|
|
counterp = (uint8_t *)ctx->ccm_tmp;
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
|
|
|
|
/* XOR with counter block */
|
|
for (i = 0; i < ctx->ccm_remainder_len; i++) {
|
|
outp[i] = datap[i] ^ counterp[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This will decrypt the cipher text. However, the plaintext won't be
|
|
* returned to the caller. It will be returned when decrypt_final() is
|
|
* called if the MAC matches
|
|
*/
|
|
int
|
|
ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
|
|
crypto_data_t *out, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*copy_block)(uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
(void) out;
|
|
size_t remainder = length;
|
|
size_t need = 0;
|
|
uint8_t *datap = (uint8_t *)data;
|
|
uint8_t *blockp;
|
|
uint8_t *cbp;
|
|
uint64_t counter;
|
|
size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
|
|
uint8_t *resultp;
|
|
|
|
|
|
pm_len = ctx->ccm_processed_mac_len;
|
|
|
|
if (pm_len > 0) {
|
|
uint8_t *tmp;
|
|
/*
|
|
* all ciphertext has been processed, just waiting for
|
|
* part of the value of the mac
|
|
*/
|
|
if ((pm_len + length) > ctx->ccm_mac_len) {
|
|
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
|
|
}
|
|
tmp = (uint8_t *)ctx->ccm_mac_input_buf;
|
|
|
|
memcpy(tmp + pm_len, datap, length);
|
|
|
|
ctx->ccm_processed_mac_len += length;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* If we decrypt the given data, what total amount of data would
|
|
* have been decrypted?
|
|
*/
|
|
pd_len = ctx->ccm_processed_data_len;
|
|
total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
|
|
|
|
if (total_decrypted_len >
|
|
(ctx->ccm_data_len + ctx->ccm_mac_len)) {
|
|
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
|
|
}
|
|
|
|
pt_len = ctx->ccm_data_len;
|
|
|
|
if (total_decrypted_len > pt_len) {
|
|
/*
|
|
* part of the input will be the MAC, need to isolate that
|
|
* to be dealt with later. The left-over data in
|
|
* ccm_remainder_len from last time will not be part of the
|
|
* MAC. Otherwise, it would have already been taken out
|
|
* when this call is made last time.
|
|
*/
|
|
size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
|
|
|
|
mac_len = length - pt_part;
|
|
|
|
ctx->ccm_processed_mac_len = mac_len;
|
|
memcpy(ctx->ccm_mac_input_buf, data + pt_part, mac_len);
|
|
|
|
if (pt_part + ctx->ccm_remainder_len < block_size) {
|
|
/*
|
|
* since this is last of the ciphertext, will
|
|
* just decrypt with it here
|
|
*/
|
|
memcpy(&((uint8_t *)ctx->ccm_remainder)
|
|
[ctx->ccm_remainder_len], datap, pt_part);
|
|
ctx->ccm_remainder_len += pt_part;
|
|
ccm_decrypt_incomplete_block(ctx, encrypt_block);
|
|
ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
|
|
ctx->ccm_remainder_len = 0;
|
|
return (CRYPTO_SUCCESS);
|
|
} else {
|
|
/* let rest of the code handle this */
|
|
length = pt_part;
|
|
}
|
|
} else if (length + ctx->ccm_remainder_len < block_size) {
|
|
/* accumulate bytes here and return */
|
|
memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
|
|
datap,
|
|
length);
|
|
ctx->ccm_remainder_len += length;
|
|
ctx->ccm_copy_to = datap;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
do {
|
|
/* Unprocessed data from last call. */
|
|
if (ctx->ccm_remainder_len > 0) {
|
|
need = block_size - ctx->ccm_remainder_len;
|
|
|
|
if (need > remainder)
|
|
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
|
|
|
|
memcpy(&((uint8_t *)ctx->ccm_remainder)
|
|
[ctx->ccm_remainder_len], datap, need);
|
|
|
|
blockp = (uint8_t *)ctx->ccm_remainder;
|
|
} else {
|
|
blockp = datap;
|
|
}
|
|
|
|
/* Calculate the counter mode, ccm_cb is the counter block */
|
|
cbp = (uint8_t *)ctx->ccm_tmp;
|
|
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
|
|
|
|
/*
|
|
* Increment counter.
