mirror_zfs/cmd/zed/agents/zfs_retire.c
Don Brady c1c26a77ff Add slow disk diagnosis to ZED
Slow disk response times can be indicative of a failing drive. ZFS
currently tracks slow I/Os (slower than zio_slow_io_ms) and generates
events (ereport.fs.zfs.delay).  However, no action is taken by ZED,
like is done for checksum or I/O errors.  This change adds slow disk
diagnosis to ZED which is opt-in using new VDEV properties:
  VDEV_PROP_SLOW_IO_N
  VDEV_PROP_SLOW_IO_T

If multiple VDEVs in a pool are undergoing slow I/Os, then it skips
the zpool_vdev_degrade().

Sponsored-By: OpenDrives Inc.
Sponsored-By: Klara Inc.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Rob Wing <rob.wing@klarasystems.com>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Closes #15469
2024-04-29 13:50:05 -07:00

672 lines
17 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
*
* Copyright (c) 2016, Intel Corporation.
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>
*/
/*
* The ZFS retire agent is responsible for managing hot spares across all pools.
* When we see a device fault or a device removal, we try to open the associated
* pool and look for any hot spares. We iterate over any available hot spares
* and attempt a 'zpool replace' for each one.
*
* For vdevs diagnosed as faulty, the agent is also responsible for proactively
* marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors).
*/
#include <sys/fs/zfs.h>
#include <sys/fm/protocol.h>
#include <sys/fm/fs/zfs.h>
#include <libzutil.h>
#include <libzfs.h>
#include <string.h>
#include <libgen.h>
#include "zfs_agents.h"
#include "fmd_api.h"
typedef struct zfs_retire_repaired {
struct zfs_retire_repaired *zrr_next;
uint64_t zrr_pool;
uint64_t zrr_vdev;
} zfs_retire_repaired_t;
typedef struct zfs_retire_data {
libzfs_handle_t *zrd_hdl;
zfs_retire_repaired_t *zrd_repaired;
} zfs_retire_data_t;
static void
zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp)
{
zfs_retire_repaired_t *zrp;
while ((zrp = zdp->zrd_repaired) != NULL) {
zdp->zrd_repaired = zrp->zrr_next;
fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t));
}
}
/*
* Find a pool with a matching GUID.
*/
typedef struct find_cbdata {
uint64_t cb_guid;
zpool_handle_t *cb_zhp;
nvlist_t *cb_vdev;
uint64_t cb_vdev_guid;
uint64_t cb_num_spares;
} find_cbdata_t;
static int
find_pool(zpool_handle_t *zhp, void *data)
{
find_cbdata_t *cbp = data;
if (cbp->cb_guid ==
zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) {
cbp->cb_zhp = zhp;
return (1);
}
zpool_close(zhp);
return (0);
}
/*
* Find a vdev within a tree with a matching GUID.
*/
static nvlist_t *
find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, uint64_t search_guid)
{
uint64_t guid;
nvlist_t **child;
uint_t c, children;
nvlist_t *ret;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 &&
guid == search_guid) {
fmd_hdl_debug(fmd_module_hdl("zfs-retire"),
"matched vdev %llu", guid);
return (nv);
}
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) != 0)
return (NULL);
for (c = 0; c < children; c++) {
if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
return (ret);
}
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
&child, &children) != 0)
return (NULL);
for (c = 0; c < children; c++) {
if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
return (ret);
}
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
&child, &children) != 0)
return (NULL);
for (c = 0; c < children; c++) {
if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
return (ret);
}
return (NULL);
}
static int
remove_spares(zpool_handle_t *zhp, void *data)
{
nvlist_t *config, *nvroot;
nvlist_t **spares;
uint_t nspares;
char *devname;
find_cbdata_t *cbp = data;
uint64_t spareguid = 0;
vdev_stat_t *vs;
unsigned int c;
config = zpool_get_config(zhp, NULL);
if (nvlist_lookup_nvlist(config,
ZPOOL_CONFIG_VDEV_TREE, &nvroot) != 0) {
zpool_close(zhp);
return (0);
}
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares) != 0) {
zpool_close(zhp);
return (0);
}
for (int i = 0; i < nspares; i++) {
if (nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID,
&spareguid) == 0 && spareguid == cbp->cb_vdev_guid) {
devname = zpool_vdev_name(NULL, zhp, spares[i],
B_FALSE);
nvlist_lookup_uint64_array(spares[i],
ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c);
if (vs->vs_state != VDEV_STATE_REMOVED &&
zpool_vdev_remove_wanted(zhp, devname) == 0)
cbp->cb_num_spares++;
break;
}
}
zpool_close(zhp);
return (0);
}
/*
* Given a vdev guid, find and remove all spares associated with it.
