mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
234e9605c1
It's much nicer to import from upstream this way, and compiles faster too. Everything in lib/ is unmodified 1.4.5. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rich Ercolani <rincebrain@gmail.com> Closes #12978
420 lines
19 KiB
C
420 lines
19 KiB
C
/*
|
|
* Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under both the BSD-style license (found in the
|
|
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
|
* in the COPYING file in the root directory of this source tree).
|
|
* You may select, at your option, one of the above-listed licenses.
|
|
*/
|
|
|
|
/*-*************************************
|
|
* Dependencies
|
|
***************************************/
|
|
#include "zstd_compress_sequences.h"
|
|
|
|
/**
|
|
* -log2(x / 256) lookup table for x in [0, 256).
|
|
* If x == 0: Return 0
|
|
* Else: Return floor(-log2(x / 256) * 256)
|
|
*/
|
|
static unsigned const kInverseProbabilityLog256[256] = {
|
|
0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
|
|
1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
|
|
874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
|
|
724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
|
|
618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
|
|
535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
|
|
468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
|
|
411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
|
|
362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
|
|
318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
|
|
279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
|
|
244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
|
|
212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
|
|
182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
|
|
155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
|
|
130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
|
|
106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
|
|
83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
|
|
62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
|
|
42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
|
|
23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
|
|
5, 4, 2, 1,
|
|
};
|
|
|
|
static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
|
|
void const* ptr = ctable;
|
|
U16 const* u16ptr = (U16 const*)ptr;
|
|
U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
|
|
return maxSymbolValue;
|
|
}
|
|
|
|
/**
|
|
* Returns the cost in bytes of encoding the normalized count header.
|
|
* Returns an error if any of the helper functions return an error.
|
|
*/
|
|
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
|
|
size_t const nbSeq, unsigned const FSELog)
|
|
{
|
|
BYTE wksp[FSE_NCOUNTBOUND];
|
|
S16 norm[MaxSeq + 1];
|
|
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
|
|
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max), "");
|
|
return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
|
|
}
|
|
|
|
/**
|
|
* Returns the cost in bits of encoding the distribution described by count
|
|
* using the entropy bound.
|
|
*/
|
|
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
|
|
{
|
|
unsigned cost = 0;
|
|
unsigned s;
|
|
for (s = 0; s <= max; ++s) {
|
|
unsigned norm = (unsigned)((256 * count[s]) / total);
|
|
if (count[s] != 0 && norm == 0)
|
|
norm = 1;
|
|
assert(count[s] < total);
|
|
cost += count[s] * kInverseProbabilityLog256[norm];
|
|
}
|
|
return cost >> 8;
|
|
}
|
|
|
|
/**
|
|
* Returns the cost in bits of encoding the distribution in count using ctable.
|
|
* Returns an error if ctable cannot represent all the symbols in count.
|
|
*/
|
|
size_t ZSTD_fseBitCost(
|
|
FSE_CTable const* ctable,
|
|
unsigned const* count,
|
|
unsigned const max)
|
|
{
|
|
unsigned const kAccuracyLog = 8;
|
|
size_t cost = 0;
|
|
unsigned s;
|
|
FSE_CState_t cstate;
|
|
FSE_initCState(&cstate, ctable);
|
|
if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
|
|
DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
|
|
ZSTD_getFSEMaxSymbolValue(ctable), max);
|
|
return ERROR(GENERIC);
|
|
}
|
|
for (s = 0; s <= max; ++s) {
|
|
unsigned const tableLog = cstate.stateLog;
|
|
unsigned const badCost = (tableLog + 1) << kAccuracyLog;
|
|
unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
|
|
if (count[s] == 0)
|
|
continue;
|
|
if (bitCost >= badCost) {
|
|
DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
|
|
return ERROR(GENERIC);
|
|
}
|
|
cost += (size_t)count[s] * bitCost;
|
|
}
|
|
return cost >> kAccuracyLog;
|
|
}
|
|
|
|
/**
|
|
* Returns the cost in bits of encoding the distribution in count using the
|
|
* table described by norm. The max symbol support by norm is assumed >= max.
|
|
* norm must be valid for every symbol with non-zero probability in count.
|
|
*/
|
|
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
|
|
unsigned const* count, unsigned const max)
|
|
{
|
|
unsigned const shift = 8 - accuracyLog;
|
|
size_t cost = 0;
|
|
unsigned s;
|
|
assert(accuracyLog <= 8);
|
|
for (s = 0; s <= max; ++s) {
|
|
unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
|
|
unsigned const norm256 = normAcc << shift;
|
|
assert(norm256 > 0);
|
|
assert(norm256 < 256);
|
|
cost += count[s] * kInverseProbabilityLog256[norm256];
|
|
}
|
|
return cost >> 8;
|
|
}
|
|
|
|
symbolEncodingType_e
|
|
ZSTD_selectEncodingType(
|
|
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
|
|
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
|
|
FSE_CTable const* prevCTable,
|
|
short const* defaultNorm, U32 defaultNormLog,
|
|
ZSTD_defaultPolicy_e const isDefaultAllowed,
|
|
ZSTD_strategy const strategy)
|
|
{
|
|
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
|
|
if (mostFrequent == nbSeq) {
|
|
*repeatMode = FSE_repeat_none;
|
|
if (isDefaultAllowed && nbSeq <= 2) {
|
|
/* Prefer set_basic over set_rle when there are 2 or less symbols,
|
|
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
|
|
* If basic encoding isn't possible, always choose RLE.
