mirror_zfs/module/zcommon/zfs_fletcher.c
Matthew Macy bce795ad7a Remove linux/mod_compat.h from common code
It is no longer necessary; mod_compat.h is included from zfs_context.h.

Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9449
2019-10-11 10:10:20 -07:00

950 lines
24 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
*/
/*
* Copyright 2013 Saso Kiselkov. All rights reserved.
*/
/*
* Copyright (c) 2016 by Delphix. All rights reserved.
*/
/*
* Fletcher Checksums
* ------------------
*
* ZFS's 2nd and 4th order Fletcher checksums are defined by the following
* recurrence relations:
*
* a = a + f
* i i-1 i-1
*
* b = b + a
* i i-1 i
*
* c = c + b (fletcher-4 only)
* i i-1 i
*
* d = d + c (fletcher-4 only)
* i i-1 i
*
* Where
* a_0 = b_0 = c_0 = d_0 = 0
* and
* f_0 .. f_(n-1) are the input data.
*
* Using standard techniques, these translate into the following series:
*
* __n_ __n_
* \ | \ |
* a = > f b = > i * f
* n /___| n - i n /___| n - i
* i = 1 i = 1
*
*
* __n_ __n_
* \ | i*(i+1) \ | i*(i+1)*(i+2)
* c = > ------- f d = > ------------- f
* n /___| 2 n - i n /___| 6 n - i
* i = 1 i = 1
*
* For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
* Since the additions are done mod (2^64), errors in the high bits may not
* be noticed. For this reason, fletcher-2 is deprecated.
*
* For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
* A conservative estimate of how big the buffer can get before we overflow
* can be estimated using f_i = 0xffffffff for all i:
*
* % bc
* f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
* 2264
* quit
* %
*
* So blocks of up to 2k will not overflow. Our largest block size is
* 128k, which has 32k 4-byte words, so we can compute the largest possible
* accumulators, then divide by 2^64 to figure the max amount of overflow:
*
* % bc
* a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
* a/2^64;b/2^64;c/2^64;d/2^64
* 0
* 0
* 1365
* 11186858
* quit
* %
*
* So a and b cannot overflow. To make sure each bit of input has some
* effect on the contents of c and d, we can look at what the factors of
* the coefficients in the equations for c_n and d_n are. The number of 2s
* in the factors determines the lowest set bit in the multiplier. Running
* through the cases for n*(n+1)/2 reveals that the highest power of 2 is
* 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
* the 64-bit accumulators, every bit of every f_i effects every accumulator,
* even for 128k blocks.
*
* If we wanted to make a stronger version of fletcher4 (fletcher4c?),
* we could do our calculations mod (2^32 - 1) by adding in the carries
* periodically, and store the number of carries in the top 32-bits.
*
* --------------------
* Checksum Performance
* --------------------
*
* There are two interesting components to checksum performance: cached and
* uncached performance. With cached data, fletcher-2 is about four times
* faster than fletcher-4. With uncached data, the performance difference is
* negligible, since the cost of a cache fill dominates the processing time.
* Even though fletcher-4 is slower than fletcher-2, it is still a pretty
* efficient pass over the data.
*
* In normal operation, the data which is being checksummed is in a buffer
* which has been filled either by:
*
* 1. a compression step, which will be mostly cached, or
* 2. a bcopy() or copyin(), which will be uncached (because the
* copy is cache-bypassing).
*
* For both cached and uncached data, both fletcher checksums are much faster
* than sha-256, and slower than 'off', which doesn't touch the data at all.
