mirror_zfs/module/zfs/dsl_deadlist.c
Alexander Motin 4ae8bf406b Allow physical rewrite without logical
During regular block writes ZFS sets both logical and physical
birth times equal to the current TXG.  During dedup and block
cloning logical birth time is still set to the current TXG, but
physical may be copied from the original block that was used.
This represents the fact that logically user data has changed,
but the physically it is the same old block.

But block rewrite introduces a new situation, when block is not
changed logically, but stored in a different place of the pool.
From ARC, scrub and some other perspectives this is a new block,
but for example for user applications or incremental replication
it is not.  Somewhat similar thing happen during remap phase of
device removal, but in that case space blocks are still acounted
as allocated at their logical birth times.

This patch introduces a new "rewrite" flag in the block pointer
structure, allowing to differentiate physical rewrite (when the
block is actually reallocated at the physical birth time) from
the device reval case (when the logical birth time is used).

The new functionality is not used at this point, and the only
expected change is that error log is now kept in terms of physical
physical birth times, rather than logical, since if a block with
logged error was somehow rewritten, then the previous error does
not matter any more.

This change also introduces a new TRAVERSE_LOGICAL flag to the
traverse code, allowing zfs send, redact and diff to work in
context of logical birth times, ignoring physical-only rewrites.
It also changes nothing at this point due to lack of those writes,
but they will come in a following patch.

Reviewed-by: Rob Norris <robn@despairlabs.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <alexander.motin@TrueNAS.com>
Closes #17565
2025-08-06 10:36:07 -07:00

1123 lines
31 KiB
C

// SPDX-License-Identifier: CDDL-1.0
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/zfs_context.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
/*
* Deadlist concurrency:
*
* Deadlists can only be modified from the syncing thread.
*
* Except for dsl_deadlist_insert(), it can only be modified with the
* dp_config_rwlock held with RW_WRITER.
*
* The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
* be called concurrently, from open context, with the dl_config_rwlock held
* with RW_READER.
*
* Therefore, we only need to provide locking between dsl_deadlist_insert() and
* the accessors, protecting:
* dl_phys->dl_used,comp,uncomp
* and protecting the dl_tree from being loaded.
* The locking is provided by dl_lock. Note that locking on the bpobj_t
* provides its own locking, and dl_oldfmt is immutable.
*/
/*
* Livelist Overview
* ================
*
* Livelists use the same 'deadlist_t' struct as deadlists and are also used
* to track blkptrs over the lifetime of a dataset. Livelists however, belong
* to clones and track the blkptrs that are clone-specific (were born after
* the clone's creation). The exception is embedded block pointers which are
* not included in livelists because they do not need to be freed.
*
* When it comes time to delete the clone, the livelist provides a quick
* reference as to what needs to be freed. For this reason, livelists also track
* when clone-specific blkptrs are freed before deletion to prevent double
* frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
* deletion algorithm iterates backwards over the livelist, matching
* FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
* are also updated in the case when blkptrs are remapped: the old version
* of the blkptr is cancelled out with a FREE and the new version is tracked
* with an ALLOC.
*
* To bound the amount of memory required for deletion, livelists over a
* certain size are spread over multiple entries. Entries are grouped by
* birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
* be in the same entry. This allows us to delete livelists incrementally
* over multiple syncs, one entry at a time.
*
* During the lifetime of the clone, livelists can get extremely large.
* Their size is managed by periodic condensing (preemptively cancelling out
* FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
* the shared space between the clone and its origin is so small that it
* doesn't make sense to use livelists anymore.
*/
/*
* The threshold sublist size at which we create a new sub-livelist for the
* next txg. However, since blkptrs of the same transaction group must be in
* the same sub-list, the actual sublist size may exceed this. When picking the
* size we had to balance the fact that larger sublists mean fewer sublists
* (decreasing the cost of insertion) against the consideration that sublists
* will be loaded into memory and shouldn't take up an inordinate amount of
* space. We settled on ~500000 entries, corresponding to roughly 128M.