*/
static int
find_and_remove_spares(libzfs_handle_t *zhdl, uint64_t vdev_guid)
{
find_cbdata_t cb;
cb.cb_num_spares = 0;
cb.cb_vdev_guid = vdev_guid;
zpool_iter(zhdl, remove_spares, &cb);
return (cb.cb_num_spares);
}
/*
* Given a (pool, vdev) GUID pair, find the matching pool and vdev.
*/
static zpool_handle_t *
find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid,
nvlist_t **vdevp)
{
find_cbdata_t cb;
zpool_handle_t *zhp;
nvlist_t *config, *nvroot;
/*
* Find the corresponding pool and make sure the vdev still exists.
*/
cb.cb_guid = pool_guid;
if (zpool_iter(zhdl, find_pool, &cb) != 1)
return (NULL);
zhp = cb.cb_zhp;
config = zpool_get_config(zhp, NULL);
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) != 0) {
zpool_close(zhp);
return (NULL);
}
if (vdev_guid != 0) {
if ((*vdevp = find_vdev(zhdl, nvroot, vdev_guid)) == NULL) {
zpool_close(zhp);
return (NULL);
}
}
return (zhp);
}
/*
* Given a vdev, attempt to replace it with every known spare until one
* succeeds or we run out of devices to try.
* Return whether we were successful or not in replacing the device.
*/
static boolean_t
replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
{
nvlist_t *config, *nvroot, *replacement;
nvlist_t **spares;
uint_t s, nspares;
char *dev_name;
zprop_source_t source;
int ashift;
config = zpool_get_config(zhp, NULL);
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) != 0)
return (B_FALSE);
/*
* Find out if there are any hot spares available in the pool.
*/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares) != 0)
return (B_FALSE);
/*
* lookup "ashift" pool property, we may need it for the replacement
*/
ashift = zpool_get_prop_int(zhp, ZPOOL_PROP_ASHIFT, &source);
replacement = fmd_nvl_alloc(hdl, FMD_SLEEP);
(void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_ROOT);
dev_name = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
/*
* Try to replace each spare, ending when we successfully
* replace it.
*/
for (s = 0; s < nspares; s++) {
boolean_t rebuild = B_FALSE;
const char *spare_name, *type;
if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH,
&spare_name) != 0)
continue;
/* prefer sequential resilvering for distributed spares */
if ((nvlist_lookup_string(spares[s], ZPOOL_CONFIG_TYPE,
&type) == 0) && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
rebuild = B_TRUE;
/* if set, add the "ashift" pool property to the spare nvlist */
if (source != ZPROP_SRC_DEFAULT)
(void) nvlist_add_uint64(spares[s],
ZPOOL_CONFIG_ASHIFT, ashift);
(void) nvlist_add_nvlist_array(replacement,
ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)&spares[s], 1);
fmd_hdl_debug(hdl, "zpool_vdev_replace '%s' with spare '%s'",
dev_name, zfs_basename(spare_name));
if (zpool_vdev_attach(zhp, dev_name, spare_name,
replacement, B_TRUE, rebuild) == 0) {
free(dev_name);
nvlist_free(replacement);
return (B_TRUE);
}
}
free(dev_name);
nvlist_free(replacement);
return (B_FALSE);
}
/*
* Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and
* ASRU is now usable. ZFS has found the device to be present and
* functioning.
*/
static void
zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl)
{
zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
zfs_retire_repaired_t *zrp;
uint64_t pool_guid, vdev_guid;
if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
&pool_guid) != 0 || nvlist_lookup_uint64(nvl,
FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
return;
/*
* Before checking the state of the ASRU, go through and see if we've
* already made an attempt to repair this ASRU. This list is cleared
* whenever we receive any kind of list event, and is designed to
* prevent us from generating a feedback loop when we attempt repairs
* against a faulted pool. The problem is that checking the unusable
* state of the ASRU can involve opening the pool, which can post
* statechange events but otherwise leave the pool in the faulted
* state. This list allows us to detect when a statechange event is
* due to our own request.