*/
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/byteorder.h>
#include <sys/spa.h>
#include <sys/simd.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <zfs_fletcher.h>
#define FLETCHER_MIN_SIMD_SIZE 64
static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size);
static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size);
static boolean_t fletcher_4_scalar_valid(void);
static const fletcher_4_ops_t fletcher_4_scalar_ops = {
.init_native = fletcher_4_scalar_init,
.fini_native = fletcher_4_scalar_fini,
.compute_native = fletcher_4_scalar_native,
.init_byteswap = fletcher_4_scalar_init,
.fini_byteswap = fletcher_4_scalar_fini,
.compute_byteswap = fletcher_4_scalar_byteswap,
.valid = fletcher_4_scalar_valid,
.name = "scalar"
};
static fletcher_4_ops_t fletcher_4_fastest_impl = {
.name = "fastest",
.valid = fletcher_4_scalar_valid
};
static const fletcher_4_ops_t *fletcher_4_impls[] = {
&fletcher_4_scalar_ops,
&fletcher_4_superscalar_ops,
&fletcher_4_superscalar4_ops,
#if defined(HAVE_SSE2)
&fletcher_4_sse2_ops,
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
&fletcher_4_ssse3_ops,
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
&fletcher_4_avx2_ops,
#endif
#if defined(__x86_64) && defined(HAVE_AVX512F)
&fletcher_4_avx512f_ops,
#endif
#if defined(__aarch64__)
&fletcher_4_aarch64_neon_ops,
#endif
};
/* Hold all supported implementations */
static uint32_t fletcher_4_supp_impls_cnt = 0;
static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
/* Select fletcher4 implementation */
#define IMPL_FASTEST (UINT32_MAX)
#define IMPL_CYCLE (UINT32_MAX - 1)
#define IMPL_SCALAR (0)
static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
#define IMPL_READ(i) (*(volatile uint32_t *) &(i))
static struct fletcher_4_impl_selector {
const char *fis_name;
uint32_t fis_sel;
} fletcher_4_impl_selectors[] = {
{ "cycle", IMPL_CYCLE },
{ "fastest", IMPL_FASTEST },
{ "scalar", IMPL_SCALAR }
};
#if defined(_KERNEL)
static kstat_t *fletcher_4_kstat;
static struct fletcher_4_kstat {
uint64_t native;
uint64_t byteswap;
} fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
#endif
/* Indicate that benchmark has been completed */
static boolean_t fletcher_4_initialized = B_FALSE;
/*ARGSUSED*/
void
fletcher_init(zio_cksum_t *zcp)
{
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
}
int
fletcher_2_incremental_native(void *buf, size_t size, void *data)
{
zio_cksum_t *zcp = data;
const uint64_t *ip = buf;
const uint64_t *ipend = ip + (size / sizeof (uint64_t));
uint64_t a0, b0, a1, b1;
a0 = zcp->zc_word[0];
a1 = zcp->zc_word[1];
b0 = zcp->zc_word[2];
b1 = zcp->zc_word[3];
for (; ip < ipend; ip += 2) {
a0 += ip[0];
a1 += ip[1];
b0 += a0;
b1 += a1;
}
ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
return (0);
}
/*ARGSUSED*/
void
fletcher_2_native(const void *buf, uint64_t size,
const void *ctx_template, zio_cksum_t *zcp)
{
fletcher_init(zcp);
(void) fletcher_2_incremental_native((void *) buf, size, zcp);
}
int
fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
{
zio_cksum_t *zcp = data;
const uint64_t *ip = buf;
const uint64_t *ipend = ip + (size / sizeof (uint64_t));
uint64_t a0, b0, a1, b1;
a0 = zcp->zc_word[0];
a1 = zcp->zc_word[1];
b0 = zcp->zc_word[2];
b1 = zcp->zc_word[3];
for (; ip < ipend; ip += 2) {
a0 += BSWAP_64(ip[0]);
a1 += BSWAP_64(ip[1]);
b0 += a0;
b1 += a1;
}
ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
return (0);
}
/*ARGSUSED*/
void
fletcher_2_byteswap(const void *buf, uint64_t size,
const void *ctx_template, zio_cksum_t *zcp)
{
fletcher_init(zcp);
(void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
}
static void
fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
{
ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
}
static void
fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
}
static void
fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
a = ctx->scalar.zc_word[0];
b = ctx->scalar.zc_word[1];
c = ctx->scalar.zc_word[2];
d = ctx->scalar.zc_word[3];
for (; ip < ipend; ip++) {
a += ip[0];
b += a;
c += b;
d += c;
}
ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
}
static void
fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
a = ctx->scalar.zc_word[0];
b = ctx->scalar.zc_word[1];
c = ctx->scalar.zc_word[2];
d = ctx->scalar.zc_word[3];
for (; ip < ipend; ip++) {
a += BSWAP_32(ip[0]);
b += a;
c += b;
d += c;
}
ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
}
static boolean_t
fletcher_4_scalar_valid(void)
{
return (B_TRUE);
}
int
fletcher_4_impl_set(const char *val)
{
int err = -EINVAL;
uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
size_t i, val_len;
val_len = strlen(val);
while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
val_len--;
/* check mandatory implementations */
for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
const char *name = fletcher_4_impl_selectors[i].fis_name;
if (val_len == strlen(name) &&
strncmp(val, name, val_len) == 0) {
impl = fletcher_4_impl_selectors[i].fis_sel;
err = 0;
break;
}
}
if (err != 0 && fletcher_4_initialized) {
/* check all supported implementations */
for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
const char *name = fletcher_4_supp_impls[i]->name;
if (val_len == strlen(name) &&
strncmp(val, name, val_len) == 0) {
impl = i;
err = 0;
break;
}
}
}
if (err == 0) {
atomic_swap_32(&fletcher_4_impl_chosen, impl);
membar_producer();
}
return (err);
}
/*
* Returns the Fletcher 4 operations for checksums. When a SIMD
* implementation is not allowed in the current context, then fallback
* to the fastest generic implementation.