|
|
*/
|
|
DEBUGLOG(5, "Selected set_basic");
|
|
return set_basic;
|
|
}
|
|
DEBUGLOG(5, "Selected set_rle");
|
|
return set_rle;
|
|
}
|
|
if (strategy < ZSTD_lazy) {
|
|
if (isDefaultAllowed) {
|
|
size_t const staticFse_nbSeq_max = 1000;
|
|
size_t const mult = 10 - strategy;
|
|
size_t const baseLog = 3;
|
|
size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
|
|
assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
|
|
assert(mult <= 9 && mult >= 7);
|
|
if ( (*repeatMode == FSE_repeat_valid)
|
|
&& (nbSeq < staticFse_nbSeq_max) ) {
|
|
DEBUGLOG(5, "Selected set_repeat");
|
|
return set_repeat;
|
|
}
|
|
if ( (nbSeq < dynamicFse_nbSeq_min)
|
|
|| (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
|
|
DEBUGLOG(5, "Selected set_basic");
|
|
/* The format allows default tables to be repeated, but it isn't useful.
|
|
* When using simple heuristics to select encoding type, we don't want
|
|
* to confuse these tables with dictionaries. When running more careful
|
|
* analysis, we don't need to waste time checking both repeating tables
|
|
* and default tables.
|
|
*/
|
|
*repeatMode = FSE_repeat_none;
|
|
return set_basic;
|
|
}
|
|
}
|
|
} else {
|
|
size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
|
|
size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
|
|
size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
|
|
size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
|
|
|
|
if (isDefaultAllowed) {
|
|
assert(!ZSTD_isError(basicCost));
|
|
assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
|
|
}
|
|
assert(!ZSTD_isError(NCountCost));
|
|
assert(compressedCost < ERROR(maxCode));
|
|
DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
|
|
(unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
|
|
if (basicCost <= repeatCost && basicCost <= compressedCost) {
|
|
DEBUGLOG(5, "Selected set_basic");
|
|
assert(isDefaultAllowed);
|
|
*repeatMode = FSE_repeat_none;
|
|
return set_basic;
|
|
}
|
|
if (repeatCost <= compressedCost) {
|
|
DEBUGLOG(5, "Selected set_repeat");
|
|
assert(!ZSTD_isError(repeatCost));
|
|
return set_repeat;
|
|
}
|
|
assert(compressedCost < basicCost && compressedCost < repeatCost);
|
|
}
|
|
DEBUGLOG(5, "Selected set_compressed");
|
|
*repeatMode = FSE_repeat_check;
|
|
return set_compressed;
|
|
}
|
|
|
|
size_t
|
|
ZSTD_buildCTable(void* dst, size_t dstCapacity,
|
|
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
|
|
unsigned* count, U32 max,
|
|
const BYTE* codeTable, size_t nbSeq,
|
|
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
|
|
const FSE_CTable* prevCTable, size_t prevCTableSize,
|
|
void* entropyWorkspace, size_t entropyWorkspaceSize)
|
|
{
|
|
BYTE* op = (BYTE*)dst;
|
|
const BYTE* const oend = op + dstCapacity;
|
|
DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
|
|
|
|
switch (type) {
|
|
case set_rle:
|
|
FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
|
|
RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
|
|
*op = codeTable[0];
|
|
return 1;
|
|
case set_repeat:
|
|
memcpy(nextCTable, prevCTable, prevCTableSize);
|
|
return 0;
|
|
case set_basic:
|
|
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
|
|
return 0;
|
|
case set_compressed: {
|
|
S16 norm[MaxSeq + 1];
|
|
size_t nbSeq_1 = nbSeq;
|
|
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
|
|
if (count[codeTable[nbSeq-1]] > 1) {
|
|
count[codeTable[nbSeq-1]]--;
|
|
nbSeq_1--;
|
|
}
|
|
assert(nbSeq_1 > 1);
|
|
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max), "");
|
|
{ size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
|
|
FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
|
|
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, entropyWorkspace, entropyWorkspaceSize), "");
|
|
return NCountSize;
|
|
}
|
|
}
|
|
default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
|
|
}
|
|
}
|
|
|
|
FORCE_INLINE_TEMPLATE size_t
|
|
ZSTD_encodeSequences_body(
|
|
void* dst, size_t dstCapacity,
|
|
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
|
|
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
|
|
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
|
|
seqDef const* sequences, size_t nbSeq, int longOffsets)
|
|
{
|
|
BIT_CStream_t blockStream;
|
|
FSE_CState_t stateMatchLength;
|
|
FSE_CState_t stateOffsetBits;
|
|
FSE_CState_t stateLitLength;
|
|
|
|
RETURN_ERROR_IF(
|
|
ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
|
|
dstSize_tooSmall, "not enough space remaining");
|
|
DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
|
|
(int)(blockStream.endPtr - blockStream.startPtr),
|
|
(unsigned)dstCapacity);
|
|
|
|
/* first symbols */
|
|
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
|
|
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
|
|
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