*/
uint64_t zfs_livelist_max_entries = 500000;
/*
* We can approximate how much of a performance gain a livelist will give us
* based on the percentage of blocks shared between the clone and its origin.
* 0 percent shared means that the clone has completely diverged and that the
* old method is maximally effective: every read from the block tree will
* result in lots of frees. Livelists give us gains when they track blocks
* scattered across the tree, when one read in the old method might only
* result in a few frees. Once the clone has been overwritten enough,
* writes are no longer sparse and we'll no longer get much of a benefit from
* tracking them with a livelist. We chose a lower limit of 75 percent shared
* (25 percent overwritten). This means that 1/4 of all block pointers will be
* freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
* to make deletion 4x faster. Once the amount of shared space drops below this
* threshold, the clone will revert to the old deletion method.
*/
int zfs_livelist_min_percent_shared = 75;
static int
dsl_deadlist_compare(const void *arg1, const void *arg2)
{
const dsl_deadlist_entry_t *dle1 = arg1;
const dsl_deadlist_entry_t *dle2 = arg2;
return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
}
static int
dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
{
const dsl_deadlist_cache_entry_t *dlce1 = arg1;
const dsl_deadlist_cache_entry_t *dlce2 = arg2;
return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
}
static void
dsl_deadlist_load_tree(dsl_deadlist_t *dl)
{
zap_cursor_t zc;
zap_attribute_t *za;
int error;
ASSERT(MUTEX_HELD(&dl->dl_lock));
ASSERT(!dl->dl_oldfmt);
if (dl->dl_havecache) {
/*
* After loading the tree, the caller may modify the tree,
* e.g. to add or remove nodes, or to make a node no longer
* refer to the empty_bpobj. These changes would make the
* dl_cache incorrect. Therefore we discard the cache here,
* so that it can't become incorrect.
*/
dsl_deadlist_cache_entry_t *dlce;
void *cookie = NULL;
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
!= NULL) {
kmem_free(dlce, sizeof (*dlce));
}
avl_destroy(&dl->dl_cache);
dl->dl_havecache = B_FALSE;
}
if (dl->dl_havetree)
return;
za = zap_attribute_alloc();
avl_create(&dl->dl_tree, dsl_deadlist_compare,
sizeof (dsl_deadlist_entry_t),
offsetof(dsl_deadlist_entry_t, dle_node));
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
(error = zap_cursor_retrieve(&zc, za)) == 0;
zap_cursor_advance(&zc)) {
dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
dle->dle_mintxg = zfs_strtonum(za->za_name, NULL);
/*
* Prefetch all the bpobj's so that we do that i/o
* in parallel. Then open them all in a second pass.
*/
dle->dle_bpobj.bpo_object = za->za_first_integer;
dmu_prefetch_dnode(dl->dl_os, dle->dle_bpobj.bpo_object,
ZIO_PRIORITY_SYNC_READ);
avl_add(&dl->dl_tree, dle);
}
VERIFY3U(error, ==, ENOENT);
zap_cursor_fini(&zc);
zap_attribute_free(za);
for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
dle->dle_bpobj.bpo_object));
}
dl->dl_havetree = B_TRUE;
}
/*
* Load only the non-empty bpobj's into the dl_cache. The cache is an analog
* of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
* is used only for gathering space statistics. The dl_cache has two
* advantages over the dl_tree:
*
* 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
* mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
* many times and to inquire about its (zero) space stats many times.