|
|
* Counter bits are confined to the bottom 64 bits
|
|
*/
|
|
#ifdef _ZFS_LITTLE_ENDIAN
|
|
counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
|
|
counter = htonll(counter + 1);
|
|
#else
|
|
counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
|
|
counter++;
|
|
#endif /* _ZFS_LITTLE_ENDIAN */
|
|
counter &= ctx->ccm_counter_mask;
|
|
ctx->ccm_cb[1] =
|
|
(ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
|
|
|
|
/* XOR with the ciphertext */
|
|
xor_block(blockp, cbp);
|
|
|
|
/* Copy the plaintext to the "holding buffer" */
|
|
resultp = (uint8_t *)ctx->ccm_pt_buf +
|
|
ctx->ccm_processed_data_len;
|
|
copy_block(cbp, resultp);
|
|
|
|
ctx->ccm_processed_data_len += block_size;
|
|
|
|
ctx->ccm_lastp = blockp;
|
|
|
|
/* Update pointer to next block of data to be processed. */
|
|
if (ctx->ccm_remainder_len != 0) {
|
|
datap += need;
|
|
ctx->ccm_remainder_len = 0;
|
|
} else {
|
|
datap += block_size;
|
|
}
|
|
|
|
remainder = (size_t)&data[length] - (size_t)datap;
|
|
|
|
/* Incomplete last block */
|
|
if (remainder > 0 && remainder < block_size) {
|
|
memcpy(ctx->ccm_remainder, datap, remainder);
|
|
ctx->ccm_remainder_len = remainder;
|
|
ctx->ccm_copy_to = datap;
|
|
if (ctx->ccm_processed_mac_len > 0) {
|
|
/*
|
|
* not expecting anymore ciphertext, just
|
|
* compute plaintext for the remaining input
|
|
*/
|
|
ccm_decrypt_incomplete_block(ctx,
|
|
encrypt_block);
|
|
ctx->ccm_processed_data_len += remainder;
|
|
ctx->ccm_remainder_len = 0;
|
|
}
|
|
goto out;
|
|
}
|
|
ctx->ccm_copy_to = NULL;
|
|
|
|
} while (remainder > 0);
|
|
|
|
out:
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
int
|
|
ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*copy_block)(uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
size_t mac_remain, pt_len;
|
|
uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
|
|
int rv;
|
|
|
|
pt_len = ctx->ccm_data_len;
|
|
|
|
/* Make sure output buffer can fit all of the plaintext */
|
|
if (out->cd_length < pt_len) {
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
}
|
|
|
|
pt = ctx->ccm_pt_buf;
|
|
mac_remain = ctx->ccm_processed_data_len;
|
|
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
|
|
|
|
macp = (uint8_t *)ctx->ccm_tmp;
|
|
|
|
while (mac_remain > 0) {
|
|
if (mac_remain < block_size) {
|
|
memset(macp, 0, block_size);
|
|
memcpy(macp, pt, mac_remain);
|
|
mac_remain = 0;
|
|
} else {
|
|
copy_block(pt, macp);
|
|
mac_remain -= block_size;
|
|
pt += block_size;
|
|
}
|
|
|
|
/* calculate the CBC MAC */
|
|
xor_block(macp, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
}
|
|
|
|
/* Calculate the CCM MAC */
|
|
ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
|
|
calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
|
|
|
|
/* compare the input CCM MAC value with what we calculated */
|
|
if (memcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
|
|
/* They don't match */
|
|
return (CRYPTO_INVALID_MAC);
|
|
} else {
|
|
rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
|
|
if (rv != CRYPTO_SUCCESS)
|
|
return (rv);
|
|
out->cd_offset += pt_len;
|
|
}
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
static int
|
|
ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
|
|
{
|
|
size_t macSize, nonceSize;
|
|
uint8_t q;
|
|
uint64_t maxValue;
|
|
|
|
/*
|
|
* Check the length of the MAC. The only valid
|
|
* lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
|
|
*/
|
|
macSize = ccm_param->ulMACSize;
|
|
if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
|
|
/* Check the nonce length. Valid values are 7, 8, 9, 10, 11, 12, 13 */
|
|
nonceSize = ccm_param->ulNonceSize;
|
|
if ((nonceSize < 7) || (nonceSize > 13)) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
|
|
/* q is the length of the field storing the length, in bytes */
|
|
q = (uint8_t)((15 - nonceSize) & 0xFF);
|
|
|
|
|
|
/*
|
|
* If it is decrypt, need to make sure size of ciphertext is at least
|
|
* bigger than MAC len
|
|
*/
|
|
if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
|
|
/*
|
|
* Check to make sure the length of the payload is within the
|
|
* range of values allowed by q
|
|
*/
|
|
if (q < 8) {
|
|
maxValue = (1ULL << (q * 8)) - 1;
|
|
} else {
|
|
maxValue = ULONG_MAX;
|
|
}
|
|
|
|
if (ccm_param->ulDataSize > maxValue) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Format the first block used in CBC-MAC (B0) and the initial counter
|
|
* block based on formatting functions and counter generation functions