*/
for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) {
if (zrp->zrr_pool == pool_guid &&
zrp->zrr_vdev == vdev_guid)
return;
}
zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP);
zrp->zrr_next = zdp->zrd_repaired;
zrp->zrr_pool = pool_guid;
zrp->zrr_vdev = vdev_guid;
zdp->zrd_repaired = zrp;
fmd_hdl_debug(hdl, "marking repaired vdev %llu on pool %llu",
vdev_guid, pool_guid);
}
static void
zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
const char *class)
{
(void) ep;
uint64_t pool_guid, vdev_guid;
zpool_handle_t *zhp;
nvlist_t *resource, *fault;
nvlist_t **faults;
uint_t f, nfaults;
zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
libzfs_handle_t *zhdl = zdp->zrd_hdl;
boolean_t fault_device, degrade_device;
boolean_t is_repair;
boolean_t l2arc = B_FALSE;
boolean_t spare = B_FALSE;
const char *scheme;
nvlist_t *vdev = NULL;
const char *uuid;
int repair_done = 0;
boolean_t retire;
boolean_t is_disk;
vdev_aux_t aux;
uint64_t state = 0;
vdev_stat_t *vs;
unsigned int c;
fmd_hdl_debug(hdl, "zfs_retire_recv: '%s'", class);
(void) nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE,
&state);
/*
* If this is a resource notifying us of device removal then simply
* check for an available spare and continue unless the device is a
* l2arc vdev, in which case we just offline it.
*/
if (strcmp(class, "resource.fs.zfs.removed") == 0 ||
(strcmp(class, "resource.fs.zfs.statechange") == 0 &&
(state == VDEV_STATE_REMOVED || state == VDEV_STATE_FAULTED))) {
const char *devtype;
char *devname;
if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
&devtype) == 0) {
if (strcmp(devtype, VDEV_TYPE_SPARE) == 0)
spare = B_TRUE;
else if (strcmp(devtype, VDEV_TYPE_L2CACHE) == 0)
l2arc = B_TRUE;
}
if (nvlist_lookup_uint64(nvl,
FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
return;
if (vdev_guid == 0) {
fmd_hdl_debug(hdl, "Got a zero GUID");
return;
}
if (spare) {
int nspares = find_and_remove_spares(zhdl, vdev_guid);
fmd_hdl_debug(hdl, "%d spares removed", nspares);
return;
}
if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
&pool_guid) != 0)
return;
if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
&vdev)) == NULL)
return;
devname = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c);
/*
* If state removed is requested for already removed vdev,
* its a loopback event from spa_async_remove(). Just
* ignore it.
*/
if (vs->vs_state == VDEV_STATE_REMOVED &&
state == VDEV_STATE_REMOVED)
return;
/* Remove the vdev since device is unplugged */
int remove_status = 0;
if (l2arc || (strcmp(class, "resource.fs.zfs.removed") == 0)) {
remove_status = zpool_vdev_remove_wanted(zhp, devname);
fmd_hdl_debug(hdl, "zpool_vdev_remove_wanted '%s'"
", err:%d", devname, libzfs_errno(zhdl));
}
/* Replace the vdev with a spare if its not a l2arc */
if (!l2arc && !remove_status &&
(!fmd_prop_get_int32(hdl, "spare_on_remove") ||
replace_with_spare(hdl, zhp, vdev) == B_FALSE)) {
/* Could not handle with spare */
fmd_hdl_debug(hdl, "no spare for '%s'", devname);
}
free(devname);
zpool_close(zhp);
return;
}
if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0)
return;
/*
* Note: on Linux statechange events are more than just
* healthy ones so we need to confirm the actual state value.
*/
if (strcmp(class, "resource.fs.zfs.statechange") == 0 &&
state == VDEV_STATE_HEALTHY) {
zfs_vdev_repair(hdl, nvl);
return;
}
if (strcmp(class, "sysevent.fs.zfs.vdev_remove") == 0) {
zfs_vdev_repair(hdl, nvl);
return;
}
zfs_retire_clear_data(hdl, zdp);
if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0)
is_repair = B_TRUE;
else
is_repair = B_FALSE;
/*
* We subscribe to zfs faults as well as all repair events.