*/
static inline const fletcher_4_ops_t *
fletcher_4_impl_get(void)
{
if (!kfpu_allowed())
return (&fletcher_4_superscalar4_ops);
const fletcher_4_ops_t *ops = NULL;
uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
switch (impl) {
case IMPL_FASTEST:
ASSERT(fletcher_4_initialized);
ops = &fletcher_4_fastest_impl;
break;
case IMPL_CYCLE:
/* Cycle through supported implementations */
ASSERT(fletcher_4_initialized);
ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
static uint32_t cycle_count = 0;
uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
ops = fletcher_4_supp_impls[idx];
break;
default:
ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
ops = fletcher_4_supp_impls[impl];
break;
}
ASSERT3P(ops, !=, NULL);
return (ops);
}
static inline void
fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
fletcher_4_ctx_t ctx;
const fletcher_4_ops_t *ops = fletcher_4_impl_get();
ops->init_native(&ctx);
ops->compute_native(&ctx, buf, size);
ops->fini_native(&ctx, zcp);
}
/*ARGSUSED*/
void
fletcher_4_native(const void *buf, uint64_t size,
const void *ctx_template, zio_cksum_t *zcp)
{
const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
if (size == 0 || p2size == 0) {
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
if (size > 0)
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
buf, size);
} else {
fletcher_4_native_impl(buf, p2size, zcp);
if (p2size < size)
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
(char *)buf + p2size, size - p2size);
}
}
void
fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
}
static inline void
fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
fletcher_4_ctx_t ctx;
const fletcher_4_ops_t *ops = fletcher_4_impl_get();
ops->init_byteswap(&ctx);
ops->compute_byteswap(&ctx, buf, size);
ops->fini_byteswap(&ctx, zcp);
}
/*ARGSUSED*/
void
fletcher_4_byteswap(const void *buf, uint64_t size,
const void *ctx_template, zio_cksum_t *zcp)
{
const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
if (size == 0 || p2size == 0) {
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
if (size > 0)
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
buf, size);
} else {
fletcher_4_byteswap_impl(buf, p2size, zcp);
if (p2size < size)
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
(char *)buf + p2size, size - p2size);
}
}
/* Incremental Fletcher 4 */
#define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20)
static inline void
fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
const zio_cksum_t *nzcp)
{
const uint64_t c1 = size / sizeof (uint32_t);
const uint64_t c2 = c1 * (c1 + 1) / 2;
const uint64_t c3 = c2 * (c1 + 2) / 3;
/*
* Value of 'c3' overflows on buffer sizes close to 16MiB. For that
* reason we split incremental fletcher4 computation of large buffers
* to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
*/
ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
c2 * zcp->zc_word[0];
zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
zcp->zc_word[0] += nzcp->zc_word[0];
}
static inline void
fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
zio_cksum_t *zcp)
{
while (size > 0) {
zio_cksum_t nzc;
uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
if (native)
fletcher_4_native(buf, len, NULL, &nzc);
else
fletcher_4_byteswap(buf, len, NULL, &nzc);
fletcher_4_incremental_combine(zcp, len, &nzc);
size -= len;
buf += len;
}
}
int
fletcher_4_incremental_native(void *buf, size_t size, void *data)
{
zio_cksum_t *zcp = data;
/* Use scalar impl to directly update cksum of small blocks */
if (size < SPA_MINBLOCKSIZE)
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
else
fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
return (0);
}
int
fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
{
zio_cksum_t *zcp = data;
/* Use scalar impl to directly update cksum of small blocks */
if (size < SPA_MINBLOCKSIZE)
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
else
fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
return (0);
}
#if defined(_KERNEL)
/*
* Fletcher 4 kstats
*/
static int
fletcher_4_kstat_headers(char *buf, size_t size)
{
ssize_t off = 0;
off += snprintf(buf + off, size, "%-17s", "implementation");