|
|
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
|
|
if (MEM_32bits()) BIT_flushBits(&blockStream);
|
|
BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
|
|
if (MEM_32bits()) BIT_flushBits(&blockStream);
|
|
if (longOffsets) {
|
|
U32 const ofBits = ofCodeTable[nbSeq-1];
|
|
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
|
|
if (extraBits) {
|
|
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
|
|
BIT_flushBits(&blockStream);
|
|
}
|
|
BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
|
|
ofBits - extraBits);
|
|
} else {
|
|
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
|
|
}
|
|
BIT_flushBits(&blockStream);
|
|
|
|
{ size_t n;
|
|
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
|
|
BYTE const llCode = llCodeTable[n];
|
|
BYTE const ofCode = ofCodeTable[n];
|
|
BYTE const mlCode = mlCodeTable[n];
|
|
U32 const llBits = LL_bits[llCode];
|
|
U32 const ofBits = ofCode;
|
|
U32 const mlBits = ML_bits[mlCode];
|
|
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
|
|
(unsigned)sequences[n].litLength,
|
|
(unsigned)sequences[n].matchLength + MINMATCH,
|
|
(unsigned)sequences[n].offset);
|
|
/* 32b*/ /* 64b*/
|
|
/* (7)*/ /* (7)*/
|
|
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
|
|
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
|
|
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
|
|
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
|
|
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
|
|
BIT_flushBits(&blockStream); /* (7)*/
|
|
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
|
|
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
|
|
BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
|
|
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
|
|
if (longOffsets) {
|
|
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
|
|
if (extraBits) {
|
|
BIT_addBits(&blockStream, sequences[n].offset, extraBits);
|
|
BIT_flushBits(&blockStream); /* (7)*/
|
|
}
|
|
BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
|
|
ofBits - extraBits); /* 31 */
|
|
} else {
|
|
BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
|
|
}
|
|
BIT_flushBits(&blockStream); /* (7)*/
|
|
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
|
|
} }
|
|
|
|
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
|
|
FSE_flushCState(&blockStream, &stateMatchLength);
|
|
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
|
|
FSE_flushCState(&blockStream, &stateOffsetBits);
|
|
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
|
|
FSE_flushCState(&blockStream, &stateLitLength);
|
|
|
|
{ size_t const streamSize = BIT_closeCStream(&blockStream);
|
|
RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
|
|
return streamSize;
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
ZSTD_encodeSequences_default(
|
|
void* dst, size_t dstCapacity,
|
|
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
|
|
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
|
|
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
|
|
seqDef const* sequences, size_t nbSeq, int longOffsets)
|
|
{
|
|
return ZSTD_encodeSequences_body(dst, dstCapacity,
|
|
CTable_MatchLength, mlCodeTable,
|
|
CTable_OffsetBits, ofCodeTable,
|
|
CTable_LitLength, llCodeTable,
|
|
sequences, nbSeq, longOffsets);
|
|
}
|
|
|
|
|
|
#if DYNAMIC_BMI2
|
|
|
|
static TARGET_ATTRIBUTE("bmi2") size_t
|
|
ZSTD_encodeSequences_bmi2(
|
|
void* dst, size_t dstCapacity,
|
|
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
|
|
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
|
|
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
|
|
seqDef const* sequences, size_t nbSeq, int longOffsets)
|
|
{
|
|
return ZSTD_encodeSequences_body(dst, dstCapacity,
|
|
CTable_MatchLength, mlCodeTable,
|
|
CTable_OffsetBits, ofCodeTable,
|
|
CTable_LitLength, llCodeTable,
|
|
sequences, nbSeq, longOffsets);
|
|
}
|
|
|
|
#endif
|
|
|
|
size_t ZSTD_encodeSequences(
|
|
void* dst, size_t dstCapacity,
|
|
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
|
|
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
|
|
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
|
|
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
|
|
{
|
|
DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
|
|
#if DYNAMIC_BMI2
|
|
if (bmi2) {
|
|
return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
|
|
CTable_MatchLength, mlCodeTable,
|
|
CTable_OffsetBits, ofCodeTable,
|
|
CTable_LitLength, llCodeTable,
|
|
sequences, nbSeq, longOffsets);
|
|
}
|
|
#endif
|
|
(void)bmi2;
|
|
return ZSTD_encodeSequences_default(dst, dstCapacity,
|
|
CTable_MatchLength, mlCodeTable,
|
|
CTable_OffsetBits, ofCodeTable,
|
|
CTable_LitLength, llCodeTable,
|
|
sequences, nbSeq, longOffsets);
|
|
}
|