|
|
* specified in RFC 3610 and NIST publication 800-38C, appendix A
|
|
*
|
|
* b0 is the first block used in CBC-MAC
|
|
* cb0 is the first counter block
|
|
*
|
|
* It's assumed that the arguments b0 and cb0 are preallocated AES blocks
|
|
*
|
|
*/
|
|
static void
|
|
ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
|
|
ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
|
|
{
|
|
uint64_t payloadSize;
|
|
uint8_t t, q, have_adata = 0;
|
|
size_t limit;
|
|
int i, j, k;
|
|
uint64_t mask = 0;
|
|
uint8_t *cb;
|
|
|
|
q = (uint8_t)((15 - nonceSize) & 0xFF);
|
|
t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
|
|
|
|
/* Construct the first octet of b0 */
|
|
if (authDataSize > 0) {
|
|
have_adata = 1;
|
|
}
|
|
b0[0] = (have_adata << 6) | (((t - 2) / 2) << 3) | (q - 1);
|
|
|
|
/* copy the nonce value into b0 */
|
|
memcpy(&(b0[1]), nonce, nonceSize);
|
|
|
|
/* store the length of the payload into b0 */
|
|
memset(&(b0[1+nonceSize]), 0, q);
|
|
|
|
payloadSize = aes_ctx->ccm_data_len;
|
|
limit = 8 < q ? 8 : q;
|
|
|
|
for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
|
|
b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
|
|
}
|
|
|
|
/* format the counter block */
|
|
|
|
cb = (uint8_t *)aes_ctx->ccm_cb;
|
|
|
|
cb[0] = 0x07 & (q-1); /* first byte */
|
|
|
|
/* copy the nonce value into the counter block */
|
|
memcpy(&(cb[1]), nonce, nonceSize);
|
|
|
|
memset(&(cb[1+nonceSize]), 0, q);
|
|
|
|
/* Create the mask for the counter field based on the size of nonce */
|
|
q <<= 3;
|
|
while (q-- > 0) {
|
|
mask |= (1ULL << q);
|
|
}
|
|
|
|
#ifdef _ZFS_LITTLE_ENDIAN
|
|
mask = htonll(mask);
|
|
#endif
|
|
aes_ctx->ccm_counter_mask = mask;
|
|
|
|
/*
|
|
* During calculation, we start using counter block 1, we will
|
|
* set it up right here.
|
|
* We can just set the last byte to have the value 1, because
|
|
* even with the biggest nonce of 13, the last byte of the
|
|
* counter block will be used for the counter value.
|
|
*/
|
|
cb[15] = 0x01;
|
|
}
|
|
|
|
/*
|
|
* Encode the length of the associated data as
|
|
* specified in RFC 3610 and NIST publication 800-38C, appendix A
|
|
*/
|
|
static void
|
|
encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
|
|
{
|
|
#ifdef UNALIGNED_POINTERS_PERMITTED
|
|
uint32_t *lencoded_ptr;
|
|
#ifdef _LP64
|
|
uint64_t *llencoded_ptr;
|
|
#endif
|
|
#endif /* UNALIGNED_POINTERS_PERMITTED */
|
|
|
|
if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
|
|
/* 0 < a < (2^16-2^8) */
|
|
*encoded_len = 2;
|
|
encoded[0] = (auth_data_len & 0xff00) >> 8;
|
|
encoded[1] = auth_data_len & 0xff;
|
|
|
|
} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
|
|
(auth_data_len < (1ULL << 31))) {
|
|
/* (2^16-2^8) <= a < 2^32 */
|
|
*encoded_len = 6;
|
|
encoded[0] = 0xff;
|
|
encoded[1] = 0xfe;
|
|
#ifdef UNALIGNED_POINTERS_PERMITTED
|
|
lencoded_ptr = (uint32_t *)&encoded[2];
|
|
*lencoded_ptr = htonl(auth_data_len);
|
|
#else
|
|
encoded[2] = (auth_data_len & 0xff000000) >> 24;
|
|
encoded[3] = (auth_data_len & 0xff0000) >> 16;
|
|
encoded[4] = (auth_data_len & 0xff00) >> 8;
|
|
encoded[5] = auth_data_len & 0xff;
|
|
#endif /* UNALIGNED_POINTERS_PERMITTED */
|
|
|
|
#ifdef _LP64
|
|
} else {
|
|
/* 2^32 <= a < 2^64 */
|
|
*encoded_len = 10;
|
|
encoded[0] = 0xff;
|
|
encoded[1] = 0xff;
|
|
#ifdef UNALIGNED_POINTERS_PERMITTED
|
|
llencoded_ptr = (uint64_t *)&encoded[2];
|
|
*llencoded_ptr = htonl(auth_data_len);
|
|
#else
|
|
encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
|
|
encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
|
|
encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
|
|
encoded[5] = (auth_data_len & 0xff00000000) >> 32;
|
|
encoded[6] = (auth_data_len & 0xff000000) >> 24;
|
|
encoded[7] = (auth_data_len & 0xff0000) >> 16;
|
|
encoded[8] = (auth_data_len & 0xff00) >> 8;
|
|
encoded[9] = auth_data_len & 0xff;
|
|
#endif /* UNALIGNED_POINTERS_PERMITTED */
|
|
#endif /* _LP64 */
|
|
}
|
|
}
|
|
|
|
static int
|
|
ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
|
|
unsigned char *auth_data, size_t auth_data_len, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
uint8_t *mac_buf, *datap, *ivp, *authp;
|
|
size_t remainder, processed;
|
|
uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
|
|
size_t encoded_a_len = 0;
|
|
|
|
mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
|
|
|
|
/*
|
|
* Format the 1st block for CBC-MAC and construct the
|
|
* 1st counter block.