off += snprintf(buf + off, size - off, "%-15s", "native");
(void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
return (0);
}
static int
fletcher_4_kstat_data(char *buf, size_t size, void *data)
{
struct fletcher_4_kstat *fastest_stat =
&fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
ssize_t off = 0;
if (curr_stat == fastest_stat) {
off += snprintf(buf + off, size - off, "%-17s", "fastest");
off += snprintf(buf + off, size - off, "%-15s",
fletcher_4_supp_impls[fastest_stat->native]->name);
off += snprintf(buf + off, size - off, "%-15s\n",
fletcher_4_supp_impls[fastest_stat->byteswap]->name);
} else {
ptrdiff_t id = curr_stat - fletcher_4_stat_data;
off += snprintf(buf + off, size - off, "%-17s",
fletcher_4_supp_impls[id]->name);
off += snprintf(buf + off, size - off, "%-15llu",
(u_longlong_t)curr_stat->native);
off += snprintf(buf + off, size - off, "%-15llu\n",
(u_longlong_t)curr_stat->byteswap);
}
return (0);
}
static void *
fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
{
if (n <= fletcher_4_supp_impls_cnt)
ksp->ks_private = (void *) (fletcher_4_stat_data + n);
else
ksp->ks_private = NULL;
return (ksp->ks_private);
}
#endif
#define FLETCHER_4_FASTEST_FN_COPY(type, src) \
{ \
fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \
fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \
fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
}
#define FLETCHER_4_BENCH_NS (MSEC2NSEC(50)) /* 50ms */
typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
zio_cksum_t *);
#if defined(_KERNEL)
static void
fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
{
struct fletcher_4_kstat *fastest_stat =
&fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
hrtime_t start;
uint64_t run_bw, run_time_ns, best_run = 0;
zio_cksum_t zc;
uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
fletcher_checksum_func_t *fletcher_4_test = native ?
fletcher_4_native : fletcher_4_byteswap;
for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
uint64_t run_count = 0;
/* temporary set an implementation */
fletcher_4_impl_chosen = i;
kpreempt_disable();
start = gethrtime();
do {
for (l = 0; l < 32; l++, run_count++)
fletcher_4_test(data, data_size, NULL, &zc);
run_time_ns = gethrtime() - start;
} while (run_time_ns < FLETCHER_4_BENCH_NS);
kpreempt_enable();
run_bw = data_size * run_count * NANOSEC;
run_bw /= run_time_ns; /* B/s */
if (native)
stat->native = run_bw;
else
stat->byteswap = run_bw;
if (run_bw > best_run) {
best_run = run_bw;
if (native) {
fastest_stat->native = i;
FLETCHER_4_FASTEST_FN_COPY(native,
fletcher_4_supp_impls[i]);
} else {
fastest_stat->byteswap = i;
FLETCHER_4_FASTEST_FN_COPY(byteswap,
fletcher_4_supp_impls[i]);
}
}
}
/* restore original selection */
atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
}
#endif /* _KERNEL */
/*
* Initialize and benchmark all supported implementations.
*/
static void
fletcher_4_benchmark(void *arg)
{
fletcher_4_ops_t *curr_impl;
int i, c;
/* Move supported implementations into fletcher_4_supp_impls */
for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
if (curr_impl->valid && curr_impl->valid())
fletcher_4_supp_impls[c++] = curr_impl;
}
membar_producer(); /* complete fletcher_4_supp_impls[] init */
fletcher_4_supp_impls_cnt = c; /* number of supported impl */
#if defined(_KERNEL)
static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
char *databuf = vmem_alloc(data_size, KM_SLEEP);
for (i = 0; i < data_size / sizeof (uint64_t); i++)
((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
vmem_free(databuf, data_size);
#else
/*
* Skip the benchmark in user space to avoid impacting libzpool
* consumers (zdb, zhack, zinject, ztest). The last implementation
* is assumed to be the fastest and used by default.
*/
memcpy(&fletcher_4_fastest_impl,
fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
sizeof (fletcher_4_fastest_impl));
fletcher_4_fastest_impl.name = "fastest";
membar_producer();
#endif /* _KERNEL */
}
void
fletcher_4_init(void)
{
#if defined(_KERNEL)
/*
* For 5.0 and latter Linux kernels the fletcher 4 benchmarks are
* run in a kernel threads. This is needed to take advantage of the
* SIMD functionality, see linux/simd_x86.h for details.