*/
if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
&faults, &nfaults) != 0)
return;
for (f = 0; f < nfaults; f++) {
fault = faults[f];
fault_device = B_FALSE;
degrade_device = B_FALSE;
is_disk = B_FALSE;
if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE,
&retire) == 0 && retire == 0)
continue;
/*
* While we subscribe to fault.fs.zfs.*, we only take action
* for faults targeting a specific vdev (open failure or SERD
* failure). We also subscribe to fault.io.* events, so that
* faulty disks will be faulted in the ZFS configuration.
*/
if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) {
fault_device = B_TRUE;
} else if (fmd_nvl_class_match(hdl, fault,
"fault.fs.zfs.vdev.checksum")) {
degrade_device = B_TRUE;
} else if (fmd_nvl_class_match(hdl, fault,
"fault.fs.zfs.vdev.slow_io")) {
degrade_device = B_TRUE;
} else if (fmd_nvl_class_match(hdl, fault,
"fault.fs.zfs.device")) {
fault_device = B_FALSE;
} else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) {
is_disk = B_TRUE;
fault_device = B_TRUE;
} else {
continue;
}
if (is_disk) {
continue;
} else {
/*
* This is a ZFS fault. Lookup the resource, and
* attempt to find the matching vdev.
*/
if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE,
&resource) != 0 ||
nvlist_lookup_string(resource, FM_FMRI_SCHEME,
&scheme) != 0)
continue;
if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0)
continue;
if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL,
&pool_guid) != 0)
continue;
if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV,
&vdev_guid) != 0) {
if (is_repair)
vdev_guid = 0;
else
continue;
}
if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
&vdev)) == NULL)
continue;
aux = VDEV_AUX_ERR_EXCEEDED;
}
if (vdev_guid == 0) {
/*
* For pool-level repair events, clear the entire pool.
*/
fmd_hdl_debug(hdl, "zpool_clear of pool '%s'",
zpool_get_name(zhp));
(void) zpool_clear(zhp, NULL, NULL);
zpool_close(zhp);
continue;
}
/*
* If this is a repair event, then mark the vdev as repaired and
* continue.
*/
if (is_repair) {
repair_done = 1;
fmd_hdl_debug(hdl, "zpool_clear of pool '%s' vdev %llu",
zpool_get_name(zhp), vdev_guid);
(void) zpool_vdev_clear(zhp, vdev_guid);
zpool_close(zhp);
continue;
}
/*
* Actively fault the device if needed.
*/
if (fault_device)
(void) zpool_vdev_fault(zhp, vdev_guid, aux);
if (degrade_device)
(void) zpool_vdev_degrade(zhp, vdev_guid, aux);
if (fault_device || degrade_device)
fmd_hdl_debug(hdl, "zpool_vdev_%s: vdev %llu on '%s'",
fault_device ? "fault" : "degrade", vdev_guid,
zpool_get_name(zhp));
/*
* Attempt to substitute a hot spare.
*/
(void) replace_with_spare(hdl, zhp, vdev);
zpool_close(zhp);
}
if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done &&
nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0)
fmd_case_uuresolved(hdl, uuid);
}
static const fmd_hdl_ops_t fmd_ops = {
zfs_retire_recv, /* fmdo_recv */
NULL, /* fmdo_timeout */
NULL, /* fmdo_close */
NULL, /* fmdo_stats */
NULL, /* fmdo_gc */
};
static const fmd_prop_t fmd_props[] = {
{ "spare_on_remove", FMD_TYPE_BOOL, "true" },
{ NULL, 0, NULL }
};
static const fmd_hdl_info_t fmd_info = {
"ZFS Retire Agent", "1.0", &fmd_ops, fmd_props
};
void
_zfs_retire_init(fmd_hdl_t *hdl)
{
zfs_retire_data_t *zdp;
libzfs_handle_t *zhdl;
if ((zhdl = libzfs_init()) == NULL)
return;
if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
libzfs_fini(zhdl);
return;
}
zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP);
zdp->zrd_hdl = zhdl;
fmd_hdl_setspecific(hdl, zdp);
}
void
_zfs_retire_fini(fmd_hdl_t *hdl)
{
zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
if (zdp != NULL) {
zfs_retire_clear_data(hdl, zdp);
libzfs_fini(zdp->zrd_hdl);
fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t));
}
}