|
|
*
|
|
* aes_ctx->ccm_iv is used for storing the counter block
|
|
* mac_buf will store b0 at this time.
|
|
*/
|
|
ccm_format_initial_blocks(nonce, nonce_len,
|
|
auth_data_len, mac_buf, ctx);
|
|
|
|
/* The IV for CBC MAC for AES CCM mode is always zero */
|
|
ivp = (uint8_t *)ctx->ccm_tmp;
|
|
memset(ivp, 0, block_size);
|
|
|
|
xor_block(ivp, mac_buf);
|
|
|
|
/* encrypt the nonce */
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
|
|
/* take care of the associated data, if any */
|
|
if (auth_data_len == 0) {
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
|
|
|
|
remainder = auth_data_len;
|
|
|
|
/* 1st block: it contains encoded associated data, and some data */
|
|
authp = (uint8_t *)ctx->ccm_tmp;
|
|
memset(authp, 0, block_size);
|
|
memcpy(authp, encoded_a, encoded_a_len);
|
|
processed = block_size - encoded_a_len;
|
|
if (processed > auth_data_len) {
|
|
/* in case auth_data is very small */
|
|
processed = auth_data_len;
|
|
}
|
|
memcpy(authp+encoded_a_len, auth_data, processed);
|
|
/* xor with previous buffer */
|
|
xor_block(authp, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
remainder -= processed;
|
|
if (remainder == 0) {
|
|
/* a small amount of associated data, it's all done now */
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
do {
|
|
if (remainder < block_size) {
|
|
/*
|
|
* There's not a block full of data, pad rest of
|
|
* buffer with zero
|
|
*/
|
|
memset(authp, 0, block_size);
|
|
memcpy(authp, &(auth_data[processed]), remainder);
|
|
datap = (uint8_t *)authp;
|
|
remainder = 0;
|
|
} else {
|
|
datap = (uint8_t *)(&(auth_data[processed]));
|
|
processed += block_size;
|
|
remainder -= block_size;
|
|
}
|
|
|
|
xor_block(datap, mac_buf);
|
|
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
|
|
|
|
} while (remainder > 0);
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* The following function should be call at encrypt or decrypt init time
|
|
* for AES CCM mode.
|
|
*/
|
|
int
|
|
ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
|
|
boolean_t is_encrypt_init, size_t block_size,
|
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
int rv;
|
|
CK_AES_CCM_PARAMS *ccm_param;
|
|
|
|
if (param != NULL) {
|
|
ccm_param = (CK_AES_CCM_PARAMS *)param;
|
|
|
|
if ((rv = ccm_validate_args(ccm_param,
|
|
is_encrypt_init)) != 0) {
|
|
return (rv);
|
|
}
|
|
|
|
ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
|
|
if (is_encrypt_init) {
|
|
ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
|
|
} else {
|
|
ccm_ctx->ccm_data_len =
|
|
ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
|
|
ccm_ctx->ccm_processed_mac_len = 0;
|
|
}
|
|
ccm_ctx->ccm_processed_data_len = 0;
|
|
|
|
ccm_ctx->ccm_flags |= CCM_MODE;
|
|
} else {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
|
|
if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
|
|
ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
|
|
encrypt_block, xor_block) != 0) {
|
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
|
}
|
|
if (!is_encrypt_init) {
|
|
/* allocate buffer for storing decrypted plaintext */
|
|
ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
|
|
kmflag);
|
|
if (ccm_ctx->ccm_pt_buf == NULL) {
|
|
rv = CRYPTO_HOST_MEMORY;
|
|
}
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
void *
|
|
ccm_alloc_ctx(int kmflag)
|
|
{
|
|
ccm_ctx_t *ccm_ctx;
|
|
|
|
if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
|
|
return (NULL);
|
|
|
|
ccm_ctx->ccm_flags = CCM_MODE;
|
|
return (ccm_ctx);
|
|
}
|