*
* 2. The dl_cache uses less memory than the dl_tree. We only need to load
* the dl_tree of snapshots when deleting a snapshot, after which we free the
* dl_tree with dsl_deadlist_discard_tree
*/
static void
dsl_deadlist_load_cache(dsl_deadlist_t *dl)
{
zap_cursor_t zc;
zap_attribute_t *za;
int error;
ASSERT(MUTEX_HELD(&dl->dl_lock));
ASSERT(!dl->dl_oldfmt);
if (dl->dl_havecache)
return;
uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
sizeof (dsl_deadlist_cache_entry_t),
offsetof(dsl_deadlist_cache_entry_t, dlce_node));
za = zap_attribute_alloc();
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
(error = zap_cursor_retrieve(&zc, za)) == 0;
zap_cursor_advance(&zc)) {
if (za->za_first_integer == empty_bpobj)
continue;
dsl_deadlist_cache_entry_t *dlce =
kmem_zalloc(sizeof (*dlce), KM_SLEEP);
dlce->dlce_mintxg = zfs_strtonum(za->za_name, NULL);
/*
* Prefetch all the bpobj's so that we do that i/o
* in parallel. Then open them all in a second pass.
*/
dlce->dlce_bpobj = za->za_first_integer;
dmu_prefetch_dnode(dl->dl_os, dlce->dlce_bpobj,
ZIO_PRIORITY_SYNC_READ);
avl_add(&dl->dl_cache, dlce);
}
VERIFY3U(error, ==, ENOENT);
zap_cursor_fini(&zc);
zap_attribute_free(za);
for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
bpobj_t bpo;
VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
VERIFY0(bpobj_space(&bpo,
&dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
bpobj_close(&bpo);
}
dl->dl_havecache = B_TRUE;
}
/*
* Discard the tree to save memory.
*/
void
dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
{
mutex_enter(&dl->dl_lock);
if (!dl->dl_havetree) {
mutex_exit(&dl->dl_lock);
return;
}
dsl_deadlist_entry_t *dle;
void *cookie = NULL;
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
}
avl_destroy(&dl->dl_tree);
dl->dl_havetree = B_FALSE;
mutex_exit(&dl->dl_lock);
}
void
dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
{
dsl_deadlist_entry_t *dle;
ASSERT(dsl_deadlist_is_open(dl));
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
mutex_exit(&dl->dl_lock);
for (dle = avl_first(&dl->dl_tree); dle != NULL;
dle = AVL_NEXT(&dl->dl_tree, dle)) {
if (func(args, dle) != 0)
break;
}
}
int
dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
{
dmu_object_info_t doi;
int err;
ASSERT(!dsl_deadlist_is_open(dl));
mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
dl->dl_os = os;
dl->dl_object = object;
err = dmu_bonus_hold(os, object, dl, &dl->dl_dbuf);
if (err != 0)
return (err);
dmu_object_info_from_db(dl->dl_dbuf, &doi);
if (doi.doi_type == DMU_OT_BPOBJ) {
dmu_buf_rele(dl->dl_dbuf, dl);
dl->dl_dbuf = NULL;
dl->dl_oldfmt = B_TRUE;
return (bpobj_open(&dl->dl_bpobj, os, object));
}
dl->dl_oldfmt = B_FALSE;
dl->dl_phys = dl->dl_dbuf->db_data;
dl->dl_havetree = B_FALSE;
dl->dl_havecache = B_FALSE;
return (0);
}
boolean_t
dsl_deadlist_is_open(dsl_deadlist_t *dl)
{
return (dl->dl_os != NULL);
}
void
dsl_deadlist_close(dsl_deadlist_t *dl)
{
ASSERT(dsl_deadlist_is_open(dl));
mutex_destroy(&dl->dl_lock);
if (dl->dl_oldfmt) {
dl->dl_oldfmt = B_FALSE;
bpobj_close(&dl->dl_bpobj);
dl->dl_os = NULL;
dl->dl_object = 0;
return;
}
if (dl->dl_havetree) {
dsl_deadlist_entry_t *dle;
void *cookie = NULL;
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
!= NULL) {
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
}
avl_destroy(&dl->dl_tree);
}
if (dl->dl_havecache) {
dsl_deadlist_cache_entry_t *dlce;
void *cookie = NULL;
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
!= NULL) {
kmem_free(dlce, sizeof (*dlce));
}
avl_destroy(&dl->dl_cache);
}
dmu_buf_rele(dl->dl_dbuf, dl);
dl->dl_dbuf = NULL;
dl->dl_phys = NULL;
dl->dl_os = NULL;
dl->dl_object = 0;
}
uint64_t
dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
{
if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