*/
taskqid_t id = taskq_dispatch(system_taskq, fletcher_4_benchmark,
NULL, TQ_SLEEP);
if (id != TASKQID_INVALID) {
taskq_wait_id(system_taskq, id);
} else {
fletcher_4_benchmark(NULL);
}
/* Install kstats for all implementations */
fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
if (fletcher_4_kstat != NULL) {
fletcher_4_kstat->ks_data = NULL;
fletcher_4_kstat->ks_ndata = UINT32_MAX;
kstat_set_raw_ops(fletcher_4_kstat,
fletcher_4_kstat_headers,
fletcher_4_kstat_data,
fletcher_4_kstat_addr);
kstat_install(fletcher_4_kstat);
}
#else
fletcher_4_benchmark(NULL);
#endif
/* Finish initialization */
fletcher_4_initialized = B_TRUE;
}
void
fletcher_4_fini(void)
{
#if defined(_KERNEL)
if (fletcher_4_kstat != NULL) {
kstat_delete(fletcher_4_kstat);
fletcher_4_kstat = NULL;
}
#endif
}
/* ABD adapters */
static void
abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
{
const fletcher_4_ops_t *ops = fletcher_4_impl_get();
cdp->acd_private = (void *) ops;
if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
ops->init_native(cdp->acd_ctx);
else
ops->init_byteswap(cdp->acd_ctx);
}
static void
abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
{
fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
ASSERT(ops);
if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
else
ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
}
static void
abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
zio_abd_checksum_data_t *cdp)
{
zio_cksum_t *zcp = cdp->acd_zcp;
ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
abd_fletcher_4_fini(cdp);
cdp->acd_private = (void *)&fletcher_4_scalar_ops;
if (native)
fletcher_4_incremental_native(data, size, zcp);
else
fletcher_4_incremental_byteswap(data, size, zcp);
}
static int
abd_fletcher_4_iter(void *data, size_t size, void *private)
{
zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
fletcher_4_ctx_t *ctx = cdp->acd_ctx;
fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
if (asize > 0) {
if (native)
ops->compute_native(ctx, data, asize);
else
ops->compute_byteswap(ctx, data, asize);
size -= asize;
data = (char *)data + asize;
}
if (size > 0) {
ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
/* At this point we have to switch to scalar impl */
abd_fletcher_4_simd2scalar(native, data, size, cdp);
}
return (0);
}
zio_abd_checksum_func_t fletcher_4_abd_ops = {
.acf_init = abd_fletcher_4_init,
.acf_fini = abd_fletcher_4_fini,
.acf_iter = abd_fletcher_4_iter
};
#if defined(_KERNEL)
static int
fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
{
const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
char *fmt;
int i, cnt = 0;
/* list fastest */
fmt = (impl == IMPL_FASTEST) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, "fastest");
/* list all supported implementations */
for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
fmt = (i == impl) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt,
fletcher_4_supp_impls[i]->name);
}
return (cnt);
}
static int
fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
{
return (fletcher_4_impl_set(val));
}
/*
* Choose a fletcher 4 implementation in ZFS.
* Users can choose "cycle" to exercise all implementations, but this is
* for testing purpose therefore it can only be set in user space.
*/
module_param_call(zfs_fletcher_4_impl,
fletcher_4_param_set, fletcher_4_param_get, NULL, 0644);
MODULE_PARM_DESC(zfs_fletcher_4_impl, "Select fletcher 4 implementation.");
EXPORT_SYMBOL(fletcher_init);
EXPORT_SYMBOL(fletcher_2_incremental_native);
EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
EXPORT_SYMBOL(fletcher_4_init);
EXPORT_SYMBOL(fletcher_4_fini);
EXPORT_SYMBOL(fletcher_2_native);
EXPORT_SYMBOL(fletcher_2_byteswap);
EXPORT_SYMBOL(fletcher_4_native);
EXPORT_SYMBOL(fletcher_4_native_varsize);
EXPORT_SYMBOL(fletcher_4_byteswap);
EXPORT_SYMBOL(fletcher_4_incremental_native);
EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
EXPORT_SYMBOL(fletcher_4_abd_ops);
#endif