sizeof (dsl_deadlist_phys_t), tx));
}
void
dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
{
dmu_object_info_t doi;
zap_cursor_t zc;
zap_attribute_t *za;
int error;
VERIFY0(dmu_object_info(os, dlobj, &doi));
if (doi.doi_type == DMU_OT_BPOBJ) {
bpobj_free(os, dlobj, tx);
return;
}
za = zap_attribute_alloc();
for (zap_cursor_init(&zc, os, dlobj);
(error = zap_cursor_retrieve(&zc, za)) == 0;
zap_cursor_advance(&zc)) {
uint64_t obj = za->za_first_integer;
if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
bpobj_decr_empty(os, tx);
else
bpobj_free(os, obj, tx);
}
VERIFY3U(error, ==, ENOENT);
zap_cursor_fini(&zc);
zap_attribute_free(za);
VERIFY0(dmu_object_free(os, dlobj, tx));
}
static void
dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
{
ASSERT(MUTEX_HELD(&dl->dl_lock));
if (dle->dle_bpobj.bpo_object ==
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
bpobj_close(&dle->dle_bpobj);
bpobj_decr_empty(dl->dl_os, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
dle->dle_mintxg, obj, tx));
}
bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
}
static void
dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
uint64_t obj, dmu_tx_t *tx)
{
ASSERT(MUTEX_HELD(&dl->dl_lock));
if (dle->dle_bpobj.bpo_object !=
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
} else {
bpobj_close(&dle->dle_bpobj);
bpobj_decr_empty(dl->dl_os, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
dle->dle_mintxg, obj, tx));
}
}
/*
* Prefetch metadata required for dle_enqueue_subobj().
*/
static void
dle_prefetch_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
uint64_t obj)
{
if (dle->dle_bpobj.bpo_object !=
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj)
bpobj_prefetch_subobj(&dle->dle_bpobj, obj);
}
void
dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
if (dl->dl_oldfmt) {
bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
return;
}
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
int sign = bp_freed ? -1 : +1;
dl->dl_phys->dl_used +=
sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
dle_tofind.dle_mintxg = BP_GET_BIRTH(bp);
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
else
dle = AVL_PREV(&dl->dl_tree, dle);
if (dle == NULL) {
zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
bp, (longlong_t)BP_GET_BIRTH(bp));
dle = avl_first(&dl->dl_tree);
}
ASSERT3P(dle, !=, NULL);
dle_enqueue(dl, dle, bp, bp_freed, tx);
mutex_exit(&dl->dl_lock);
}
int
dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, B_FALSE, tx);
return (0);
}
int
dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, B_TRUE, tx);
return (0);
}
/*
* Insert new key in deadlist, which must be > all current entries.
* mintxg is not inclusive.
*/
void
dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
uint64_t obj;
dsl_deadlist_entry_t *dle;
if (dl->dl_oldfmt)
return;
dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
dle->dle_mintxg = mintxg;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
avl_add(&dl->dl_tree, dle);
VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
mintxg, obj, tx));
mutex_exit(&dl->dl_lock);
}
/*
* Remove this key, merging its entries into the previous key.
*/
void
dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle, *dle_prev;
if (dl->dl_oldfmt)
return;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
ASSERT3P(dle, !=, NULL);
dle_prev = AVL_PREV(&dl->dl_tree, dle);
ASSERT3P(dle_prev, !=, NULL);
dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
avl_remove(&dl->dl_tree, dle);
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
mutex_exit(&dl->dl_lock);
}
/*
* Remove a deadlist entry and all of its contents by removing the entry from
* the deadlist's avl tree, freeing the entry's bpobj and adjusting the
* deadlist's space accounting accordingly.
*/
void
dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
uint64_t used, comp, uncomp;
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
objset_t *os = dl->dl_os;
if (dl->dl_oldfmt)
return;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
VERIFY3P(dle, !=, NULL);
avl_remove(&dl->dl_tree, dle);
VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
bpobj_decr_empty(os, tx);
} else {
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
}
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
mutex_exit(&dl->dl_lock);
}
/*
* Clear out the contents of a deadlist_entry by freeing its bpobj,
* replacing it with an empty bpobj and adjusting the deadlist's
* space accounting
*/
void
dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
dmu_tx_t *tx)
{
uint64_t new_obj, used, comp, uncomp;
objset_t *os = dl->dl_os;
mutex_enter(&dl->dl_lock);
VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
bpobj_decr_empty(os, tx);
else
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
bpobj_close(&dle->dle_bpobj);
new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
new_obj, tx));
ASSERT(bpobj_is_empty(&dle->dle_bpobj));
mutex_exit(&dl->dl_lock);
}
/*
* Return the first entry in deadlist's avl tree
*/
dsl_deadlist_entry_t *
dsl_deadlist_first(dsl_deadlist_t *dl)
{
dsl_deadlist_entry_t *dle;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle = avl_first(&dl->dl_tree);
mutex_exit(&dl->dl_lock);
return (dle);
}
/*
* Return the last entry in deadlist's avl tree
*/
dsl_deadlist_entry_t *
dsl_deadlist_last(dsl_deadlist_t *dl)
{
dsl_deadlist_entry_t *dle;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle = avl_last(&dl->dl_tree);
mutex_exit(&dl->dl_lock);
return (dle);
}
/*
* Walk ds's snapshots to regenerate generate ZAP & AVL.
*/
static void
dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
uint64_t mrs_obj, dmu_tx_t *tx)
{
dsl_deadlist_t dl = { 0 };
dsl_pool_t *dp = dmu_objset_pool(os);
VERIFY0(dsl_deadlist_open(&dl, os, dlobj));
if (dl.dl_oldfmt) {
dsl_deadlist_close(&dl);
return;
}
while (mrs_obj != 0) {
dsl_dataset_t *ds;
VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
dsl_deadlist_add_key(&dl,
dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
dsl_dataset_rele(ds, FTAG);
}
dsl_deadlist_close(&dl);
}
uint64_t
dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
uint64_t mrs_obj, dmu_tx_t *tx)
{
dsl_deadlist_entry_t *dle;
uint64_t newobj;
newobj = dsl_deadlist_alloc(dl->dl_os, tx);
if (dl->dl_oldfmt) {
dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
return (newobj);
}
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
for (dle = avl_first(&dl->dl_tree); dle;
dle = AVL_NEXT(&dl->dl_tree, dle)) {
uint64_t obj;
if (dle->dle_mintxg >= maxtxg)
break;
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(zap_add_int_key(dl->dl_os, newobj,
dle->dle_mintxg, obj, tx));
}
mutex_exit(&dl->dl_lock);
return (newobj);
}
void
dsl_deadlist_space(dsl_deadlist_t *dl,
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
{
ASSERT(dsl_deadlist_is_open(dl));
if (dl->dl_oldfmt) {
VERIFY0(bpobj_space(&dl->dl_bpobj,
usedp, compp, uncompp));
return;
}
mutex_enter(&dl->dl_lock);
*usedp = dl->dl_phys->dl_used;
*compp = dl->dl_phys->dl_comp;
*uncompp = dl->dl_phys->dl_uncomp;
mutex_exit(&dl->dl_lock);
}
/*
* return space used in the range (mintxg, maxtxg].
* Includes maxtxg, does not include mintxg.
* mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
* UINT64_MAX).
*/
void
dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
{
dsl_deadlist_cache_entry_t *dlce;
dsl_deadlist_cache_entry_t dlce_tofind;
avl_index_t where;
if (dl->dl_oldfmt) {
VERIFY0(bpobj_space_range(&dl->dl_bpobj,
mintxg, maxtxg, usedp, compp, uncompp));
return;
}
*usedp = *compp = *uncompp = 0;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_cache(dl);
dlce_tofind.dlce_mintxg = mintxg;
dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
/*
* If this mintxg doesn't exist, it may be an empty_bpobj which
* is omitted from the sparse tree. Start at the next non-empty
* entry.
*/
if (dlce == NULL)
dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
for (; dlce && dlce->dlce_mintxg < maxtxg;
dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
*usedp += dlce->dlce_bytes;
*compp += dlce->dlce_comp;
*uncompp += dlce->dlce_uncomp;
}
mutex_exit(&dl->dl_lock);
}
static void
dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
uint64_t used, comp, uncomp;
bpobj_t bpo;
ASSERT(MUTEX_HELD(&dl->dl_lock));
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
bpobj_close(&bpo);
dsl_deadlist_load_tree(dl);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used += used;
dl->dl_phys->dl_comp += comp;
dl->dl_phys->dl_uncomp += uncomp;
dle_tofind.dle_mintxg = birth;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
dle_enqueue_subobj(dl, dle, obj, tx);
}
/*
* Prefetch metadata required for dsl_deadlist_insert_bpobj().
*/
static void
dsl_deadlist_prefetch_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
ASSERT(MUTEX_HELD(&dl->dl_lock));
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = birth;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
dle_prefetch_subobj(dl, dle, obj);
}
static int
dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, bp_freed, tx);
return (0);
}
/*
* Merge the deadlist pointed to by 'obj' into dl. obj will be left as
* an empty deadlist.
*/
void
dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
{
zap_cursor_t zc, pzc;
zap_attribute_t *za, *pza;
dmu_buf_t *bonus;
dsl_deadlist_phys_t *dlp;
dmu_object_info_t doi;
int error, perror, i;
VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
if (doi.doi_type == DMU_OT_BPOBJ) {
bpobj_t bpo;
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
bpobj_close(&bpo);
return;
}
za = zap_attribute_alloc();
pza = zap_attribute_alloc();
mutex_enter(&dl->dl_lock);
/*
* Prefetch up to 128 deadlists first and then more as we progress.
* The limit is a balance between ARC use and diminishing returns.
*/
for (zap_cursor_init(&pzc, dl->dl_os, obj), i = 0;
(perror = zap_cursor_retrieve(&pzc, pza)) == 0 && i < 128;
zap_cursor_advance(&pzc), i++) {
dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
zfs_strtonum(pza->za_name, NULL));
}
for (zap_cursor_init(&zc, dl->dl_os, obj);
(error = zap_cursor_retrieve(&zc, za)) == 0;
zap_cursor_advance(&zc)) {
dsl_deadlist_insert_bpobj(dl, za->za_first_integer,
zfs_strtonum(za->za_name, NULL), tx);
VERIFY0(zap_remove(dl->dl_os, obj, za->za_name, tx));
if (perror == 0) {
dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
zfs_strtonum(pza->za_name, NULL));
zap_cursor_advance(&pzc);
perror = zap_cursor_retrieve(&pzc, pza);
}
}
VERIFY3U(error, ==, ENOENT);
zap_cursor_fini(&zc);
zap_cursor_fini(&pzc);
VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
dlp = bonus->db_data;
dmu_buf_will_dirty(bonus, tx);
memset(dlp, 0, sizeof (*dlp));
dmu_buf_rele(bonus, FTAG);
mutex_exit(&dl->dl_lock);
zap_attribute_free(za);
zap_attribute_free(pza);
}
/*
* Remove entries on dl that are born > mintxg, and put them on the bpobj.
*/
void
dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle, *pdle;
avl_index_t where;
int i;
ASSERT(!dl->dl_oldfmt);
mutex_enter(&dl->dl_lock);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
/*
* Prefetch up to 128 deadlists first and then more as we progress.
* The limit is a balance between ARC use and diminishing returns.
*/
for (pdle = dle, i = 0; pdle && i < 128; i++) {
bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
pdle = AVL_NEXT(&dl->dl_tree, pdle);
}
while (dle) {
uint64_t used, comp, uncomp;
dsl_deadlist_entry_t *dle_next;
bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
if (pdle) {
bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
pdle = AVL_NEXT(&dl->dl_tree, pdle);
}
VERIFY0(bpobj_space(&dle->dle_bpobj,
&used, &comp, &uncomp));
ASSERT3U(dl->dl_phys->dl_used, >=, used);
ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
dle->dle_mintxg, tx));
dle_next = AVL_NEXT(&dl->dl_tree, dle);
avl_remove(&dl->dl_tree, dle);
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
dle = dle_next;
}
mutex_exit(&dl->dl_lock);
}
typedef struct livelist_entry {
blkptr_t le_bp;
uint32_t le_refcnt;
avl_node_t le_node;
} livelist_entry_t;
static int
livelist_compare(const void *larg, const void *rarg)
{
const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
/* Sort them according to dva[0] */
uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
if (l_dva0_vdev != r_dva0_vdev)
return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
/* if vdevs are equal, sort by offsets. */
uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
return (TREE_CMP(l_dva0_offset, r_dva0_offset));
}
struct livelist_iter_arg {
avl_tree_t *avl;
bplist_t *to_free;
zthr_t *t;
};
/*
* Expects an AVL tree which is incrementally filled will FREE blkptrs
* and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
* corresponding FREE are stored in the supplied bplist.
*
* Note that multiple FREE and ALLOC entries for the same blkptr may be
* encountered when dedup or block cloning is involved. For this reason we
* keep a refcount for all the FREE entries of each blkptr and ensure that
* each of those FREE entries has a corresponding ALLOC preceding it.
*/
static int
dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
struct livelist_iter_arg *lia = arg;
avl_tree_t *avl = lia->avl;
bplist_t *to_free = lia->to_free;
zthr_t *t = lia->t;
ASSERT(tx == NULL);
if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
return (SET_ERROR(EINTR));
livelist_entry_t node;
node.le_bp = *bp;
livelist_entry_t *found = avl_find(avl, &node, NULL);
if (found) {
ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(&found->le_bp));
ASSERT3U(BP_GET_CHECKSUM(bp), ==,
BP_GET_CHECKSUM(&found->le_bp));
ASSERT3U(BP_GET_BIRTH(bp), ==, BP_GET_BIRTH(&found->le_bp));
}
if (bp_freed) {
if (found == NULL) {
/* first free entry for this blkptr */
livelist_entry_t *e =
kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
e->le_bp = *bp;
e->le_refcnt = 1;
avl_add(avl, e);
} else {
/*
* Deduped or cloned block free. We could assert D bit
* for dedup, but there is no such one for cloning.
*/
ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
found->le_refcnt++;
}
} else {
if (found == NULL) {
/* block is currently marked as allocated */
bplist_append(to_free, bp);
} else {
/* alloc matches a free entry */
ASSERT3U(found->le_refcnt, !=, 0);
found->le_refcnt--;
if (found->le_refcnt == 0) {
/* all tracked free pairs have been matched */
avl_remove(avl, found);
kmem_free(found, sizeof (livelist_entry_t));
}
}
}
return (0);
}
/*
* Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
* which have an ALLOC entry but no matching FREE
*/
int
dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
uint64_t *size)
{
avl_tree_t avl;
avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
offsetof(livelist_entry_t, le_node));
/* process the sublist */
struct livelist_iter_arg arg = {
.avl = &avl,
.to_free = to_free,
.t = t
};
int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
VERIFY(err != 0 || avl_numnodes(&avl) == 0);
void *cookie = NULL;
livelist_entry_t *le = NULL;
while ((le = avl_destroy_nodes(&avl, &cookie)) != NULL) {
kmem_free(le, sizeof (livelist_entry_t));
}
avl_destroy(&avl);
return (err);
}
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, U64, ZMOD_RW,
"Size to start the next sub-livelist in a livelist");
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
"Threshold at which livelist is disabled");